VOTO

DATI DELLO STUDENTE

DATI DELLO STODENTE						
COGNOME	NOME	MATRICOLA				

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
1 /1								
V								

resper vaco ar accente						
Quiz	N.	Punti				
Risp. corrette						
Risp. errate						
Risp. non date						
Esercizio	F.	Punti				
Svolg.=						

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \, \frac{2n+9}{3+n \, \log n}$

- \overline{E} converge assolutamente.
- \overline{S} è indeterminata.
- \overline{Z} converge ma non assolutamente.
- \boxed{M} diverge negativamente.

Quiz 2. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \, \frac{(2n)!}{3^n \, n^{2n}} \, (x-1)^n \quad \text{è}$

- R 0.
- $\boxed{Z} \frac{4}{3e^2}.$
- $\boxed{S} \frac{3e^2}{2}$
- M $\frac{2}{3e^2}$
- $E = \frac{3e^2}{4}$

Quiz 3. Sia $\Omega = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \le 9, x \ge 0, y \ge 2\}$. L'integrale $\int_{\Omega} x \sqrt{x^2 + y^2} \, dx \, dy$ valed

- $R = \frac{43}{12}$.
- $E \frac{43}{24}$.
- O $\frac{4}{3}$.
- M $\frac{2}{3}$.
- $P \frac{6}{7}$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

$$\boxed{S} \ 2\pi \left(2\sqrt{2} - 3\sqrt{3}\right).$$

$$E'$$
 $\left(2\sqrt{2}-3\sqrt{3}\right)\pi$.

$$\boxed{Z} - \frac{15}{2}\pi.$$

$$O$$
 $-\frac{15}{4}\pi$.

M 0.

Quiz 5. Si considerino il campo vettoriale $F(x,y) = \left(\frac{10xy^4}{1+x^2y^4} + 4x, \frac{20x^2y^3}{1+x^2y^4} + 2\right)$ e la curva parametrica $\gamma:[0,3] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^7 - 3t^6 + t\cos(3-t), \ t^4 - 3t^3 + (3-t)e^{5t^2}\right)$.

L'integrale di linea di F lungo γ vale

$$M$$
 -6.

$$S$$
 -12.

$$Z$$
 6.

$$E'$$
 12.

$$R \mid 0.$$

Quiz 6. La funzione $f(x,y) = 18 + (x^2 + 2y^2) e^{-x^2 - y^2}$

- $\lceil S \rceil$ ha cinque punti stazionari: uno di minimo locale, due di massimo locale e due di sella.
- \boxed{M} ha solo un punto stazionario che è di minimo locale.
- \boxed{R} ha tre punti stazionari: uno di minimo locale, uno di massimo locale e uno di sella.

 $\begin{aligned} \mathbf{Quiz} \ \ \mathbf{7.} \quad & \text{Siano } \Omega \, = \, \big\{ (x,y) \in \mathbb{R}^2 \, : \, \, xy \neq 0 \big\}, \ F \, : \, \Omega \, \to \, \mathbb{R}^2 \ \text{un campo vettoriale conservativo su } \Omega, \ f \, : \, \Omega \, \to \, (0,+\infty) \\ & \text{un potenziale di } F \ \text{su } \Omega, \ G \, : \, \Omega \, \to \, \mathbb{R}^2 \ \text{il campo vettoriale } G(x,y) = \frac{1}{1 + [f(x,y)]^2} \, F(x,y) \, \text{e} \, g, h \, : \, \Omega \, \to \, \mathbb{R} \ \text{le funzioni} \\ & g(x,y) = \arctan \left[f(x,y) \right], \quad h(x,y) = -\frac{1}{2} \arctan \frac{1}{f(x,y)}. \end{aligned}$

- \boxed{M} Le funzioni g e 2h sono due potenziali di G su Ω ma la funzione g-2h non è costante su Ω .
- \boxed{S} La funzione g è un potenziale di G su Ω mentre la funzione 2h non lo è.
- \boxed{O} La funzione 2h è un potenziale di G su Ω mentre la funzione g non lo è.
- E Le funzioni g e 2h sono due potenziali di G su Ω e la funzione g-2h è costante su Ω .

