DICHIEA L'ESAME (conivono in STAMDATELLO

DATI DI CHI FA L ESAME (SCRIVERE III STAMFATELLO MAIOSCOLO)							
COGNOME	NOME	MATRICOLA					

PO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp errate		

Domande N. Ρ.

Risp. esatte

									111
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Ri
T71									Es
VI									$\mathbf{S}\mathbf{v}$

errata=-0.5 punti; non data=0 punti

- isp. errate sercizio F. Ρ. volg.=
- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Siano $\Omega = \mathbb{R}^3 \setminus \{(0,0,0\}, F: \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e conservativo e } G: \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1$ campo vettoriale di classe C^1 e radiale. Quale delle seguenti affermazioni è corretta?

- A Per ogni $(x, y, z) \in \Omega$ si ha che rotF(x, y, z) = rotG(x, y, z) = (0, 0, 0).
- B Esiste $c \in \mathbb{R}$ tale che F(x, y, z) G(x, y, z) = c per ogni $(x, y, z) \in \Omega$.
- C | Nessuna delle altre è corretta.

Risposte a quiz e domande:

esatta=2.5 punti;

- Esiste $(x, y, z) \in \Omega$ tale che rot $F(x, y, z) \neq \text{rot}G(x, y, z)$.
- E Per ogni $(x, y, z) \in \Omega$ si ha che $rotF(x, y, z) = rotG(x, y, z) \neq (0, 0, 0)$.

Quiz 2. La serie $\sum_{n=1}^{\infty} \frac{\frac{1}{n^2} + \frac{(-1)^n}{n^3}}{\frac{1}{n^2} + 2}$

- A converge ad un numero negativo.
- converge a zero.
- C diverge positivamente.
- converge ad un numero positivo.
- diverge negativamente.

Quiz 3. Si considerino il campo vettoriale $F(x,y,z) = (xy^6 + 6x^4 + 4y^6 - z, 6x^4 + 4y^6 - x^4y - z, 4x^2 + 4y^2)$ e la superficie $\Sigma = \{(x,y,z) \in \mathbb{R}^3: z = 6x^4 + 4y^6, x^2 + y^2 \le 4, y \ge 0\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

A 16π . B 8π . C $\frac{16}{3}\pi$. D $\frac{32}{3}\pi$. E 4π .

Quiz 4. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2 - 4} \le z \le \sqrt{36 - x^2 - y^2} \right\}$. L'integrale $\int_{\Omega} \frac{1}{2} z \, dx \, dy \, dz$ vale

- $A = 4\pi$.
- B 128π .
- $\boxed{\text{C}}$ 64 π .
- $\boxed{\mathrm{D}}$ 16 π .
- $\boxed{\mathrm{E}} \ \ 32\pi.$

Quiz 5. Siano $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione di classe C^2 e $(x_0, y_0) \in \mathbb{R}^2$ tali che $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = a$, $\frac{\partial^2 f}{\partial y^2}(x_0, y_0) = 0$ e $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = b$, con $a, b \in \mathbb{R}$.

Quale delle seguenti affermazioni è corretta?

- A Se a = b = 0, allora (x_0, y_0) è un punto di sella per f.
- B Se a > 0 e b = 0, allora (x_0, y_0) è un punto di minimo locale per f.
- $\boxed{\mathbb{C}}$ Per ogni $a \in \mathbb{R}$ e per ogni $b \neq 0$ il punto (x_0, y_0) è di sella per f.
- $\boxed{\mathbf{D}}$ Se a < 0 e b = 0, allora (x_0, y_0) è un punto di massimo locale per f.
- E Nessuna delle altre è corretta.

Quiz 6. L'integrale di linea del campo vettoriale $F(x,y,z)=(x+y,\ x-y,\ 3z)$ lungo la curva parametrica $\gamma:[0,2\pi]\to\mathbb{R}^3$ definita da $\gamma(t)=(\sin t-\cos t,\ \sin t+\cos t,\ 2t)$ vale

- $\overline{\mathbf{A}}$ 12 π .
- $\boxed{\rm B} \ 12\pi^2.$
- C $24\pi^2$.
- $\boxed{\mathbf{D}}$ 0.
- $\boxed{\mathrm{E}}$ 24 π .

