VOTO

DATI DELLO STUDENTE							
COGNOME	NOME	MATRICOLA					

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V1								

Quiz	N.	Punti
Risp. corrette		
Risp. errate		
Risp. non date		
Esercizio	F.	Punti
Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{\pi}{5}\right)^{2n}$

- D converge a $\frac{5}{5-\pi}$.
- \overline{E} converge a $\frac{25}{25 \pi^2}$.
- S converge a $\frac{\pi^4}{25(25-\pi^2)}$.
- T converge a $\frac{\pi^2}{5(5-\pi)}$.
- |U| diverge positivamente.

Quiz 2. Sia k > 0 tale che $k^2 > 8$. Il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} (-1)^n \frac{k^{n/3} + 2^{n/2}}{3^n} (x-1)^n \quad \text{è}$

- \boxed{U} 0.

 $\mathbf{Quiz} \ \mathbf{3.} \ \mathrm{Sia} \ \Omega = \left\{ (x,y) \in \mathbb{R}^2: \ \sqrt{x^2+1} \le y \le x^2+1, \ 0 \le x \le 1 \right\}. \ \mathrm{L'integrale} \ \int_{\Omega} \frac{5y}{x^2+1} \, dx \, dy \quad \mathrm{vale}$

Quiz 4. Siano $F(x,y,z) = (x(z-7), y(z-7), 3(z-7)^2)$ e $\Sigma = \{(x,y,z) \in \mathbb{R}^3 : z = 7 + \sqrt{x^2 + y^2}, 1 \le x^2 + y^2 \le 9\}$.

Il flusso del campo vettoriale F attraverso la superficie Σ , orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $T 80\pi$.
- $E \frac{104}{3}\pi$.
- D 40π .
- $\boxed{S} \ \frac{52}{3}\pi.$
- U 0.

 $\begin{aligned} \mathbf{Quiz} \ \mathbf{5.} \ \text{ L'integrale di linea del campo vettoriale } F(x,y,z) &= \left(\frac{12x}{x^2+y^2+z^2}, \, \frac{12y}{x^2+y^2+z^2}, \, \frac{12z}{x^2+y^2+z^2}\right) \text{ lungo la curva parametrica } \gamma: [0,e-1] \rightarrow \mathbb{R}^3 \text{ definita da } \gamma(t) &= \left(t^6-(e-1)t^5, \, t\sin{(t-e+1)}, \, \sqrt{t+1} + \log{\left[t^2-(e-1)t+1\right]}\right) \end{aligned} \text{ vale}$

- E 4.
- U 6.
- D 5.
- |S| 12.
- T = 0.

Quiz 6. Siano a, b > 0 con $a \neq b$ e sia $f(x, y) = \log \left(\frac{x^2 + y^2 + a}{x^2 + y^2 + b}\right)$. Quale delle seguenti affermazioni è corretta?

- \overline{S} Se a < b, allora il punto (0,0) è stazionario per f ed è di massimo locale per f.
- E Se a > b, allora il punto (0,0) è stazionario per f ed è di minimo locale per f.
- \boxed{D} Se a < b, allora il punto (0,0) è stazionario per f ed è di minimo locale per f.
- T Per ogni a, b > 0 con $a \neq b$ il punto (0,0) non è stazionario per f.
- \boxed{U} Nessuna delle altre è corretta.

Quiz 7. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale conservativo e di classe C^1 , e $f: \mathbb{R}^3 \to \mathbb{R}$ un potenziale di F su \mathbb{R}^3 tale che $\frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial z^2}(x,y,z) = 10\left(x^2 + y^2 + z^2\right)$, per ogni $(x,y,z) \in \mathbb{R}^3$.

Il flusso uscente di F dal bordo di $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \leq 1\}$ vale

- $\boxed{D} \ \frac{20}{3} \pi^2.$
- $I 8\pi$.
- $P 10\pi$.
- $\boxed{S} \ \frac{10}{3}\pi^2.$
- T 0.

