	\sim
V()'	l'()

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DATI DI CIII IA E ESAME (SCIVETE III STAMI ATELLE MATESCOLO)							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp. errate		
Domande	N.	P.
Risp. esatte		

Risposte a quiz e domande: esatta=2.5 punti; errata=-0.5 punti; non data=0 punti

Versione Versione	Quiz 1	Quiz 2	Quiz 0	Quiz 1	Quiz 5	Quiz 0	Dom. 7	Dom. 8	Risp. errate Esercizio	F.	Р.
									Svolg.=		

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 2x^2 + 3xy + 5, x^2 + y^2 \le 2, x \ge 0, y \ge 0\}.$

L'integrale
$$\int_{\Sigma} \frac{z - 2x^2 - 5}{\sqrt{25x^2 + 9y^2 + 24xy + 1}} d\sigma \quad \text{vale}$$

A 2.

 $\boxed{B} \frac{3}{2}$

C 3.

 $D 2\sqrt{2}$.

 $E \sqrt{2}$.

Quiz 2. Siano $\Omega \subseteq \mathbb{R}^3$ un aperto non vuoto e $F:\Omega \to \mathbb{R}^3$ un campo vettoriale di classe C^1 su Ω . Quale delle seguenti affermazioni è corretta?

 \boxed{A} Se F non è irrotazionale in Ω , allora F non è conservativo in Ω .

 \overline{B} Se F non è conservativo in Ω , allora F non è irrotazionale in Ω .

 $\fbox{$C$}$ Nessuna delle altre è corretta.

 \boxed{D} Se Ω non è semplicemente connesso, allora F non è conservativo in Ω .

Quiz 3. L'integrale di linea del campo vettoriale $F(x,y) = \left(8x e^{4x^2-4y^2} + 24x^2, -8y e^{4x^2-4y^2} + 18y\right)$ lungo la curva parametrica $\gamma:[0,1] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^4 - t^3 + 2t, t^5 - t e^{t-1} + 2t\right)$ vale

 $A \ 0. \ B \ 100. \ C \ 50. \ D \ 200. \ E \ 25.$

Versione NV

Quiz 4. Sia $f(x,y) = \frac{1}{3}(x^3 + y^3) - 16x - 25y$. Quale delle seguenti affermazioni è corretta?

A La funzione f ha un punto di massimo locale, un punto di minimo locale e due punti di sella.

 \boxed{B} La funzione f ha due punti di massimo locale e due punti di sella.

C La funzione f ha due punti di massimo locale e due punti di minimo locale.

 \boxed{D} Nessuna delle altre affermazioni è corretta.

 \boxed{E} La funzione f ha due punti di minimo locale e due punti di sella.

Quiz 5. La serie numerica
$$\sum_{n=1}^{\infty} (-1)^n \, \frac{1}{n^{1/2}} \, \log \left(1 + \frac{1}{n^{2/3}} \right)$$

A diverge negativamente.

B è indeterminata.

 \overline{C} converge assolutamente.

 \boxed{D} diverge positivamente.

 \overline{E} converge ma non assolutamente.

Quiz 6. Si considerino un campo vettoriale $F: \mathbb{R}^3 \to \mathbb{R}^3$ di classe C^1 , le superfici $\Sigma = \{(x,y,z) \in \mathbb{R}^3: x^2+y^2+z^2=4, \ z \geq 0\}$ e $T=\{(x,y,z) \in \mathbb{R}^3: x^2+y^2 \leq 4, \ z=0\}$, ciascuna orientata positivamente rispetto al corrispondente versore normale che forma un angolo minore o uguale ad un angolo retto con il versore fondamentale dell'asse z, e la superficie $S=\{(x,y,z) \in \mathbb{R}^3: z=x^2+y^2-4, \ z \leq 0\}$, orientata positivamente rispetto al versore normale che forma un angolo maggiore o uguale ad un angolo retto con il versore fondamentale dell'asse z.

Quale delle seguenti affermazioni è corretta?

$$\boxed{A} \int_{\Sigma} \operatorname{rotF} \cdot n \, d\sigma - \int_{T} \operatorname{rotF} \cdot n \, d\sigma - \int_{S} \operatorname{rotF} \cdot n \, d\sigma = 0.$$

$$\boxed{B} \int_{\Sigma} \operatorname{rotF} \cdot n \, d\sigma - \int_{T} \operatorname{rotF} \cdot n \, d\sigma + \int_{S} \operatorname{rotF} \cdot n \, d\sigma = 0.$$

$$\boxed{C} \int_{\Sigma} \operatorname{rotF} \cdot n \, d\sigma + \int_{T} \operatorname{rotF} \cdot n \, d\sigma - 2 \int_{S} \operatorname{rotF} \cdot n \, d\sigma = 0.$$

$$\boxed{D} \ 2 \int_{\Sigma} \mathrm{rot} \mathbf{F} \cdot n \, d\sigma - \int_{T} \mathrm{rot} \mathbf{F} \cdot n \, d\sigma - \int_{S} \mathrm{rot} \mathbf{F} \cdot n \, d\sigma = 0.$$

$$\boxed{E} \int_{\Sigma} \operatorname{rotF} \cdot n \, d\sigma + \int_{T} \operatorname{rotF} \cdot n \, d\sigma + 2 \int_{S} \operatorname{rotF} \cdot n \, d\sigma = 0.$$

Domanda 7. Sia
$$\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \frac{1}{2} \le y \le \frac{1}{x+1}, \ x \ge 0 \right\}$$
. Quanto vale l'integrale $\int_{\Omega} 24 y (x+1)^2 dx dy$?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

$$\begin{aligned} \mathbf{Domanda~8.~Si~considerino~il~campo~vettoriale} & F(x,y,z) = \left(\frac{x}{\pi\sqrt{x^2+y^2-e^2}},~\frac{y}{\pi\sqrt{x^2+y^2-e^2}},~\frac{z}{\pi\sqrt{x^2+y^2-e^2}}\right) \\ e~la~superficie~ \Sigma = \left\{(x,y,z) \in \mathbb{R}^3:~z = \sqrt{x^2+y^2-e^2},~2e^2 \leq x^2+y^2 \leq e^4+e^2\right\}. \end{aligned}$$

Quanto vale il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Versione NV

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(2xy^2 + \log(1+y^4), \ 2yz^2 - y^2z + \sqrt{2+x^2z^4}, \ yz^2 + e^{x^2}\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ 3 - \frac{1}{4} (y^2 + z^2) \le x \le 6 - y^2 - z^2 \right\}.$$

SVOLGIMENTO DELL'ESERCIZIO (In caso di necessità scrivere anche sul retro)

Versione NV

SVOLGIMENTO DELL'ESERCIZIO