Risposte a quiz e domande:

esatta=2.5 punti;

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DAII DI CIII FA L'ESAME (Scrivere in STAMPATELLO M	AIUSCOLO
COGNOME	NOME	MATRICOLA

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

\mathbf{Quiz}	N.	Ρ.
Risp. esatte		
Risp errate		

Domande N. P.

Risp. esatte

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8]
T71]
$V \perp$									į

errata=-0.5 punti; non data=0 punti

Risp. errate

Risp. errate

Esercizio F. P.

Svolg.=

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $\Phi: (0, +\infty) \times \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$ la funzione definita da $\Phi(r, u, v) = \left(r e^u \cos v, r e^u \sin v, r e^{-u}\right)$.

Il determinante della matrice Jacobiana di Φ in (r, u, v) è

 $A 2r^2 e^{2u}$.

 $B r^2 e^u$.

C re^u .

 $\boxed{D} \ 2r^2 e^u.$

 $E 2r e^u$.

Quiz 2. Si considerino il campo vettoriale $F(x,y,z) = \left(\frac{y}{z-2}, -\frac{x}{z-2}, z-5\left(x^2+y^2\right)\right)$ e la superficie $\Sigma = \left\{(x,y,z) \in \mathbb{R}^3: z=2+5\left(x^2+y^2\right), 4 \le x^2+y^2 \le 9\right\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

A 0.

 $B 10\pi$.

C 15 π .

 $D 20\pi$.

 $E 5\pi$.

Quiz 3. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{2x^2 + y^4} \le z \le \sqrt{x^2 + y^4 + 4}, \ 0 \le y \le x \right\}$. L'integrale $\int_{\Omega} \frac{18yz}{x+2} \, dx \, dy \, dz$ vale

Quiz 4. Siano $\Omega \subseteq \mathbb{R}^3$ un aperto non vuoto e $F: \Omega \to \mathbb{R}^3$ un campo vettoriale di classe C^1 .

Quale delle seguenti affermazioni è corretta?

- A Se Ω è semplicemente connesso, allora F è conservativo.
- \boxed{B} Se F non è irrotazionale, allora F non è conservativo.
- \overline{C} Se F è irrotazionale, allora F è conservativo.
- \boxed{D} Se Ω non è semplicemente connesso, allora F non è conservativo.
- E Nessuna delle altre è corretta.

Quiz 5. Sia $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente e per ogni a>0 sia $\Omega_a=\{(x,y,z)\in\mathbb{R}^3:\ x^2+(y-a)^2+z^2\leq 9\}.$

Quale delle seguenti affermazioni è corretta?

- A Nessuna delle altre è corretta.
- B Se a > 4, allora il flusso uscente di F dal bordo di Ω_a è zero.
- C Se 2 < a < 4, allora il flusso uscente di F dal bordo di Ω_a è zero.
- \boxed{D} Se a < 1, allora il flusso uscente di F dal bordo di Ω_a è zero.
- |E| Se 1 < a < 3, allora il flusso uscente di F dal bordo di Ω_a è zero.

Quiz 6. La serie numerica $\sum_{n=2}^{\infty} (-1)^n (\pi - e)^n$

- A converge a $\frac{e-\pi}{\pi+1-e}$
- B è indeterminata.
- C converge a $\frac{1}{\pi + 1 e}$.
- D converge a $\frac{(e-\pi)^2}{\pi+1-e}$.
- E converge a $\frac{1}{\pi e}$

Domanda 7. Si considerino il campo vettoriale $F(x,y,z) = \left(y\log\left(1+z^2\right)-10xz,\ x\log\left(1+z^2\right)-5yz,\ 10z^2-e^{xy}\right)$ e l'insieme $\Omega = \left\{(x,y,z)\in\mathbb{R}^3:\ \sqrt{x^2+y^2}\leq z\leq 2\right\}$.

Quanto vale il flusso uscente di F dal bordo di Ω ?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 4, x \ge 0, z \ge 0\}$ e il campo vettoriale $F(x, y, z) = \left(\frac{5y}{x^2 + y^2 + 1} + 3xz, -\frac{5x}{x^2 + y^2 + 1} - 3yz, xy(e^z - 1)\right)$.

Quanto vale il flusso del rotore di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(4xy^2 + \frac{3x}{x^2 + y^2}, \ 4x^2y - \frac{6y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \ge 0, y \ge 0\}$$

percorso in verso antiorario.