Quiz 8. Siano (a_n) e (b_n) due successioni reali. Quale delle seguenti affermazioni è corretta?

- I Se $a_n \sim b_n$ per $n \to +\infty$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.
- \boxed{D} Se $a_n, b_n \geq 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum b_n$ diverge, allora $\sum a_n$ diverge.
- P Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.
- \boxed{S} Se $a_n \leq b_n$ per ogni $n \in \mathbb{N}$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.
- $\fbox{$T$}$ Nessuna delle altre è corretta.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare
$$\int_{\Omega} \frac{2x}{\sqrt{y^2 + z^2}} \, dx \, dy \, dz$$
, dove

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{y^2 + z^2} - 2 \le x \le 4 - 2\sqrt{y^2 + z^2}, \ y^2 + z^2 \ge 1 \right\}.$$

VOTO

DATI DELLO STUDENTE

DATI DELLO STUDENTE							
COGNOME	NOME	MATRICOLA					

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
$\sqrt{2}$					_			

Quiz	N.	Punti
Risp. corrette		
Risp. errate		
Risp. non date		
Esercizio	F.	Punti
Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{\pi}{4}\right)^{2n}$

$$\boxed{A}$$
 converge a $\frac{16}{16 - \pi^2}$.

$$\boxed{E}$$
 converge a $\frac{\pi^4}{16(16-\pi^2)}$.

$$I$$
 converge a $\frac{4}{4-\pi}$.

$$M$$
 converge a $\frac{\pi^2}{4(4-\pi)}$.

Quiz 2. Sia k > 0 tale che $k^2 > 27$. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{k^{n/3} + 3^{n/2}}{2^n} (x+1)^n \quad \text{è}$

$$M$$
 0.

$$\boxed{A} \ \frac{k^{1/3}}{2}.$$

$$\boxed{E} \ \frac{2}{3^{1/2}}$$

$$I \frac{3^{1/2}}{2}$$

$$\boxed{R} \ \frac{2}{k^{1/3}}.$$

 $\mathbf{Quiz} \ \mathbf{3.} \ \mathrm{Sia} \ \Omega = \left\{ (x,y) \in \mathbb{R}^2: \ \sqrt{y^2 + 1} \le x \le y^2 + 1, \ 0 \le y \le 1 \right\}. \ \mathrm{L'integrale} \ \int_{\Omega} \frac{7x}{y^2 + 1} \, dx \, dy \quad \text{vale}$

$$I$$
 $\frac{7}{6}$.

$$\boxed{A} \quad \frac{7}{3}$$
.

$$E$$
 $\frac{1}{6}$

$$M$$
 $\frac{1}{3}$

$$R \frac{6}{7}$$

Quiz 4. Siano $F(x,y,z) = (x(z-9), y(z-9), 5(z-9)^2)$ e $\Sigma = \{(x,y,z) \in \mathbb{R}^3 : z = 9 + \sqrt{x^2 + y^2}, 1 \le x^2 + y^2 \le 4\}$.

Il flusso del campo vettoriale F attraverso la superficie Σ , orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $\boxed{I} \ \frac{32}{3}\pi.$
- $\boxed{A} \quad \frac{64}{3}\pi.$
- $E 15\pi$.
- M 30π .
- P 0.

Quiz 5. L'integrale di linea del campo vettoriale $F(x,y,z) = \left(\frac{8x}{x^2+y^2+z^2}, \frac{8y}{x^2+y^2+z^2}, \frac{8z}{x^2+y^2+z^2}\right)$ lungo la curva parametrica $\gamma: \left[0,e^2-1\right] \rightarrow \mathbb{R}^3$ definita da $\gamma(t) = \left(t^7-\left(e^2-1\right)t^6, t\sin\left(t-e^2+1\right), \sqrt{t+1} + \log\left[1+\left(e^2-1\right)t-t^2\right]\right)$ vale

- P 8.
- A 10.
- \boxed{E} 4.
- I 7.
- R = 0.

