Versione

Quiz 1

Quiz 2

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DATI DI CIII FA L'ESAME (SCIVEIE III STAMI ATELLO MATOSCOLO)				
COGNOME	NOME	MATRICOLA		

TEMPO A DISPOSIZIONE: 2 ORE

Quiz 4

Riservato al docente

Quiz	N.	Р.
Risp. esatte		
Risp. errate	·	

Domande N. P.

	Risp. esatte		
Dom. 8	Risp. errate		
	Esercizio	F.	P.

Risposte a quiz e domande: esatta=2.5 punti; errata=-0.5 punti; non data=0 punti

Quiz 3

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate SOLO le risposte scritte in questa tabella.

Quiz 6

Dom. 7

Quiz 5

- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Siano R > 0 e $\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : z = 2 - 3 \left(x^2 + y^2 \right)^{3/2}, x^2 + y^2 \le R^2, y \ge 0 \right\}.$

L'integrale $\int_{\Sigma} \frac{z-2}{\sqrt{81(x^2+y^2)^2+1}} d\sigma \quad \text{vale}$

$$\boxed{A} - \frac{3}{2}\pi R^4.$$

$$\boxed{B} - \frac{6}{5}\pi R^5.$$

$$\boxed{C} - \frac{3}{5}\pi R^5.$$

$$D - \pi R^5$$
.

$$\boxed{E} - \frac{3}{4}\pi R^4.$$

Quiz 2. Siano $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni di classe C^1 , $F: \mathbb{R}^2 \to \mathbb{R}^2$ il campo vettoriale definito da $F(x,y) = \left(\frac{\partial f}{\partial x}(x,y) + g(\|(x,y)\|) \, x - 2y, \ \frac{\partial f}{\partial y}(x,y) + g(\|(x,y)\|) \, y + 2x\right)$ e $\Omega = \left\{(x,y) \in \mathbb{R}^2: \ 4 \le x^2 + y^2 \le 9\right\}$.

L'integrale di linea di F lungo il bordo di Ω orientato positivamente vale

 $A = 4\pi$.

 $B 42\pi$.

 $C 20\pi$.

 $D 13\pi$.

 $E 5\pi$.

Quiz 3. L'integrale di linea del campo vettoriale $F(x,y) = \left(2x + \frac{16x}{\sqrt{x^2 + y^2 + 4}}, \frac{16y}{\sqrt{x^2 + y^2 + 4}} - 8y\right)$ lungo la curva parametrica $\gamma: [0,1] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(2t\left(4t^2 - 2t - 1\right), \ t^2 - \sin\left(\pi t\right)\right)$ vale

 $\boxed{A} \ 32. \quad \boxed{B} \ 4. \quad \boxed{C} \ 8. \quad \boxed{D} \ 0. \quad \boxed{E} \ 16.$

Quiz 4. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f : \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

- A Se f non è differenziabile in x_0 , allora f non è continua in x_0 .
- B Se esiste il gradiente di f in x_0 , allora f è continua in x_0 .
- C Se f è continua in x_0 , allora f è differenziabile in x_0 .
- D Se f è differenziabile in x_0 , allora f è continua in x_0 .
- E Se f non è continua in x_0 , allora non esiste il gradiente di f in x_0 .

Quiz 5. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{e^n + 4}{3n e^n}$

- A diverge positivamente.
- B converge ma non assolutamente.
- C è indeterminata.
- \boxed{D} diverge negativamente.
- \overline{E} converge assolutamente.

Quiz 6. Sia $f(x,y) = 5(x^2 - 4)(y^2 - 9) + 1$. Quale delle seguenti affermazioni è corretta?

- A La funzione f ha un punto di massimo locale, un punto di minimo locale e un punto di sella.
- \boxed{B} La funzione f ha un punto di massimo locale, un punto di minimo locale e tre punti di sella.
- C La funzione f ha un punto di massimo locale, non ha punti di minimo locale e ha quattro punti di sella.
- \boxed{D} La funzione f non ha punti di massimo e di minimo locale.
- \fbox{E} La funzione f ha un punto di minimo locale, non ha punti di massimo locale e ha quattro punti di sella.