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DITT DI CITI III E ESTINE (111000010)
COGNOME	NOME	MATRICOLA

TEMPO A DISPOSIZIONE: 2 ORE

errata=-0.5 punti; non data=0 punti

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp errate		

Domande Ρ.

									rusp. esame
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Risp. errate
779									Esercizio
VZ									Svolg.=

- F. Ρ.
- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente e per ogni b>0 sia $\Omega_b = \{(x, y, z) \in \mathbb{R}^3 : (x - b)^2 + y^2 + z^2 \le 25\}.$

Quale delle seguenti affermazioni è corretta?

A | Nessuna delle altre è corretta.

Risposte a quiz e domande:

esatta=2.5 punti;

- $B \mid \text{Se } b > 6$, allora il flusso uscente di F dal bordo di Ω_b è zero.
- $C \mid \text{Se } b < 3$, allora il flusso uscente di F dal bordo di Ω_b è zero.
- D Se 4 < b < 6, allora il flusso uscente di F dal bordo di Ω_b è zero.
- |E| Se 3 < b < 5, allora il flusso uscente di F dal bordo di Ω_b è zero.

Quiz 2. Sia $\Phi: (0, +\infty) \times \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$ la funzione definita da $\Phi(r, u, v) = (r e^{-u} \cos v, r e^{-u} \sin v, r e^{u}).$

Il determinante della matrice Jacobiana di Φ in (r, u, v) è

- $A -2r^2 e^{-2u}$.
- \overline{B} $-r^2 e^{-u}$.
- \overline{C} $-re^{-u}$.
- $|\overline{D}| -2r^2 e^{-u}$.
- $-2r e^{-u}$.

Quiz 3. Si considerino il campo vettoriale $F(x,y,z) = \left(\frac{y}{z+2}, -\frac{x}{z+2}, 9(x^2+y^2) - z\right)$ e la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 9(x^2 + y^2) - 2, 9 \le x^2 + y^2 \le 16\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

 $|A| 7\pi$. |B| 0. $|C| 56\pi$. $|D| 14\pi$. $|E| 28\pi$.

Quiz 4. Siano $\Omega \subseteq \mathbb{R}^3$ un aperto non vuoto e $F: \Omega \to \mathbb{R}^3$ un campo vettoriale di classe C^1 .

Quale delle seguenti affermazioni è corretta?

- \overline{A} Se F non è conservativo, allora F non è irrotazionale.
- B Se Ω è semplicemente connesso, allora F è conservativo.
- C Se Ω non è semplicemente connesso, allora F non è conservativo.
- D Se F è conservativo, allora F è irrotazionale.
- \overline{E} Nessuna delle altre è corretta.

Quiz 5. La serie numerica $\sum_{n=2}^{\infty} (-1)^n \left(\frac{e}{\pi}\right)^n$

- A converge a $-\frac{e}{\pi}$.
- \boxed{B} converge a $\frac{e^2}{\pi(\pi+e)}$.
- C converge a $\frac{\pi}{\pi + e}$
- D è indeterminata.
- \boxed{E} converge a $-\frac{e}{\pi + e}$.

Quiz 6. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : 2\sqrt{x^4 + 2y^2} \le z \le 2\sqrt{x^4 + y^2 + 1}, \ 0 \le x \le y \right\}$. L'integrale $\int_{\Omega} \frac{24xz}{y+1} \, dx \, dy \, dz$ vale

- A 1.
- B 4.
- C 2
- D 8.
- |E| 16.

Domanda 7. Si considerino l'insieme $\Omega = \left\{ (x,y,z) \in \mathbb{R}^3 : 2\sqrt{x^2 + y^2} \le z \le 2 \right\}$ e il campo vettoriale $F(x,y,z) = \left(z\log\left(1+y^2\right) - 10xz, \ z\log\left(1+x^2\right) - 20yz, \ 20z^2 + \cos\left(xy\right)\right)$.

Quanto vale il flusso uscente di F dal bordo di Ω ?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x,y,z) \in \mathbb{R}^3: x^2 + y^2 + z^2 = 9, y \ge 0, z \ge 0\}$ e il campo vettoriale $F(x,y,z) = \left(6xz - \frac{20y}{x^2 + y^2 + 1}, \frac{20x}{x^2 + y^2 + 1} - 6yz, xy(1 - \cos z)\right)$.

Quanto vale il flusso del rotore di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(\frac{8x}{x^2 + y^2} - 6xy^2, -6x^2y - \frac{16y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \le 0, y \ge 0\}$$

percorso in verso antiorario.

