SERGIO LANCELOTTI

Ricerca


Curriculum
  • Nato a Brescia nel 1967.
  • Laurea in Matematica conseguita presso l'Università Cattolica del Sacro Cuore (sede di Brescia) nel 1990.
  • Dal 1990 al 1994 titolare di un posto di Dottorato di Ricerca in Matematica presso l'Università degli studi di Milano.
  • Titolo di Dottore di Ricerca in Matematica conseguito a Roma nel 1996.
  • Dal 1998 Ricercatore universitario in Analisi Matematica, settore scientifico disciplinare A02A, presso la I Facoltà di Ingegneria del Politecnico di Torino.
  • Dal 2001 Ricercatore confermato in Analisi Matematica, settore scientifico disciplinare Mat/05, presso la I Facoltà di Ingegneria del Politecnico di Torino.
ric

Interessi scientifici

  • Teoria dei punti critici per funzionali non regolari.

  • Equazioni ellittiche semilineari e quasi-linerari.

  • Problemi agli autovalori per disequazioni variazionali .

  • Sistemi Lagrangiani con ostacolo.

  • Equazioni di Schrödinger in domini illimtati.


 
Pubblicazioni
  1. M. DEGIOVANNI e S. LANCELOTTI, A note on nonsmooth functionals with infinitely many critical values, Boll. Un. Mat. Ital. A (7) 7 (1993), 289-297.

  2. M. DEGIOVANNI e S. LANCELOTTI, Perturbations of even nonsmooth functionals, Differential Integral Equations 8 (1995), 981-992.

  3. S. LANCELOTTI, Infinitely many solutions for one-dimensional eigenvalue problems for variational inequalities, Ann. Univ. Ferrara Sez. VII 41 (1995), 33-44.

  4. S. LANCELOTTI, Perturbations of symmetric constraints in eigenvalue problems for variational inequalities, Nonlinear Anal. 27 (1996), 633-644.

  5. M. DEGIOVANNI e S. LANCELOTTI, Perturbations of critical values in nonsmooth critical point theory, Well-posedness and Stability of Optimization Problems (Luminy 1995), Serdica Math. J. 22 (1996), 427-450.

  6. S. LANCELOTTI, Nontrivial solutions of variational inequalities. The degenerate case, Topol. Methods Nonlinear Anal. 18 2 (2001), 303-319.

  7. S. LANCELOTTI, Morse index estimates for continuous functionals associated with quasilinear elliptic equations, Adv. Differential Equations 7 1 (2002), 99-128.

  8. S. LANCELOTTI, A. MUSESTI e M. SQUASSINA, Infinitely many solutions for polyharmonic elliptic problems with broken symmetries, Math. Nachr., 253 (2003), 35-44.

  9. S. LANCELOTTI e M. MARZOCCHI, Lagrangian systems with Lipschitz obstacle on manifolds, Topol. Methods Nonlinear Anal., 27 (2006), 229-253.

  10. S. LANCELOTTI, Existence of nontrivial solutions for semilinear problems with strictly differentiable nonlinearity, Abstr. Appl. Anal., vol. 2006, pages 14, 2006.

  11. M. DEGIOVANNI e S. LANCELOTTI, Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity, Ann. Inst. Henry Poincare', 24 (2007), 907-919.

  12. M. DEGIOVANNI e S. LANCELOTTI, Linking solutions for p-Laplace equations with nonlinearity at critical growth, J. Funct. Anal., 256 (2009), 3643-3659.

  13. M. DEGIOVANNI,  S. LANCELOTTI e K. PERERA, Nontrivial solutions of p-superlinear p-Laplacian problems via a cohomological local splitting, Commun. Contemp. Math.., 12 (2010), 475-486.

  14. S. LANCELOTTI e R. MOLLE, Positive solutions for autonomous and non-autonomous nonlinear critical elliptic problems in unbounded domains, Nonlinear Differ. Equ. Appl. (2020) 27:8.

  15. S. LANCELOTTI e R. MOLLE, Normalized positive solutions for Schrödinger equations with potentials in unbounded domains, Proc. R. Soc. Edinburgh Sec. A (2023).