Quiz 6. Siano a, b > 0 con $a \neq b$ e sia $f(x, y) = \log \left(\frac{x^2 + y^2 + a}{x^2 + y^2 + b}\right)$. Quale delle seguenti affermazioni è corretta?

- A Se a > b, allora il punto (0,0) è stazionario per f ed è di massimo locale per f.
- E Se a < b, allora il punto (0,0) è stazionario per f ed è di massimo locale per f.
- \boxed{I} Se a > b, allora il punto (0,0) è stazionario per f ed è di minimo locale per f.
- \boxed{P} Per ogni a, b > 0 con $a \neq b$ il punto (0,0) non è stazionario per f.
- \boxed{R} Nessuna delle altre è corretta.

Quiz 7. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale conservativo e di classe C^1 , e $f: \mathbb{R}^3 \to \mathbb{R}$ un potenziale di F su \mathbb{R}^3 tale che

$$\frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial z^2}(x,y,z) = 15\left(x^2 + y^2 + z^2\right), \text{ per ogni } (x,y,z) \in \mathbb{R}^3.$$

Il flusso uscente di F dal bordo di $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \leq 1\}$ vale

- E 15 π .
- $A 10\pi^2$.
- R 12 π .
- $I 5\pi^2$.
- P 0.

Quiz 8. Siano (a_n) e (b_n) due successioni reali. Quale delle seguenti affermazioni è corretta?

- R Nessuna delle altre è corretta.
- E Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum a_n$ converge, allora $\sum b_n$ converge.
- I Se $a_n \sim b_n$ per $n \to +\infty$ e $\sum b_n$ converge, allora $\sum a_n$ converge.
- P Se $a_n \leq b_n$ per ogni $n \in \mathbb{N}$ e $\sum b_n$ converge, allora $\sum a_n$ converge.
- A Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum b_n$ converge, allora $\sum a_n$ converge.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

$${\rm Calcolare}\, \int_{\Omega} \frac{3y}{\sqrt{x^2+z^2}}\, dx\, dy\, dz, \quad \, {\rm dove}$$

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3: \ \sqrt{x^2 + z^2} - 2 \le y \le 4 - 2\sqrt{x^2 + z^2}, \ x^2 + z^2 \ge 1 \right\}.$$

VOTO

DATI DELLO STUDENTE							
COGNOME	NOME	MATRICOLA					

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V3								

reiber vato ar accente						
Quiz	N.	Punti				
Risp. corrette						
Risp. errate						
Risp. non date						
Esercizio	F.	Punti				
Svolg.=						

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{2}{\pi}\right)^{2n}$

- P converge a $\frac{\pi}{\pi 2}$.
- \overline{E} converge a $\frac{\pi^2}{\pi^2 4}$.
- R converge a $\frac{16}{\pi^2(\pi^2-4)}$.
- S converge a $\frac{2}{\pi(\pi-2)}$.
- |U| diverge positivamente.

Quiz 2. Sia $k \in \mathbb{R}$ tale che $k^3 > 16$. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{3^n}{k^{n/2} + 4^{n/3}} (x-2)^n \quad \text{è}$

- $\boxed{S} \ \frac{3}{4^{1/3}}.$

Quiz 3. Sia $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \sqrt{x^2 + 1} \le y \le x^2 + 1, -1 \le x \le 0 \right\}$. L'integrale $\int_{\Omega} \frac{11y}{x^2 + 1} \, dx \, dy$ vale

Quiz 4. Siano
$$F(x,y,z) = (x(z+6), y(z+6), 3(z+6)^2)$$
 e $\Sigma = \{(x,y,z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2} - 6, 1 \le x^2 + y^2 \le 9\}$.

Il flusso del campo vettoriale F attraverso la superficie Σ , orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

$$\boxed{E} \ \frac{104}{3}\pi.$$

$$U 80\pi$$
.

$$P = 40\pi$$
.

$$R \frac{52}{3}\pi$$
.

$$S$$
 0.

