Risposte a quiz e domande:

Quiz 1

Quiz 2

Quiz 3

esatta=2.5 punti;

Versione

HIEA I'ESAME (corivore in STAMPATELLO MAILISCOLO)

DATI DI CIII FA L'ESAME (scrivere in STAMILATEDEO M	AIOSCOLO)
COGNOME	NOME	MATRICOLA

TEMPO A DISPOSIZIONE: 2 ORE

errata=-0.5 punti; non data=0 punti

Quiz 4

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp errate		

Domande N. Ρ.

	Svolg.=		
	Esercizio	F.	Р.
Dom. 8	Risp. errate		
	Risp. esatte		

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.

Quiz 6

Dom. 7

Quiz 5

- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate SOLO le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $f:\mathbb{R}\to\mathbb{R}$ la funzione ottenuta prolungando per periodicità a tutto \mathbb{R} la funzione $g:[-\pi,\pi)\to\mathbb{R}$ definita da $g(x) = x^3 - \pi^2 x$ e per ogni $n \in \mathbb{N}, n \ge 1$, siano b_n i coefficienti di Fourier di f. La serie $\sum b_n^2$

A converge a π^6 .

B converge a $\frac{16}{105}\pi^6$.

 \overline{C} converge a $\frac{32}{105}\pi^6$.

 \overline{D} converge a $\frac{8}{105}\pi^6$.

diverge.

Quiz 2. Sia $F: \mathbb{R}^3 \setminus \{(1,2,3)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente ma non solenoidale, e siano Σ e S due superfici chiuse e diverse che sono i bordi rispettivamente di due aperti con bordo D e V di \mathbb{R}^3 che contengono il punto (1,2,3).

Indicati con I_{Σ} e I_S i flussi uscenti di F rispettivamente dal bordo di D e dal bordo di V, quale delle seguenti affermazioni è corretta?

 $|A| I_{\Sigma} \neq I_S = 0.$

 $B \mid I_{\Sigma} = I_S \neq 0.$

 $C \mid I_{\Sigma} = I_S = 0.$

 $D = I_{\Sigma} \neq I_{S}$.

 $E \mid I_{\Sigma} \neq I_{S} \text{ con } I_{\Sigma} \neq 0 \text{ e } I_{S} \neq 0.$

Versione	V1
versione	v

Quiz 3. Si consideri la funzione $f(x,y) = (x^2 - 1) \log (e^2 + 1 - y^2)$. Quale delle seguenti affermazioni è corretta?

- A La funzione f ha un punto di massimo locale e non ha né punti di minimo locale né punti di sella.
- B La funzione f ha un punto di massimo locale e ha quattro punti di sella.
- C La funzione f ha due punti di minimo locale, due punti di massimo locale e un punto di sella.
- \boxed{D} La funzione f ha un punto di minimo locale e non ha né punti di massimo locale né punti di sella.
- |E| La funzione f ha un punto di minimo locale e ha quattro punti di sella.

Quiz 4. Siano (a_n) una successione tale che $a_n > 0$ per ogni $n \in \mathbb{N}$. Quale delle seguenti affermazioni è corretta?

- \boxed{A} Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $a_n \sim \frac{1}{n}$ per $n \to +\infty$.
- \boxed{B} Se $\sum_{n=0}^{\infty} a_n$ converge, allora $a_n = o\left(\frac{1}{n}\right)$ per $n \to +\infty$.
- C Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} \sqrt[n]{a_n} = L \in [0,1)$.
- \boxed{D} Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $\lim_{n} \sqrt[n]{a_n} = L \in (1, +\infty) \cup \{+\infty\}.$
- E Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} a_n = 0$.

