June 18-22, 2018 - ICTP Trieste

TAGSS II - Summer School on
Geometry of Moduli Spaces of Curves

School's Webpage

Moduli spaces of stable pointed curves play an important role in algebraic geometry.
The School had one course on vector bundles of coinvariants and on conformal blocks and another one on their cohomology classes in relation with those of moduli of abelian varieties.

About the first course, by A. Gibney: moduli spaces of curves carry vector bundles of coinvariants and conformal blocks; they are invariants of a curve C attached to a Lie group G that are canonically isomorphic to global sections of an ample line bundle on the moduli stack of certain G-bundles on C. These are generalized theta functions in case C is smooth. In case g=0, the bundles of co-invariants are globally generated, and their first Chern classes are semi-ample line bundles on the moduli of curves, and shed light on its birational geometry.

About the second course, by A. Tommasi: the cohomology of moduli spaces of curves and abelian varieties carries several natural classes. We focus on the tautological classes and the cohomology classes related to spaces of modular forms. The problem of determining relationships between the tautological classes turns out to be particularly interesting.


The school featured courses by:
Angela Gibney - University of Georgia
and
Orsola Tommasi - Università di Padova