Quiz 5. L'integrale di linea del campo vettoriale $F(x,y,z) = \left(\frac{10x}{x^2+y^2+z^2}, \frac{10y}{x^2+y^2+z^2}, \frac{10z}{x^2+y^2+z^2}\right)$ lungo la curva parametrica $\gamma:[0,e-1]\to\mathbb{R}^3$ definita da $\gamma(t)=\left(\sqrt{t+1}+\log\left[t^2-(e-1)t+1\right], t\sin\left(t-e+1\right), t^6-(e-1)t^5\right)$ vale

|S| 10.

$$E$$
 4.

$$R$$
 6.

$$\boxed{U}$$
 0.

Quiz 6. Siano a, b > 0 con $a \neq b$ e sia $f(x, y) = \log \left(\frac{x^2 + y^2 + b}{x^2 + y^2 + a}\right)$. Quale delle seguenti affermazioni è corretta?

E Se a > b, allora il punto (0,0) è stazionario per f ed è di minimo locale per f.

 $\lceil P \rceil$ Se a < b, allora il punto (0,0) è stazionario per f ed è di minimo locale per f.

 \boxed{R} Se a > b, allora il punto (0,0) è stazionario per f ed è di massimo locale per f.

 \boxed{S} Per ogni a,b>0 con $a\neq b$ il punto (0,0) non è stazionario per f.

 \boxed{U} Nessuna delle altre è corretta.

Quiz 7. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale conservativo e di classe C^1 , e $f: \mathbb{R}^3 \to \mathbb{R}$ un potenziale di F su \mathbb{R}^3 tale che $\frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial z^2}(x,y,z) = -20\left(x^2 + y^2 + z^2\right), \text{ per ogni } (x,y,z) \in \mathbb{R}^3.$

Il flusso uscente di F dal bordo di $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \leq 1\}$ vale

$$\boxed{P} - \frac{20}{3}\pi^2.$$

$$E$$
 $-\frac{40}{3}\pi^2$.

$$I$$
 -20π .

$$R$$
 -16π .

Quiz 8. Siano (a_n) e (b_n) due successioni reali. Quale delle seguenti affermazioni è corretta?

 \boxed{E} Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum b_n$ diverge, allora $\sum a_n$ diverge.

I Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

P Se $a_n \sim b_n$ per $n \to +\infty$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

 \boxed{R} Se $a_n \leq b_n$ per ogni $n \in \mathbb{N}$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare
$$\int_{\Omega} \frac{4x}{\sqrt{y^2 + z^2}} \, dx \, dy \, dz$$
, dove

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ 2\sqrt{y^2 + z^2} - 4 \le x \le 2 - \sqrt{y^2 + z^2}, \ y^2 + z^2 \ge 1 \right\}.$$

VOTO

DATI DELLO STUDENTE							
COGNOME	NOME	MATRICOLA					

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
$\overline{V4}$								

remor vaco ar accounte						
N.	Punti					
F.	Punti					

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{3}{\pi}\right)^{2n}$

$$M$$
 converge a $\frac{3}{\pi(\pi-3)}$.

$$\boxed{A}$$
 converge a $\frac{\pi^2}{\pi^2 - 9}$.

$$E$$
 converge a $\frac{\pi}{\pi - 3}$.

$$L'$$
 converge a $\frac{81}{\pi^2(\pi^2-9)}$.

S diverge positivamente.

Quiz 2. Sia $k \in \mathbb{R}$ tale che $k^3 > 25$. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{k^{n/2} + 5^{n/3}} (x+2)^n$ è

$$\boxed{L'} \ \frac{5^{1/3}}{2}.$$

$$\boxed{A} \ \frac{2}{k^{1/2}}.$$

$$E$$
 $\frac{k^{1/2}}{2}$

$$M$$
 $\frac{2}{5^{1/3}}$

 $\mathbf{Quiz} \ \mathbf{3.} \ \mathrm{Sia} \ \Omega = \left\{ (x,y) \in \mathbb{R}^2: \ \sqrt{y^2+1} \leq x \leq y^2+1, \ -1 \leq y \leq 0 \right\}. \ \mathrm{L'integrale} \ \int_{\Omega} \frac{13x}{y^2+1} \, dx \, dy \quad \text{ vale}$

$$M$$
 $\frac{6}{13}$.