Quiz 5. Un potenziale del campo vettoriale $F(x,y) = \left(\frac{6xy^2 + 2y}{1 + x^2y^2}, \frac{6x^2y + 2x}{1 + x^2y^2}\right)$ è

- $A f(x,y) = 3 \log (1 + x^2 y^2) + 2 \arctan (xy) 1.$
- $|B| f(x,y) = 3 \log (1 + x^2 y^2) 2 \arctan (xy) 3.$
- C $f(x,y) = 3 \log (1 + x^2 y^2) + \arctan (xy) 2.$
- $D f(x,y) = \log(1 + x^2y^2) + 2\arctan(xy) + 1.$
- $|E| f(x,y) = \log(1 + x^2y^2) + \arctan(xy) + 2.$

Quiz 6. L'integrale di linea del campo vettoriale F(x, y, z) = (x + y - z, y, z - x - y) lungo la curva parametrica $\gamma: [0, 1] \to \mathbb{R}^3$ definita da $\gamma(t) = (2t^2, 3t + t^2, 2t^2)$ vale

 \boxed{A} 8. \boxed{B} 2. \boxed{C} 0. \boxed{D} 4. \boxed{E} 16.

Domanda 7. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 \le \sqrt{e - 1}, \ 0 \le z \le \sqrt{x^2 + y^2} \right\}.$

Quanto vale l'integrale $\int_{\Omega} \frac{16z}{(x^2 + y^2 + z^2)^2 + 1} dx dy dz ?$

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 17, z \ge 1, x^2 + y^2 \ge 1\}$ e il campo vettoriale $F(x, y, z) = \left(\frac{\sqrt{17}yz}{(x^2 + y^2)\sqrt{x^2 + y^2 + z^2}} + e^{x^2}\sin x, \log\left(1 + y^2\right) - \frac{\sqrt{17}xz}{(x^2 + y^2)\sqrt{x^2 + y^2 + z^2}}, \cos\left(z^4 + 2\right)\right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Siano a>0 e $\Omega=\left\{(x,y,z)\in\mathbb{R}^3:\ x^4+y^2+z^2\leq a^4,\ x\geq 0\right\}$. Calcolare il volume di Ω .

HIEA L'ESAME (scrivoro in STAMPATELLO

DAII DI CIII FA L'ESAME (Scrivere in STAMPATELLO M	AIUSCOLO
COGNOME	NOME	MATRICOLA

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	Р.
Risp. esatte		
Risp. errate		

Domande N. Ρ.

Risp. esatte Risp. errate

									\perp
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	
770									
VZ									

errata=-0.5 punti; non data=0 punti

- Esercizio F. Ρ. Svolg.=
- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Sia $F: \mathbb{R}^3 \setminus \{(-1, -2, -3)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente ma non solenoidale, e siano Σ e S due superfici chiuse e diverse che sono i bordi rispettivamente di due aperti con bordo D e V di \mathbb{R}^3 che contengono il punto (-1, -2, -3).

Indicati con I_{Σ} e I_S i flussi uscenti di F rispettivamente dal bordo di D e dal bordo di V, quale delle seguenti affermazioni è corretta?

 $A \mid I_{\Sigma} \neq I_{S} \text{ con } I_{\Sigma} \neq 0 \text{ e } I_{S} \neq 0.$

Risposte a quiz e domande:

esatta=2.5 punti;

 $B \mid I_{\Sigma} = I_S \neq 0.$

 $C \mid I_{\Sigma} \neq I_{S} = 0.$

 $D = I_{\Sigma} \neq I_{S}$.

 $E \mid I_{\Sigma} = I_S = 0.$

Quiz 2. Siano (a_n) una successione tale che $a_n > 0$ per ogni $n \in \mathbb{N}$. Quale delle seguenti affermazioni è corretta?

 \boxed{A} Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \in [0,1)$.

B Se $\sum_{n=0}^{\infty} a_n$ converge, allora $a_n = o\left(\frac{1}{n}\right)$ per $n \to +\infty$.

C Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \in (1, +\infty) \cup \{+\infty\}.$

D Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $a_n \sim \frac{1}{n}$ per $n \to +\infty$.

E Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n \to \infty} a_n = 0$.