Domanda 7. Sia $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \sqrt{x^2 + 6x} \le y \le \sqrt{8 - x^2} \right\}$. Quanto vale l'integrale $\int_{\Omega} 6y \, dx \, dy$?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : (z-2)^2 = x^2 + y^2 - 2, \ 0 \le z \le 1, \ x \ge 0\}$ e il campo vettoriale $F(x, y, z) = \left(\sqrt{1 + x^2} - 2y(z-2)^2, \ 2x(z-2)^2 + \log\left(1 + y^2\right), \ e^z - \sin z\right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = (x(z-2)^5 - \cos y, \ y(z-2)^5 - 5yz^4, \ z^5 + e^x)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le z \le 2 + \sqrt{4 - x^2 - y^2} \right\}.$$

Versione

Quiz 1

Quiz 2

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

Bill Bi cili in E Estivit (scrivere in Simul ni EEE vini escolo)					
COGNOME	NOME	MATRICOLA			

TEMPO A DISPOSIZIONE: 2 ORE

Quiz 4

Riservato al docente

\mathbf{Quiz}	N.	Ρ.
Risp. esatte		
Risp. errate		

Domande	N.	Р.
D. 11		

Dolli. 8	Esercizio	F.	P.
Dom. 8	Risp. esatte Risp. errate		

Risposte a quiz e domande: esatta=2.5 punti; errata=-0.5 punti; non data=0 punti

Quiz 3

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.

Quiz 6

Dom. 7

Quiz 5

- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. L'integrale di linea del campo vettoriale $F(x,y) = \left(32x + \frac{5x}{\sqrt{x^2 + y^2 + 4}}, \frac{5y}{\sqrt{x^2 + y^2 + 4}} - 32y\right)$ lungo la curva parametrica $\gamma: [0,1] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(4t\left(5t^2 - 3t - 1\right), 4\left(t^3 + \sin\left(\pi t\right)\right)\right)$ vale

 \boxed{A} 40. \boxed{B} 0. \boxed{C} 5. \boxed{D} 10. \boxed{E} 20.

Quiz 2. Siano $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ due funzioni di classe C^1 , $F: \mathbb{R}^2 \to \mathbb{R}^2$ il campo vettoriale definito da $F(x,y) = \left(\frac{\partial f}{\partial x}(x,y) - g(\|(x,y)\|) \, x - 3y, \ \frac{\partial f}{\partial y}(x,y) - g(\|(x,y)\|) \, y + 3x\right)$ e $\Omega = \left\{(x,y) \in \mathbb{R}^2: \ 9 \le x^2 + y^2 \le 16\right\}$.

L'integrale di linea di Flungo il bordo di Ω orientato positivamente vale

 $A = 6\pi$. $B = 42\pi$. $C = 25\pi$. $D = 7\pi$. $E = 150\pi$.

Quiz 3. Siano R > 0 e $\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : z = 4 - 2\left(x^2 + y^2\right)^{5/2}, x^2 + y^2 \le R^2, x \ge 0 \right\}.$

L'integrale $\int_{\Sigma} \frac{z-4}{\sqrt{100(x^2+y^2)^4+1}} d\sigma \quad \text{vale}$

$$\boxed{A} - \frac{4}{7}\pi R^7.$$

$$\boxed{B} - \frac{2}{3}\pi R^6.$$

$$\boxed{C} - \frac{4}{3}\pi R^6.$$

$$\boxed{D} - \frac{2}{7}\pi R^7.$$

$$E$$
 $-\pi R^7$.

Quiz 4. Sia $f(x,y) = 3 - 9(x^2 - 4)(1 - y^2)$. Quale delle seguenti affermazioni è corretta?

A La funzione f ha un punto di massimo locale, un punto di minimo locale e un punto di sella.

B La funzione f ha un punto di minimo locale, non ha punti di massimo locale e ha quattro punti di sella.

C La funzione f ha un punto di massimo locale, un punto di minimo locale e tre punti di sella.