$$\boxed{A} \ \frac{13}{3}$$
.

$$E \frac{1}{6}$$

$$L'$$
 $\frac{1}{3}$

$$\boxed{S} \ \frac{13}{6}$$

Quiz 4. Siano $F(x,y,z) = (x(z+8), y(z+8), 5(z+8)^2)$ e $\Sigma = \{(x,y,z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2} - 8, 1 \le x^2 + y^2 \le 4\}.$

Il flusso del campo vettoriale F attraverso la superficie Σ , orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

 $A 30\pi$

 $E \frac{64}{3}\pi$.

K 15 π .

L' $\frac{32}{3}\pi$.

M 0.

Quiz 5. L'integrale di linea del campo vettoriale $F(x,y,z) = \left(\frac{6x}{x^2+y^2+z^2}, \frac{6y}{x^2+y^2+z^2}, \frac{6z}{x^2+y^2+z^2}\right)$ lungo la curva parametrica $\gamma: \left[0,e^2-1\right] \rightarrow \mathbb{R}^3$ definita da $\gamma(t) = \left(t^7-\left(e^2-1\right)t^6, \sqrt{t+1}+\log\left[1+\left(e^2-1\right)t-t^2\right], t\sin\left(t-e^2+1\right)\right)$ vale

|K| 8.

A 12.

 \boxed{E} 4.

M 6.

L' 0.

Quiz 6. Siano a, b > 0 con $a \neq b$ e sia $f(x, y) = \log \left(\frac{x^2 + y^2 + b}{x^2 + y^2 + a}\right)$. Quale delle seguenti affermazioni è corretta?

A Se a > b, allora il punto (0,0) è stazionario per f ed è di massimo locale per f.

E Se a < b, allora il punto (0,0) è stazionario per f ed è di massimo locale per f.

 \boxed{K} Se a < b, allora il punto (0,0) è stazionario per f ed è di minimo locale per f.

M Per ogni a, b > 0 con $a \neq b$ il punto (0,0) non è stazionario per f.

 \boxed{O} Nessuna delle altre è corretta.

Quiz 7. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale conservativo e di classe C^1 , e $f: \mathbb{R}^3 \to \mathbb{R}$ un potenziale di F su \mathbb{R}^3 tale che $\frac{\partial^2 f}{\partial x^2}(x,y,z) + \frac{\partial^2 f}{\partial y^2}(x,y,z) + \frac{\partial^2 f}{\partial z^2}(x,y,z) = -25\left(x^2+y^2+z^2\right)$, per ogni $(x,y,z) \in \mathbb{R}^3$.

Il flusso uscente di F dal bordo di $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \leq 1\}$ vale

 \boxed{E} -25π .

A $-\frac{50}{3}\pi^2$.

 $O = -20\pi$.

K $-\frac{25}{3}\pi^2$.

M 0.

Quiz 8. Siano (a_n) e (b_n) due successioni reali. Quale delle seguenti affermazioni è corretta?

 \boxed{O} Nessuna delle altre è corretta.

 $\overline{|A|}$ Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum a_n$ converge, allora $\sum b_n$ converge.

[E] Se $a_n \sim b_n$ per $n \to +\infty$ e $\sum b_n$ converge, allora $\sum a_n$ converge.

M Se $a_n \leq b_n$ per ogni $n \in \mathbb{N}$ e $\sum b_n$ converge, allora $\sum a_n$ converge.

K Se $a_n, b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum b_n$ converge, allora $\sum a_n$ converge.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

$${\rm Calcolare}\, \int_{\Omega} \frac{5y}{\sqrt{x^2+z^2}}\, dx\, dy\, dz, \quad \, {\rm dove}$$

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3: \ 2\sqrt{x^2 + z^2} - 4 \le y \le 2 - \sqrt{x^2 + z^2}, \ x^2 + z^2 \ge 1 \right\}.$$