Domanda 7. Si considerino il campo vettoriale $F(x,y) = \left(4xy^2 + \frac{3x}{x^2 + y^2}, \ 8x^2y + \frac{3y}{x^2 + y^2}\right)$ e l'insieme $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \ x^2 + y^2 \ge 1, \ x^2 + \frac{1}{4}y^2 \le 1, \ x \ge 0, \ y \ge 0 \right\}.$

Quanto vale la circuitazione di Flungo il bordo di Ω percorso in verso antiorario?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Sia $W = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 \le 36, \ (x - 3)^2 + y^2 \ge 9, \ x \ge 0, \ 0 \le z \le \frac{1}{4}xy \right\}.$

Quanto vale il volume di W?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(\frac{x^2}{\sqrt{y^2 + z^2}} + \sqrt{y^2 + z^2}, 9xy^2z + e^{x^2}, \sin y - 9xyz^2\right)$$

dal bordo dell'insieme

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : 0 \le x \le 3, 1 \le y^2 + z^2 \le 4\}.$$

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp. errate		

omande: errata=-0.5 punti; non data=0 punti

Domande N. P.

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Risp. esatte Risp. errate		
170									Esercizio	F.	P.
VZ									Svolg.=		

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate ${f SOLO}$ le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie
$$\sum_{n=2}^{\infty} \frac{\frac{1}{n} + 3}{\frac{1}{n^2} + \frac{(-1)^n}{n^3}}$$

Risposte a quiz e domande:

esatta=2.5 punti;

- A converge ad un numero positivo.
- B converge a zero.
- C diverge negativamente.
- D diverge positivamente.
- [E] converge ad un numero negativo.

Quiz 2. Si considerino il campo vettoriale $F(x,y,z) = (xy^4 + 4x^6 + 6y^4 - z, \ 4x^6 + 6y^4 - x^6y - z, \ 4x^2 + 4y^2)$ e la superficie $\Sigma = \{(x,y,z) \in \mathbb{R}^3: \ z = 4x^6 + 6y^4, \ x^2 + y^2 \le 9, \ x \ge 0\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $\boxed{\mathbf{A}} \ 12\pi.$
- $\boxed{\mathrm{B}} \ 3\pi.$
- $\boxed{\text{C}}$ 27 π .
- $\boxed{\mathrm{D}}$ 36 π .
- $\boxed{\mathrm{E}}$ 81 π .

Quiz 3. L'integrale di linea del campo vettoriale $F(x,y,z)=(x+y,\ x-y,\ -3z)$ lungo la curva parametrica $\gamma:[0,2\pi]\to\mathbb{R}^3$ definita da $\gamma(t)=(\sin t+\cos t,\ \sin t-\cos t,\ -2t)$ vale

 $\boxed{ A } -12\pi^2. \quad \boxed{ B } -24\pi^2. \quad \boxed{ C } \ 0. \quad \boxed{ D } -24\pi. \quad \boxed{ E } -12\pi.$

Quiz 4. Siano $\Omega = \mathbb{R}^3 \setminus \{(0,0,0\}, F : \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e radiale e } G : \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e conservativo. Quale delle seguenti affermazioni è corretta?}$

- A Esiste $(x, y, z) \in \Omega$ tale che $\mathrm{rotF}(x, y, z) \neq \mathrm{rotG}(x, y, z)$.
- B Nessuna delle altre è corretta.
- C Esiste $c \in \mathbb{R}$ tale che F(x, y, z) G(x, y, z) = c per ogni $(x, y, z) \in \Omega$.
- $\boxed{\mathsf{D}}$ Per ogni $(x,y,z) \in \Omega$ si ha che $\mathsf{rotF}(x,y,z) = \mathsf{rotG}(x,y,z) \neq (0,0,0).$
- [E] Per ogni $(x, y, z) \in \Omega$ si ha che rotF(x, y, z) = rotG(x, y, z) = (0, 0, 0).