Risposte a quiz e domande:

esatta=2.5 punti;

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DATI DI CHI FA L'ESAME (SCRIVERE III STAMPATELLO MATUSCOLO)						
COGNOME	NOME	MATRICOLA				

TEMPO A DISPOSIZIONE: 2 ORE

errata=-0.5 punti; non data=0 punti

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp errate		

Domande N. P.

Bisn esatte

									Risp. esatte		
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	Risp. errate		
779									Esercizio	F.	P.
V3									Svolg.=		

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $\Phi: (0, +\infty) \times \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$ la funzione definita da $\Phi(r, u, v) = \left(r e^u \sin v, r e^u \cos v, r e^{-u}\right)$.

Il determinante della matrice Jacobiana di Φ in (r,u,v) è

$$\boxed{A} - 2r e^u$$
. $\boxed{B} - 2r^2 e^u$. $\boxed{C} - r^2 e^u$. $\boxed{D} - 2r^2 e^{2u}$. $\boxed{E} - r e^u$.

Quiz 2. La serie numerica $\sum_{n=2}^{\infty} (-1)^n (e - \pi)^n$

 \boxed{A} è indeterminata.

$$B$$
 converge a $\frac{\pi - e}{e + 1 - \pi}$.

$$C$$
 converge a $\frac{(\pi - e)^2}{e + 1 - \pi}$.

$$D$$
 converge a $\frac{1}{e-\pi}$.

$$E$$
 converge a $\frac{1}{e+1-\pi}$

Quiz 3. Siano $\Omega \subseteq \mathbb{R}^3$ un aperto non vuoto e $F: \Omega \to \mathbb{R}^3$ un campo vettoriale di classe C^1 .

Quale delle seguenti affermazioni è corretta?

- \boxed{A} Se F non è irrotazionale, allora F non è conservativo.
- \boxed{B} Se Ω è semplicemente connesso, allora F è conservativo.
- \boxed{C} Se Ω non è semplicemente connesso, allora F non è conservativo.
- \boxed{D} Se F è irrotazionale, allora F è conservativo.
- $\fbox{\it E}$ Nessuna delle altre è corretta.

Quiz 4. Si considerino il campo vettoriale $F(x,y,z) = \left(-\frac{y}{z-4}, \frac{x}{z-4}, z-7(x^2+y^2)\right)$ e la superficie $\Sigma = \{(x,y,z) \in \mathbb{R}^3: z=4+7(x^2+y^2), 4 \le x^2+y^2 \le 9\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $A 10\pi$.
- $B = 20\pi$.
- C 0.
- $D 5\pi$.
- $E \mid 40\pi$.

Quiz 5. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{3x^2 + 5y^4} \le z \le \sqrt{2x^2 + 5y^4 + 4}, \ 0 \le y \le x \right\}$. L'integrale $\int_{\Omega} \frac{24yz}{x+2} \, dx \, dy \, dz$ vale

- A 16.
- B 32.
- C 8.
- D 4.
- |E| 1.

Quiz 6. Sia $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente e per ogni a>0 sia $\Omega_a=\{(x,y,z)\in\mathbb{R}^3:\ x^2+(y-a)^2+z^2\leq 16\}.$

Quale delle seguenti affermazioni è corretta?

- A Se 3 < a < 5, allora il flusso uscente di F dal bordo di Ω_a è zero.
- \boxed{B} Nessuna delle altre è corretta.
- $\lceil C \rceil$ Se a > 5, allora il flusso uscente di F dal bordo di Ω_a è zero.
- \boxed{D} Se 2 < a < 4, allora il flusso uscente di F dal bordo di Ω_a è zero.
- E Se a < 2, allora il flusso uscente di F dal bordo di Ω_a è zero.

Domanda 7. Si considerino il campo vettoriale $F(x,y,z) = \left(y\log\left(1+z^2\right)-6xz,\ x\log\left(1+z^2\right)-3yz,\ 6z^2+e^{xy}\right)$ e l'insieme $\Omega = \left\{(x,y,z)\in\mathbb{R}^3:\ \sqrt{x^2+y^2}\leq z\leq 2\right\}$.

Quanto vale il flusso uscente di F dal bordo di Ω ?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \left\{ (x,y,z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 = 4, \ x \ge 0, \ z \ge 0 \right\}$ e il campo vettoriale $F(x,y,z) = \left(-\frac{25y}{x^2 + y^2 + 1} - 4xz, \ 4yz + \frac{25x}{x^2 + y^2 + 1}, \ xy\left(1 - e^z\right) \right)$.