Quiz 3. Un potenziale del campo vettoriale $F(x,y) = \left(\frac{10xy^2 - 4y}{1 + x^2y^2}, \frac{10x^2y - 4x}{1 + x^2y^2}\right)$ è

A $f(x,y) = \log(1 + x^2y^2) - 4\arctan(xy) + 2.$

B $f(x,y) = 5\log(1+x^2y^2) - \arctan(xy) - 3.$

C $f(x,y) = 5 \log (1 + x^2 y^2) - 4 \arctan (xy) - 2.$

D $f(x,y) = 5\log(1+x^2y^2) + 4\arctan(xy) - 4.$

 $f(x,y) = \log(1 + x^2y^2) - \arctan(xy) + 3.$

Quiz 4. Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione ottenuta prolungando per periodicità a tutto \mathbb{R} la funzione $g: [-\pi, \pi) \to \mathbb{R}$ definita da $g(x) = \pi^2 x - 5x^3$ e per ogni $n \in \mathbb{N}$, $n \ge 1$, siano b_n i coefficienti di Fourier di f. La serie $\sum_{n=1}^{\infty} b_n^2$

 \boxed{A} converge a $\frac{80}{21}\pi^6$.

B diverge.

C converge a $\frac{20}{21}\pi^6$.

D converge a π^6 .

E converge a $\frac{40}{21}\pi^6$.

Quiz 5. L'integrale di linea del campo vettoriale $F(x,y,z)=(x,\ x+y-z,\ z-x-y)$ lungo la curva parametrica $\gamma:[0,1]\to\mathbb{R}^3$ definita da $\gamma(t)=\left(7t+t^2,\ 6t^2,\ 6t^2\right)$ vale

 \boxed{A} 8. \boxed{B} 64. \boxed{C} 16. \boxed{D} 32. \boxed{E} 0.

Quiz 6. Si consideri la funzione $f(x,y) = (25 - x^2) \log(e^2 + 1 - y^2)$. Quale delle seguenti affermazioni è corretta?

 \overline{A} La funzione f ha un punto di minimo locale e non ha né punti di massimo locale né punti di sella.

 $\fbox{$B$}$ La funzione f ha un punto di massimo locale e non ha né punti di minimo locale né punti di sella.

 \boxed{C} La funzione f ha un punto di minimo locale e ha quattro punti di sella.

 \boxed{D} La funzione f ha un punto di massimo locale e ha quattro punti di sella.

 \boxed{E} La funzione f ha due punti di minimo locale, due punti di massimo locale e un punto di sella.

Domanda 7. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 \le \sqrt{e^3 - 1}, \ 0 \le z \le \sqrt{x^2 + y^2} \right\}.$

Quanto vale l'integrale $\int_{\Omega} \frac{8z}{(x^2 + y^2 + z^2)^2 + 1} dx dy dz ?$

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \left\{ (x,y,z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 = 13, \ z \ge 2, \ x^2 + y^2 \ge 4 \right\}$ e il campo vettoriale $F(x,y,z) = \left(\log\left(1+x^2\right) + \frac{\sqrt{13}yz}{(x^2+y^2)\sqrt{x^2+y^2+z^2}}, \ \cos\left(y^2+1\right) - \frac{\sqrt{13}xz}{(x^2+y^2)\sqrt{x^2+y^2+z^2}}, \ e^z \sin z \right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Siano b>0 e $\Omega=\left\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^4+z^2\leq b^4,\ y\geq 0\right\}$. Calcolare il volume di Ω .

Risposte a quiz e domande:

DATI DI CHI FA L'ESAME (scrivere in STAMPATELLO MAIUSCOLO)

DAILD	1 CIII FA L ESANIE (Scrivere in STAMH ATELLO M	AIOSCOLO)
C	OGNOME	NOME	MATRICOLA

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	Р.
Risp. esatte		
Risp. errate		

Domande		N.	Р.
D.			

	Risp. esatte		
8	Risp. errate		
	Esercizio	F.	P.