Quiz 5. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2 - 4} \le z \le \sqrt{16 - x^2 - y^2} \right\}$. L'integrale $\int_{\Omega} 3z \, dx \, dy \, dz$ vale

- $\boxed{\text{A}}$ 27 π .
- $\boxed{\mathrm{B}} \ 3\pi.$
- $\boxed{\text{C}}$ 54 π .
- D 18π .
- $\boxed{\rm E} \ 108\pi.$

Quiz 6. Siano $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione di classe C^2 e $(x_0, y_0) \in \mathbb{R}^2$ tali che $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = 0$, $\frac{\partial^2 f}{\partial y^2}(x_0, y_0) = a$ e $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = b$, con $a, b \in \mathbb{R}$.

Quale delle seguenti affermazioni è corretta?

- A Se a > 0 e b = 0, allora (x_0, y_0) è un punto di minimo locale per f.
- B Nessuna delle altre è corretta.
- C Se a = b = 0, allora (x_0, y_0) è un punto di sella per f.
- $\boxed{\mathbf{D}}$ Se a < 0 e b = 0, allora (x_0, y_0) è un punto di massimo locale per f.

Domanda 7. Si considerino il campo vettoriale $F(x,y) = \left(6xy^2 - \frac{7x}{x^2 + y^2}, \ 10x^2y - \frac{7y}{x^2 + y^2}\right)$ e l'insieme $\Omega = \left\{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \ge 1, \ \frac{1}{9}x^2 + y^2 \le 1, \ x \ge 0, \ y \ge 0\right\}.$

Quanto vale la circuitazione di F lungo il bordo di Ω percorso in verso antiorario?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Sia $W = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 16, x^2 + (y - 2)^2 \ge 4, y \ge 0, 0 \le z \le 3xy \}.$

Quanto vale il volume di W?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(7x^2yz - e^{y^2}, \ \frac{y^2}{\sqrt{x^2 + z^2}} + \sqrt{x^2 + z^2}, \ \sin x - 7xyz^2\right)$$

dal bordo dell'insieme

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : 0 \le y \le 2, 1 \le x^2 + z^2 \le 9\}.$$

Risposte a quiz e domande:

esatta=2.5 punti;

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DAIT DI CHI TA E ESAME (SCIVCIC III STAMI ATELLEO MATOSCOLO)							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

errata=-0.5 punti; non data=0 punti

Riservato al docente

Quiz	N.	Р.
Risp. esatte		
Risp errate		

Domande N. P.

Domande	IN.	Р.
Risp. esatte		

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Risp. errate		
179									Esercizio	F.	Р.
$\mathbf{C} \mathbf{V}$									Svolg.=		

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. L'integrale di linea del campo vettoriale F(x, y, z) = (x + y, x - y, 2z) lungo la curva parametrica $\gamma: [0, 2\pi] \to \mathbb{R}^3$ definita da $\gamma(t) = (\sin t - \cos t, \sin t + \cos t, 3t)$ vale

 $\boxed{A} 12\pi^2.$

 $\boxed{\rm B} \ \ 36\pi^2.$

 $\boxed{\text{C}}$ 36 π .

D 0

 $\boxed{\mathrm{E}}$ 12 π .

Quiz 2. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2 - 16} \le z \le \sqrt{36 - x^2 - y^2} \right\}$. L'integrale $\int_{\Omega} 2z \, dx \, dy \, dz$ vale

[A] 5π . [B] 100π . [C] 25π . [D] 200π . [E] 50π .

Quiz 3. La serie $\sum_{n=1}^{\infty} \frac{\frac{1}{n^2} - \frac{(-1)^n}{n^3}}{\frac{1}{n} + 4}$

A diverge negativamente.

B diverge positivamente.

C converge ad un numero positivo.

D converge ad un numero negativo.

E converge a zero.