 \boxed{D} La funzione f non ha punti di massimo e di minimo locale.

E La funzione f ha un punto di massimo locale, non ha punti di minimo locale e ha quattro punti di sella.

Quiz 5. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{4^n - 3^n}{n^2 4^n + 1}$

A è indeterminata.

B converge ma non assolutamente.

 \overline{C} diverge negativamente.

D diverge positivamente.

 \overline{E} converge assolutamente.

Quiz 6. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f: \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

A Se f non è continua in x_0 , allora non esiste il gradiente di f in x_0 .

B Se f non è differenziabile in x_0 , allora f non è continua in x_0 .

C Se f è differenziabile in x_0 , allora esiste il gradiente di f in x_0 .

D Se f non è differenziabile in x_0 , allora non esiste il gradiente di f in x_0 .

 \overline{E} Se esiste il gradiente di f in x_0 , allora f è continua in x_0 .

Domanda 7. Sia $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \sqrt{y^2 + 6y} \le x \le \sqrt{8 - y^2} \right\}$. Quanto vale l'integrale $\int_{\Omega} 12x \, dx \, dy$?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : (z - 2)^2 = x^2 + y^2 - 3, \ 0 \le z \le 1, \ y \ge 0\}$ e il campo vettoriale $F(x, y, z) = \left(\sqrt{2 + x^2} - \frac{1}{2}y(z - 2)^2, \ \frac{1}{2}x(z - 2)^2 + \log(2 + y^2), \ e^z - \cos z\right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(6x(z-1)^3 + e^{y^2}, 6y(z-1)^3 - 3yz^2, z^3 + \sin x\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ 0 \le z \le 1 + \sqrt{1 - x^2 - y^2} \right\}.$$

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

		11100001
COGNOME	NOME	MATRICOLA

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	Ρ.
Risp. esatte		
Risp errate		

Risposte a quiz e domande: esatta=2.5 punti; errata=-0.5 punti; non data=0 punti

Domande	N.	Р.
Risp. esatte		
Risp. errate		
Esercizio	F.	P.

V3									Esercizio Svolg.=
									ъ
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Risp. errate
									risp. esatte

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

 $\begin{aligned} \mathbf{Quiz} \ \mathbf{1.} \ & \text{Siano} \ f: \mathbb{R}^2 \to \mathbb{R} \ \text{e} \ g: \mathbb{R} \to \mathbb{R} \ \text{due funzioni di classe} \ C^1, \ F: \mathbb{R}^2 \to \mathbb{R}^2 \ \text{il campo vettoriale definito da} \\ F(x,y) &= \left(\frac{\partial f}{\partial x}(x,y) + g(\|(x,y)\|) \, x - \frac{5}{2}y, \ \frac{\partial f}{\partial y}(x,y) + g(\|(x,y)\|) \, y + \frac{5}{2}x \right) \\ & \text{e} \ \Omega = \left\{(x,y) \in \mathbb{R}^2: \ 4 \leq x^2 + y^2 \leq 9\right\}. \end{aligned}$

L'integrale di linea di F lungo il bordo di Ω orientato positivamente vale

Quiz 2. Sia $f(x,y) = 2 - 7(x^2 - 9)(y^2 - 4)$. Quale delle seguenti affermazioni è corretta?

- \overline{A} La funzione f non ha punti di massimo e di minimo locale.
- \boxed{B} La funzione f ha un punto di massimo locale, non ha punti di minimo locale e ha quattro punti di sella.
- \overline{C} La funzione f ha un punto di massimo locale, un punto di minimo locale e tre punti di sella.
- \boxed{D} La funzione f ha un punto di massimo locale, un punto di minimo locale e un punto di sella.
- \boxed{E} La funzione f ha un punto di minimo locale, non ha punti di massimo locale e ha quattro punti di sella.

Quiz 3. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \, \frac{e^n + 5}{4n \, e^n}$

- \overline{A} diverge negativamente.
- \boxed{B} è indeterminata.
- \boxed{C} diverge positivamente.
- \boxed{D} converge assolutamente.
- \boxed{E} converge ma non assolutamente.