Dom.

esatta=2.5 punti; errata=-0.5 punti; non data=0 punti Versione Quiz 1 Quiz 2 Quiz 3 Quiz 4 Quiz 5 Quiz 6 Dom. 7

- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui
sopra. Verranno valutate SOLO le risposte scritte in questa tabella.

- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Si consideri la funzione $f(x,y) = (y^2 - 16) \log (e^2 + 1 - x^2)$. Quale delle seguenti affermazioni è corretta?

 \overline{A} La funzione f ha un punto di massimo locale e ha quattro punti di sella.

 \overline{B} La funzione f ha un punto di minimo locale e ha quattro punti di sella.

 \boxed{C} La funzione f ha un punto di minimo locale e non ha né punti di massimo locale né punti di sella.

 \boxed{D} La funzione f ha un punto di massimo locale e non ha né punti di minimo locale né punti di sella.

Quiz 2. Siano (a_n) una successione tale che $a_n > 0$ per ogni $n \in \mathbb{N}$. Quale delle seguenti affermazioni è corretta?

 \boxed{A} Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} \sqrt[n]{a_n} = L \in [0,1)$.

B Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} a_n = 0$.

C Se $\sum_{n=0}^{\infty} a_n$ converge, allora $a_n = o\left(\frac{1}{n}\right)$ per $n \to +\infty$.

 \boxed{D} Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $a_n \sim \frac{1}{n}$ per $n \to +\infty$.

E Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $\lim_{n} \sqrt[n]{a_n} = L \in (1, +\infty) \cup \{+\infty\}.$

Quiz 3. Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione ottenuta prolungando per periodicità a tutto \mathbb{R} la funzione $g: [-\pi, \pi) \to \mathbb{R}$ definita da $g(x) = \pi^2 x - x^3$ e per ogni $n \in \mathbb{N}, n \geq 1$, siano b_n i coefficienti di Fourier di f. La serie $\sum_{n=1}^{\infty} b_n^2$

- \boxed{A} converge a $\frac{32}{105}\pi^6$.
- B diverge.
- C converge a $\frac{16}{105}\pi^6$.
- D converge a π^6 .
- E converge a $\frac{8}{105}\pi^6$.

Quiz 4. Sia $F: \mathbb{R}^3 \setminus \{(1,2,3)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente ma non solenoidale, e siano Σ e S due superfici chiuse e diverse che sono i bordi rispettivamente di due aperti con bordo D e V di \mathbb{R}^3 che contengono il punto (1,2,3).

Indicati con I_{Σ} e I_S i flussi uscenti di F rispettivamente dal bordo di D e dal bordo di V, quale delle seguenti affermazioni è corretta?

- $A I_{\Sigma} = I_S = 0.$
- $B = I_{\Sigma} \neq I_{S}.$
- $C \mid I_{\Sigma} = I_S \neq 0.$
- $D I_{\Sigma} \neq I_S = 0.$
- $E \mid I_{\Sigma} \neq I_{S} \text{ con } I_{\Sigma} \neq 0 \text{ e } I_{S} \neq 0.$

Quiz 5. L'integrale di linea del campo vettoriale F(x, y, z) = (x - y - z, y, z - x + y) lungo la curva parametrica $\gamma: [0, 1] \to \mathbb{R}^3$ definita da $\gamma(t) = (4t^2, 5t + t^2, 4t^2)$ vale

A 0. B 9. C 36. D 3. E 18.