Quiz 4. Siano $\Omega = \mathbb{R}^3 \setminus \{(0,0,0\}, F : \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e conservativo e } G : \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e radiale. Quale delle seguenti affermazioni è corretta?}$

- A Per ogni $(x, y, z) \in \Omega$ si ha che $rotF(x, y, z) = rotG(x, y, z) \neq (0, 0, 0)$.
- B Esiste $(x, y, z) \in \Omega$ tale che $rotF(x, y, z) \neq rotG(x, y, z)$.
- C Esiste $c \in \mathbb{R}$ tale che F(x, y, z) G(x, y, z) = c per ogni $(x, y, z) \in \Omega$.
- $\boxed{\mathsf{D}}$ Per ogni $(x,y,z) \in \Omega$ si ha che $\mathsf{rotF}(x,y,z) = \mathsf{rotG}(x,y,z) = (0,0,0)$.
- E Nessuna delle altre è corretta.

Quiz 5. Si considerino il campo vettoriale $F(x, y, z) = (6x^4 + 4y^6 - xy^6 - z, 6x^4 + 4y^6 + x^4y - z, 8x^2 + 8y^2)$ e la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 6x^4 + 4y^6, x^2 + y^2 \le 4, y \le 0\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- \boxed{A} 16 π .
- $\boxed{\mathrm{B}}$ 32 π .
- $\boxed{\text{C}} \frac{32}{3}\pi.$
- $D = 4\pi$.
- $\boxed{\mathrm{E}} \frac{64}{3}\pi.$

Quiz 6. Siano $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione di classe C^2 e $(x_0, y_0) \in \mathbb{R}^2$ tali che $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = a$, $\frac{\partial^2 f}{\partial y^2}(x_0, y_0) = 0$ e $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = b$, con $a, b \in \mathbb{R}$.

Quale delle seguenti affermazioni è corretta?

- $\boxed{\mathbf{A}}$ Se a > 0 e b = 0, allora (x_0, y_0) è un punto di minimo locale per f.
- B Se a < 0 e b = 0, allora (x_0, y_0) è un punto di massimo locale per f.
- C Nessuna delle altre è corretta.
- D Se a = b = 0, allora (x_0, y_0) è un punto di sella per f.
- E Per ogni $a \in \mathbb{R}$ e per ogni $b \neq 0$ il punto (x_0, y_0) è di sella per f.

Domanda 7. Si considerino il campo vettoriale $F(x,y) = \left(8xy^2 + \frac{5x}{x^2 + y^2}, \ 16x^2y + \frac{5y}{x^2 + y^2}\right)$ e l'insieme $\Omega = \left\{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \ge 1, \ x^2 + \frac{1}{4}y^2 \le 1, \ x \ge 0, \ y \ge 0\right\}.$

Quanto vale la circuitazione di F lungo il bordo di Ω percorso in verso antiorario?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Sia
$$W = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 \le 36, \ (x - 3)^2 + y^2 \ge 9, \ x \ge 0, \ 0 \le z \le \frac{1}{3}xy \right\}.$$

Quanto vale il volume di W?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(\frac{3x^2}{2\sqrt{y^2 + z^2}} - \sqrt{y^2 + z^2}, 8xy^2z - e^{x^2}, \cos y - 8xyz^2\right)$$

dal bordo dell'insieme

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : -3 \le x \le 0, \ 1 \le y^2 + z^2 \le 4\}.$$

Risposte a quiz e domande:

esatta=2.5 punti;

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DATI DI CHI FA L'ESAME (SCIVETE III STAMITATELLO MATOSCOLO)							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

errata=-0.5 punti; non data=0 punti

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp. errate		

Domande N. P.

Risp. esatte

									Risp. esatte		
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Risp. errate		
T71									Esercizio	F.	P.
V4									Svolg.=		

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + y^2 - 16} \le z \le \sqrt{32 - x^2 - y^2} \right\}$. L'integrale $\int_{\Omega} z \, dx \, dy \, dz$ vale

A 2π . B 8π . C 16π . D 32π . E 64π .

Quiz 2. L'integrale di linea del campo vettoriale F(x, y, z) = (x + y, x - y, -2z) lungo la curva parametrica $\gamma: [0, 2\pi] \to \mathbb{R}^3$ definita da $\gamma(t) = (\sin t + \cos t, \sin t - \cos t, -3t)$ vale

 $A - 12\pi^2$.