Quiz 4. L'integrale di linea del campo vettoriale $F(x,y) = \left(8x - \frac{16x}{\sqrt{x^2 + y^2 + 4}}, -\frac{16y}{\sqrt{x^2 + y^2 + 4}} - 2y\right)$ lungo la curva parametrica $\gamma: [0,1] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^2 + \sin{(\pi t)}, 2t\left(4t^2 - 2t - 1\right)\right)$ vale

- A 8.
- B -4.
- C -16.
- D 0.
- |E| -32.

Quiz 5. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f: \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

- A Se esiste il gradiente di f in x_0 , allora f è continua in x_0 .
- |B| Se f non è differenziabile in x_0 , allora f non è continua in x_0 .
- C Se f non è continua in x_0 , allora non esiste il gradiente di f in x_0 .
- D Se f è differenziabile in x_0 , allora f è continua in x_0 .
- E Se f è continua in x_0 , allora f è differenziabile in x_0 .

 $\mathbf{Quiz} \ \mathbf{6.} \ \mathrm{Siano} \ R>0 \ \mathrm{e} \ \Sigma=\Big\{(x,y,z)\in\mathbb{R}^3: \ z=7+3\left(x^2+y^2\right)^{3/2}, \ x^2+y^2\leq R^2, \ y\leq 0\Big\}.$

L'integrale $\int_{\Sigma} \frac{z-7}{\sqrt{81(x^2+y^2)^2+1}} d\sigma \quad \text{vale}$

- $A \frac{3}{4}\pi R^4$.
- $B \pi R^5$.
- $\boxed{C} \ \frac{6}{5}\pi\,R^5.$
- $\boxed{D} \ \frac{3}{5}\pi \, R^5.$
- $\boxed{E} \ \frac{3}{2}\pi R^4.$

Domanda 7. Sia $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \sqrt{x^2 + 4x} \le y \le \sqrt{6 - x^2} \right\}$. Quanto vale l'integrale $\int_{\Omega} 6y \, dx \, dy$?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : (z - 2)^2 = x^2 + y^2 - 1, \ 0 \le z \le 1, \ x \le 0\}$ e il campo vettoriale $F(x, y, z) = \left(\sqrt{3 + x^2} - y(z - 2)^2, \ x(z - 2)^2 - \log\left(3 + y^2\right), \ \sin z - e^z\right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(e^y + \frac{3}{2}x(z-2)^5, \ 6yz^5 + \frac{3}{2}y(z-2)^5, \ \cos x - z^6\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ 0 \le z \le 2 + \sqrt{4 - x^2 - y^2} \right\}.$$

Risposte a quiz e domande:

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DATI DI CHI FA L'ESAME (SCHVETE III STAMITATELLO MATOSCOLO)					
COGNOME	NOME	MATRICOLA			

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp. errate		

Domande N. P.

Versione Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Dom. 7 Dom. 8 Risp. errate

T. 7. 4 Esercizio F. P.

esatta=2.5 punti;	errata = -0.5 punti;	non data=0 punti

VCISIOIIC	Quiz 1	Quiz 2	Quiz 0	Quiz 1	Quiz 0	Quiz 0	Dom. 1	Dom. 0	resp. crrace		
T 7 1									Esercizio	F.	P.
V 4									Svolg.=		
D	01117	. 1	I DOWN	D. 4. 1.	•	1 11		1. 1			

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Siano R>0 e $\Sigma=\left\{(x,y,z)\in\mathbb{R}^3:\ z=5+2\left(x^2+y^2\right)^{5/2},\ x^2+y^2\leq R^2,\ x\leq 0\right\}.$

L'integrale $\int_{\Sigma} \frac{z-5}{\sqrt{100 \left(x^2+y^2\right)^4+1}} \, d\sigma \quad \text{ vale}$

$$\boxed{A} \quad \frac{4}{7}\pi R^7.$$

$$\boxed{B} \ \frac{2}{7}\pi R^7.$$

$$C \pi R^7$$
.