Quanto vale il flusso del rotore di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(5xy^2 + \frac{4x}{x^2 + y^2}, \ 5x^2y - \frac{8y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \ge 0, y \ge 0\}$$

percorso in verso antiorario.

DATI DI CHI FA L'ESAME (SCIVEIE III STAMFATELLO MAIOSCOLO)							
COGNOME	NOME	MATRICOLA					

PO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Rish errate		

Domande N. Ρ.

Risp. esatte

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8
V4								

errata=-0.5 punti; non data=0 punti

- Risp. errate Esercizio F. Ρ. Svolg.=
- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $F: \mathbb{R}^3 \setminus \{(0,0,0)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente e per ogni b>0 sia $\Omega_b = \{(x, y, z) \in \mathbb{R}^3 : (x - b)^2 + y^2 + z^2 \le 36\}.$

Quale delle seguenti affermazioni è corretta?

- A Se b > 7, allora il flusso uscente di F dal bordo di Ω_b è zero.
- B | Se 4 < b < 6, allora il flusso uscente di F dal bordo di Ω_b è zero.
- $C \mid \text{Se } b < 4$, allora il flusso uscente di F dal bordo di Ω_b è zero.
- D | Nessuna delle altre è corretta.

Risposte a quiz e domande:

esatta=2.5 punti;

 $E \mid \text{Se } 5 < b < 7$, allora il flusso uscente di F dal bordo di Ω_b è zero.

Quiz 2. Siano $\Omega \subseteq \mathbb{R}^3$ un aperto non vuoto e $F: \Omega \to \mathbb{R}^3$ un campo vettoriale di classe C^1 .

Quale delle seguenti affermazioni è corretta?

- A | Nessuna delle altre è corretta.
- $B \mid Se \Omega$ non è semplicemente connesso, allora F non è conservativo.
- Se Ω è semplicemente connesso, allora F è conservativo.
- Se F non è conservativo, allora F non è irrotazionale.
- Se F è conservativo, allora F è irrotazionale.

Quiz 3. Sia $\Phi: (0, +\infty) \times \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$ la funzione definita da $\Phi(r, u, v) = (r e^{-u} \sin v, r e^{-u} \cos v, r e^{u})$.

Il determinante della matrice Jacobiana di Φ in (r, u, v) è

Quiz 4. Si considerino il campo vettoriale $F(x,y,z) = \left(-\frac{y}{z+4}, \frac{x}{z+4}, 11\left(x^2+y^2\right)-z\right)$ e la superficie $\Sigma = \left\{(x,y,z) \in \mathbb{R}^3: \ z=11\left(x^2+y^2\right)-4, \ 9 \leq x^2+y^2 \leq 16\right\}.$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- A 0.
- $B 28\pi$.
- $C 7\pi$.
- $D = 4\pi$.
- $E = 56\pi$.

Quiz 5. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ 2\sqrt{5x^4 + 3y^2} \le z \le 2\sqrt{5x^4 + 2y^2 + 1}, \ 0 \le x \le y \right\}$. L'integrale $\int_{\Omega} \frac{48xz}{y+1} \, dx \, dy \, dz$ vale

- A 1.
- B 16.
- C 2.
- D 4.
- |E| 8.

Quiz 6. La serie numerica $\sum_{n=2}^{\infty} (-1)^n \left(-\frac{e}{\pi}\right)^n$

- A converge a $\frac{e}{\pi}$.
- B è indeterminata.
- C converge a $\frac{e}{\pi e}$.
- D converge a $\frac{e^2}{\pi(\pi e)}$.
- E converge a $\frac{\pi}{\pi e}$.

Domanda 7. Si considerino l'insieme $\Omega = \left\{ (x,y,z) \in \mathbb{R}^3 : 2\sqrt{x^2 + y^2} \le z \le 2 \right\}$ e il campo vettoriale $F(x,y,z) = \left(z\log\left(1+y^2\right) - 16xz, \ z\log\left(1+x^2\right) - 32yz, \ 32z^2 - \cos\left(xy\right)\right)$.

Quanto vale il flusso uscente di F dal bordo di Ω ?

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 9, y \ge 0, z \ge 0\}$ e il campo vettoriale $F(x, y, z) = \left(-8xz - \frac{30y}{x^2 + y^2 + 1}, \frac{30x}{x^2 + y^2 + 1} + 8yz, xy \sin z\right)$.

Quanto vale il flusso del rotore di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(\frac{5x}{x^2 + y^2} - 7xy^2, -7x^2y - \frac{10y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \le 0, y \ge 0\}$$

percorso in verso antiorario.