B 0.

 $\boxed{\mathrm{C}}$ -12π .

 $\boxed{\mathrm{D}}$ -36π .

 $\boxed{\mathrm{E}} -36\pi^2.$

Quiz 3. Siano $f: \mathbb{R}^2 \to \mathbb{R}$ una funzione di classe C^2 e $(x_0, y_0) \in \mathbb{R}^2$ tali che $\frac{\partial^2 f}{\partial x^2}(x_0, y_0) = 0$, $\frac{\partial^2 f}{\partial y^2}(x_0, y_0) = a$ e $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = b$, con $a, b \in \mathbb{R}$.

Quale delle seguenti affermazioni è corretta?

- $\boxed{\mathbf{A}}$ Se a < 0 e b = 0, allora (x_0, y_0) è un punto di massimo locale per f.
- B Nessuna delle altre è corretta.
- |C| Se a > 0 e b = 0, allora (x_0, y_0) è un punto di minimo locale per f.
- $\boxed{\mathsf{D}}$ Per ogni $a \in \mathbb{R}$ e per ogni $b \neq 0$ il punto (x_0, y_0) è di sella per f.
- [E] Se a = b = 0, allora (x_0, y_0) è un punto di sella per f.

Quiz 4. La serie
$$\sum_{n=2}^{\infty} \frac{\frac{1}{n} + 5}{\frac{1}{n^2} - \frac{(-1)^n}{n^3}}$$

- A diverge positivamente.
- B converge ad un numero positivo.
- C converge a zero.
- D converge ad un numero negativo.
- E diverge negativamente.

Quiz 5. Siano $\Omega = \mathbb{R}^3 \setminus \{(0,0,0\}, F : \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e radiale e } G : \Omega \to \mathbb{R}^3 \text{ un campo vettoriale di classe } C^1 \text{ e conservativo. Quale delle seguenti affermazioni è corretta?}$

- A Esiste $(x, y, z) \in \Omega$ tale che $rotF(x, y, z) \neq rotG(x, y, z)$.
- B Per ogni $(x, y, z) \in \Omega$ si ha che rotF(x, y, z) = rotG(x, y, z) = (0, 0, 0).
- $\boxed{\mathbb{C}}$ Per ogni $(x, y, z) \in \Omega$ si ha che rot $F(x, y, z) = \operatorname{rot}G(x, y, z) \neq (0, 0, 0)$.
- D Nessuna delle altre è corretta.
- E Esiste $c \in \mathbb{R}$ tale che F(x, y, z) G(x, y, z) = c per ogni $(x, y, z) \in \Omega$.

Quiz 6. Si considerino il campo vettoriale $F(x,y,z) = (4x^6 + 6y^4 - xy^4 - z, \ 4x^6 + 6y^4 + x^6y - z, \ 8x^2 + 8y^2)$ e la superficie $\Sigma = \{(x,y,z) \in \mathbb{R}^3: \ z = 4x^6 + 6y^4, \ x^2 + y^2 \le 9, \ x \le 0\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $\boxed{\text{A}}$ 54 π .
- B 162π .
- $\boxed{\mathrm{C}}$ 3π .
- $\boxed{\mathrm{D}}$ 24 π .
- $\boxed{\mathrm{E}}$ 72 π .

Quanto vale la circuitazione di F lungo il bordo di Ω percorso in verso antiorario?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Sia
$$W = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 \le 16, \ x^2 + (y - 2)^2 \ge 4, \ y \ge 0, \ 0 \le z \le \frac{3}{2} xy \right\}.$$

Quanto vale il volume di W?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(5x^2yz + e^{y^2}, \ \frac{3y^2}{2\sqrt{x^2 + z^2}} - \sqrt{x^2 + z^2}, \ \sin x - 5xyz^2\right)$$

dal bordo dell'insieme

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : -2 \le y \le 0, \ 1 \le x^2 + z^2 \le 9\}.$$