$$\boxed{D} \frac{4}{3}\pi R^6.$$

$$\boxed{E} \ \frac{2}{3}\pi R^6.$$

 $\begin{aligned} \mathbf{Quiz} \ \mathbf{2.} \ & \text{Siano} \ f: \mathbb{R}^2 \to \mathbb{R} \ \text{e} \ g: \mathbb{R} \to \mathbb{R} \ \text{due funzioni di classe} \ C^1, \ F: \mathbb{R}^2 \to \mathbb{R}^2 \ \text{il campo vettoriale definito da} \\ F(x,y) &= \left(\frac{\partial f}{\partial x}(x,y) - g(\|(x,y)\|) \, x - \frac{7}{2}y, \ \frac{\partial f}{\partial y}(x,y) - g(\|(x,y)\|) \, y + \frac{7}{2}x \right) \text{e} \ \Omega = \left\{(x,y) \in \mathbb{R}^2: \ 9 \leq x^2 + y^2 \leq 16\right\}. \end{aligned}$

L'integrale di linea di F lungo il bordo di Ω orientato positivamente vale

$$A = 6\pi$$
.

$$B = 49\pi$$
.

$$C 7\pi$$
.

$$D$$
 175 π .

$$E 25\pi$$
.

Quiz 3. La serie numerica
$$\sum_{n=1}^{\infty} (-1)^n \frac{5^n - 4^n}{n^2 5^n + 2}$$

- A diverge positivamente.
- B è indeterminata.
- \boxed{C} diverge negativamente.
- D converge assolutamente.
- \overline{E} converge ma non assolutamente.

Quiz 4. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f : \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

- \overline{A} Se f non è continua in x_0 , allora non esiste il gradiente di f in x_0 .
- B Se f non è differenziabile in x_0 , allora f non è continua in x_0 .
- C Se f è differenziabile in x_0 , allora esiste il gradiente di f in x_0 .
- D Se f non è differenziabile in x_0 , allora non esiste il gradiente di f in x_0 .
- E Se esiste il gradiente di f in x_0 , allora f è continua in x_0 .

Quiz 5. L'integrale di linea del campo vettoriale $F(x,y) = \left(32x - \frac{5x}{\sqrt{x^2 + y^2 + 4}}, -\frac{5y}{\sqrt{x^2 + y^2 + 4}} - 32y\right)$ lungo la curva parametrica $\gamma:[0,1] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(4\left(t^3 - \sin\left(\pi t\right)\right), 4t\left(5t^2 - 3t - 1\right)\right)$ vale

 \boxed{A} -10. \boxed{B} 0. \boxed{C} -20. \boxed{D} -40. \boxed{E} -5.

Quiz 6. Sia $f(x,y) = 11(1-x^2)(y^2-4)+7$. Quale delle seguenti affermazioni è corretta?

- \fbox{A} La funzione f non ha punti di massimo e di minimo locale.
- \boxed{B} La funzione f ha un punto di massimo locale, un punto di minimo locale e tre punti di sella.
- C La funzione f ha un punto di massimo locale, un punto di minimo locale e un punto di sella.
- \boxed{D} La funzione f ha un punto di minimo locale, non ha punti di massimo locale e ha quattro punti di sella.
- E La funzione f ha un punto di massimo locale, non ha punti di minimo locale e ha quattro punti di sella.

Domanda 7. Sia $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \sqrt{y^2 + 4y} \le x \le \sqrt{6 - y^2} \right\}$. Quanto vale l'integrale $\int_{\Omega} 12x \, dx \, dy$?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : (z - 2)^2 = x^2 + y^2 - 4, \ 0 \le z \le 1, \ y \le 0\}$ e il campo vettoriale $F(x, y, z) = \left(\sqrt{4 + x^2} - y(z - 2)^2, \ x(z - 2)^2 - \log\left(4 + y^2\right), \ \cos z - e^z\right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = (\sin y + 12x(z-1)^3, 4yz^3 + 12y(z-1)^3, e^x - z^4)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : 0 \le z \le 1 + \sqrt{1 - x^2 - y^2} \right\}.$$