Quiz 6. Un potenziale del campo vettoriale $F(x,y) = \left(\frac{4xy^2 + 3y}{1 + x^2y^2}, \frac{4x^2y + 3x}{1 + x^2y^2}\right)$ è

- A $f(x,y) = 2\log(1+x^2y^2) + 3\arctan(xy) + 1$.
- B $f(x,y) = 2\log(1+x^2y^2) 3\arctan(xy) + 3$.
- C $f(x,y) = \log(1 + x^2y^2) + 3\arctan(xy) 1.$
- $D f(x,y) = \log(1 + x^2y^2) + \arctan(xy) 2.$
- $E f(x,y) = 2 \log (1 + x^2 y^2) + \arctan (xy) + 2.$

Domanda 7. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 \le \sqrt{e - 1}, \ 0 \le z \le \sqrt{x^2 + y^2} \right\}.$

Quanto vale l'integrale $\int_{\Omega} \frac{32z}{(x^2 + y^2 + z^2)^2 + 1} dx dy dz ?$

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 26, z \ge 1, x^2 + y^2 \ge 1 \right\}$ e il campo vettoriale $F(x,y,z) = \left(\frac{\sqrt{26}yz}{(x^2 + y^2)\sqrt{x^2 + y^2 + z^2}} + e^x \cos x, \log \left(1 + y^4 \right) - \frac{\sqrt{26}xz}{(x^2 + y^2)\sqrt{x^2 + y^2 + z^2}}, \sin \left(z^2 + 4 \right) \right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Siano a>0 e $\Omega=\left\{(x,y,z)\in\mathbb{R}^3:\ x^4+y^2+z^2\leq a^4,\ x\geq 0\right\}$. Calcolare il volume di Ω .

Risposte a quiz e domande:

esatta=2.5 punti;

DATI DI CHI FA L'ESAME (SCRIVERE IN STAMPATELLO MATUSCOLO)					
COGNOME	NOME	MATRICOLA			

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Quiz	N.	P.
Risp. esatte		
Risp. errate		

Domande	IN.	Р.
Risp. esatte		
D. 1		

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Dom. 7	Dom. 8	
T 7 1									
V 4									5

errata=-0.5 punti; non data=0 punti

- Risp. errate Esercizio F. Ρ. Svolg.=
- Risposte QUIZ: scrivere la LETTERA che corrisponde alla risposta scelta ad ogni quiz nella tabella qui sopra. Verranno valutate **SOLO** le risposte scritte in questa tabella.
- Risposte DOMANDE: scrivere le risposte alle Domande 7 e 8 nello spazio riservato nella tabella qui sopra. Verranno valutate SOLO le risposte scritte in questa tabella.
- Non usare libri, appunti, calcolatrici, computer, telefonini.

CONSEGNARE SOLO QUESTI DUE FOGLI!

Quiz 1. Siano (a_n) una successione tale che $a_n > 0$ per ogni $n \in \mathbb{N}$. Quale delle seguenti affermazioni è corretta?

$$\boxed{A}$$
 Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $a_n \sim \frac{1}{n}$ per $n \to +\infty$.

$$B$$
 Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} a_n = 0$.

$$C$$
 Se $\sum_{n=0}^{\infty} a_n$ converge, allora $a_n = o\left(\frac{1}{n}\right)$ per $n \to +\infty$.

$$\boxed{D}$$
 Se $\sum_{n=0}^{\infty} a_n$ diverge, allora $\lim_{n} \frac{a_{n+1}}{a_n} = L \in (1, +\infty) \cup \{+\infty\}.$

$$E$$
 Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} \frac{a_{n+1}}{a_n} = L \in [0,1)$.

Quiz 2. Sia $F: \mathbb{R}^3 \setminus \{(-1, -2, -3)\} \to \mathbb{R}^3$ un campo vettoriale di classe C^1 indivergente ma non solenoidale, e siano Σ e S due superfici chiuse e diverse che sono i bordi rispettivamente di due aperti con bordo D e V di \mathbb{R}^3 che contengono il punto (-1, -2, -3).

Indicati con I_{Σ} e I_S i flussi uscenti di F rispettivamente dal bordo di D e dal bordo di V, quale delle seguenti affermazioni è corretta?

$$B \mid I_{\Sigma} = I_S \neq 0.$$

$$C$$
 $I_{\Sigma} = I_S = 0.$

$$\boxed{D} \ 0 = I_{\Sigma} \neq I_{S}.$$

$$E$$
 $I_{\Sigma} \neq I_{S}$ con $I_{\Sigma} \neq 0$ e $I_{S} \neq 0$.

