Svolgimento dell'esame di Analisi Matematica II del 13 febbraio 2025 ore 17

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8
V1	D	В	В	В	В	D	20π	-4π

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(4xy^2 + \frac{3x}{x^2 + y^2}, \ 4x^2y - \frac{6y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \ge 0, y \ge 0\}$$

percorso in verso antiorario.

SVOLGIMENTO

Si ha che dom $(F) = \mathbb{R}^2 \setminus \{(0,0)\}$ e che F è di classe C^1 su dom (F). Inoltre $\Omega \subseteq \text{dom}(F)$.

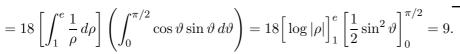
Posto $F = (f_1, f_2)$, per il Teorema di Green si ha che

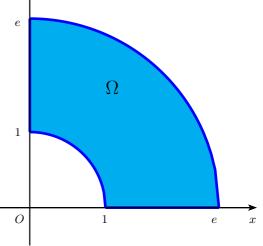
$$\begin{split} \int_{\partial\Omega} F \cdot dP &= \int_{\Omega} \left[\frac{\partial f_2}{\partial x} (x,y) - \frac{\partial f_1}{\partial y} (x,y) \right] \, dx \, dy = \\ &= \int_{\Omega} \frac{18xy}{\left(x^2 + y^2\right)^2} \, dx \, dy = \end{split}$$

passando in coordinate polari centrate nell'origine si ottiene

$$=18\int_{\Omega'}\frac{\cos\vartheta\sin\vartheta}{\rho}\,d\rho\,d\vartheta=$$

essendo $\Omega' = [1, e] \times [0, \pi/2]$ si ha





Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8
V2	В	D	D	D	В	C	10π	18π

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(\frac{8x}{x^2 + y^2} - 6xy^2, -6x^2y - \frac{16y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \le 0, y \ge 0\}$$

percorso in verso antiorario.

SVOLGIMENTO

Si ha che dom $(F) = \mathbb{R}^2 \setminus \{(0,0)\}$ e che F è di classe C^1 su dom (F). Inoltre $\Omega \subseteq \text{dom}(F)$.

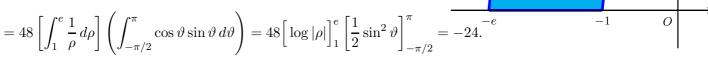
Posto $F = (f_1, f_2)$, per il Teorema di Green si ha che

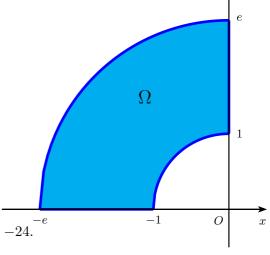
$$\begin{split} \int_{\partial\Omega} F \cdot dP &= \int_{\Omega} \left[\frac{\partial f_2}{\partial x} (x,y) - \frac{\partial f_1}{\partial y} (x,y) \right] \, dx \, dy = \\ &= \int_{\Omega} \frac{48xy}{(x^2 + y^2)^2} \, dx \, dy = \end{split}$$

passando in coordinate polari centrate nell'origine si ottiene

$$=18\int_{\Omega'}\frac{\cos\vartheta\sin\vartheta}{\rho}\,d\rho\,d\vartheta=$$

essendo $\Omega' = [1,e] \times [-\pi/2,\pi]$ si ha





Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8
V3	В	\mathbf{C}	A	В	O	C	12π	20π

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(5xy^2 + \frac{4x}{x^2 + y^2}, \ 5x^2y - \frac{8y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \ge 0, y \ge 0\}$$

percorso in verso antiorario.

SVOLGIMENTO

Si ha che dom $(F) = \mathbb{R}^2 \setminus \{(0,0)\}$ e che F è di classe C^1 su dom (F). Inoltre $\Omega \subseteq \text{dom}(F)$.

Posto $F = (f_1, f_2)$, per il Teorema di Green si ha che

$$\int_{\partial\Omega} F \cdot dP = \int_{\Omega} \left[\frac{\partial f_2}{\partial x} (x, y) - \frac{\partial f_1}{\partial y} (x, y) \right] dx dy =$$

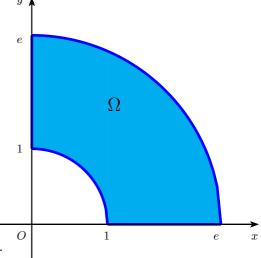
$$= \int_{\Omega} \frac{24xy}{(x^2 + y^2)^2} dx dy =$$

passando in coordinate polari centrate nell'origine si ottiene

$$=24\int_{\Omega'}\frac{\cos\vartheta\sin\vartheta}{\rho}\,d\rho\,d\vartheta=$$

essendo $\Omega' = [1, e] \times [0, \pi/2]$ si ha

$$=24\left[\int_{1}^{e}\frac{1}{\rho}d\rho\right]\left(\int_{0}^{\pi/2}\cos\vartheta\sin\vartheta\,d\vartheta\right)=24\left[\log|\rho|\right]_{1}^{e}\left[\frac{1}{2}\sin^{2}\vartheta\right]_{0}^{\pi/2}=12.$$



Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8
V4	A	\mathbf{E}	O	В	D	D	16π	27π

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare la circuitazione del campo vettoriale

$$F(x,y) = \left(\frac{5x}{x^2 + y^2} - 7xy^2, -7x^2y - \frac{10y}{x^2 + y^2}\right)$$

lungo il bordo dell'insieme

$$\Omega = \{(x,y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le e^2, x \le 0, y \ge 0\}$$

percorso in verso antiorario.

SVOLGIMENTO

Si ha che dom $(F) = \mathbb{R}^2 \setminus \{(0,0)\}$ e che F è di classe C^1 su dom (F). Inoltre $\Omega \subseteq \text{dom}(F)$.

Posto $F = (f_1, f_2)$, per il Teorema di Green si ha che

$$\begin{split} \int_{\partial\Omega} F \cdot dP &= \int_{\Omega} \left[\frac{\partial f_2}{\partial x} (x, y) - \frac{\partial f_1}{\partial y} (x, y) \right] \, dx \, dy = \\ &= \int_{\Omega} \frac{30xy}{\left(x^2 + y^2\right)^2} \, dx \, dy = \end{split}$$

passando in coordinate polari centrate nell'origine si ottiene

$$=30\int_{\Omega'}\frac{\cos\vartheta\sin\vartheta}{\rho}\,d\rho\,d\vartheta=$$

essendo $\Omega' = [1, e] \times [\pi/2, \pi]$ si ha