Quiz 3. L'integrale di linea del campo vettoriale F(x, y, z) = (x, z - x - y, z + x - y) lungo la curva parametrica $\gamma: [0, 1] \to \mathbb{R}^3$ definita da $\gamma(t) = (9t + t^2, 8t^2, 8t^2)$ vale

 \boxed{A} 50. \boxed{B} 0. \boxed{C} 25. \boxed{D} 5. \boxed{E} 100.

Quiz 4. Un potenziale del campo vettoriale $F(x,y) = \left(\frac{8xy^2 - 5y}{1 + x^2y^2}, \frac{8x^2y - 5x}{1 + x^2y^2}\right)$ è

 $A f(x,y) = 4 \log (1 + x^2 y^2) - 5 \arctan (xy) + 2.$

B $f(x,y) = 4\log(1+x^2y^2) + 5\arctan(xy) + 4.$

 $C f(x,y) = 4 \log (1 + x^2 y^2) - \arctan (xy) + 3.$

D $f(x,y) = \log(1 + x^2y^2) - \arctan(xy) - 3.$

E $f(x,y) = \log(1 + x^2y^2) - 5\arctan(xy) - 2.$

Quiz 5. Sia $f: \mathbb{R} \to \mathbb{R}$ la funzione ottenuta prolungando per periodicità a tutto \mathbb{R} la funzione $g: [-\pi, \pi) \to \mathbb{R}$ definita da $g(x) = 5x^3 - \pi^2 x$ e per ogni $n \in \mathbb{N}, n \ge 1$, siano b_n i coefficienti di Fourier di f. La serie $\sum_{n=1}^{\infty} b_n^2$

 \boxed{A} converge a $\frac{40}{21}\pi^6$.

B converge a $\frac{80}{21}\pi^6$.

C converge a $\frac{20}{21}\pi^6$.

D converge a π^6 .

E diverge.

Quiz 6. Si consideri la funzione $f(x,y) = (36 - y^2) \log (e^2 + 1 - x^2)$. Quale delle seguenti affermazioni è corretta? \boxed{A} La funzione f ha un punto di minimo locale e ha quattro punti di sella.

 \overline{B} La funzione f ha due punti di minimo locale, due punti di massimo locale e un punto di sella.

 \overline{C} La funzione f ha un punto di massimo locale e non ha né punti di minimo locale né punti di sella.

 \boxed{D} La funzione f ha un punto di minimo locale e non ha né punti di massimo locale né punti di sella.

Domanda 7. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 \le \sqrt{e^3 - 1}, \ 0 \le z \le \sqrt{x^2 + y^2} \right\}.$

Quanto vale l'integrale $\int_{\Omega} \frac{16z}{\left(x^2+y^2+z^2\right)^2+1} \, dx \, dy \, dz ?$

(Scrivere SOLO la risposta NUMERICA nella tabella in prima pagina)

Domanda 8. Si considerino la superficie $\Sigma = \left\{ (x,y,z) \in \mathbb{R}^3 : \ x^2 + y^2 + z^2 = 20, \ z \ge 2, \ x^2 + y^2 \ge 4 \right\}$ e il campo vettoriale $F(x,y,z) = \left(\log \left(1 + x^4 \right) + \frac{\sqrt{20}yz}{(x^2 + y^2)\sqrt{x^2 + y^2 + z^2}}, \ \sin \left(y^4 + 1 \right) - \frac{\sqrt{20}xz}{(x^2 + y^2)\sqrt{x^2 + y^2 + z^2}}, \ e^z \cos z \right)$.

Quanto vale l'integrale di linea di F lungo il bordo di Σ orientato positivamente rispetto al versore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z?

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Siano b>0 e $\Omega=\left\{(x,y,z)\in\mathbb{R}^3:\ x^2+y^4+z^2\leq b^4,\ y\geq 0\right\}$. Calcolare il volume di Ω .