Quiz 8. Siano (a_n) una successione reale e $S_n = \sum_{k=0}^n a_k$. Quale delle seguenti affermazioni è corretta?

$$\boxed{Z}$$
 Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} S_n = 0$.

$$M$$
 Se $\sum_{n=0}^{\infty} a_n$ converge, allora $\lim_{n} a_n = 0$.

$$\boxed{R}$$
 Se $\lim_{n} a_n = 0$, allora $\sum_{n=0}^{\infty} a_n$ converge.

$$\boxed{S}$$
 Se $\sum_{n=0}^{\infty} a_n$ non converge, allora $\lim_{n} a_n \neq 0$.

$$E$$
 Se $\lim_{n} S_n \neq 0$, allora $\sum_{n=0}^{\infty} a_n$ non converge.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(\frac{3}{2}x^2(y^2 + z^2) + e^{z^4 - y^6}, \sin(x^4 + z^5) - 7xy, 7xz - \log(1 + x^8y^6)\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3: \ 2\sqrt{y^2 + z^2} - \frac{5}{2} \le x \le \sqrt{\frac{25}{4} - y^2 - z^2} \right\}.$$

Analisi Matematica II – 3 febbraio 2021 ore 11:30 – ESAME ONLINE

VOTO

DATI DELLO STUDENTE						
COGNOME	NOME	MATRICOLA				

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
$\sqrt{2}$								

Quiz	N.	Punti
Risp. corrette		
Risp. errate		
Risp. non date		
Esercizio	F.	Punti
Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{5 + (-1)^n n}{4 + n^2 \log n}$

- $A \mid$ converge ad un numero minore di zero.
- converge ad un numero maggiore di zero.
- è indeterminata.
- diverge positivamente.
- E diverge negativamente.

Quiz 2. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{(3n)!}{2^n n^{3n}} (x+1)^n$ è

- E 0.

Quiz 3. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, \ x \ge 0, \ y \ge 2\}$. L'integrale $\int_{\Omega} x (x^2 + y^2) \ dx \ dy$

Quiz 4. Si considerino la superficie $\Sigma = \left\{ (x,y,z) \in \mathbb{R}^3 : z = 7 + 4 e^{x^2 + y^2}, 4 \le x^2 + y^2 \le 5, x \ge 0 \right\}$ e il campo vettoriale $F(x,y,z) = \left(\frac{3x}{z-7}, \frac{3y}{z-7}, \log \left(\frac{z-7}{4} \right) \right)$.

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

$$\boxed{A} \quad \frac{5}{3} \left(8 - 5\sqrt{5} \right) \pi.$$

$$\boxed{L} \ -\frac{45}{4}\pi.$$

$$R$$
 $-\frac{45}{2}\pi$.

$$P \frac{10}{3} \left(8 - 5\sqrt{5}\right) \pi.$$

 $\mathbf{Quiz} \ \mathbf{5.} \ \text{Si considerino il campo vettoriale} \ F(x,y) = \left(\frac{20x^3y^2}{1+x^4y^2} + 3, \ \frac{10x^4y}{1+x^4y^2} + 6y\right) \ \text{e la curva parametrica} \ \gamma : [0,2] \rightarrow \mathbb{R}^2$ definita da $\gamma(t) = \left(t^4 - 2t^3 + (2-t)\,e^{7t^2}, \ t^7 - 2t^6 + t\,\cos{(2-t)}\right).$

L'integrale di linea di Flungo γ vale

- A 6.
- P -6.
- R -12.
- O 12.
- $\mid E \mid 0.$

Quiz 6. La funzione $f(x,y) = 19 + (2x^2 + y^2) e^{-x^2 - y^2}$

- \boxed{S} ha tre punti stazionari: uno di minimo locale, uno di massimo locale e uno di sella.
- \boxed{I} ha solo un punto stazionario che è di minimo locale.
- \boxed{R} ha cinque punti stazionari: uno di minimo locale, due di massimo locale e due di sella.
- \overline{P} ha solo un punto stazionario che è di massimo locale.
- $\fbox{$E$}$ ha cinque punti stazionari: uno di massimo locale, due di minimo locale e due di sella.

Quiz 7. Siano $\Omega = \{(x,y) \in \mathbb{R}^2 : y \neq 0\}$, $F : \Omega \to \mathbb{R}^2$ un campo vettoriale conservativo su Ω , $f : \Omega \to (-\infty,0)$ un potenziale di F su Ω , $G : \Omega \to \mathbb{R}^2$ il campo vettoriale $G(x,y) = \frac{1}{1 + [f(x,y)]^2} F(x,y)$ e $g,h : \Omega \to \mathbb{R}$ le funzioni $g(x,y) = \frac{1}{3} \arctan[f(x,y)]$, $h(x,y) = -\arctan\frac{1}{f(x,y)}$.

- \fbox{E} Le funzioni 3ge hnon sono potenziali di G su $\Omega.$
- \boxed{S} Le funzioni 3g e h sono due potenziali di G su Ω ma la funzione 3g-h non è costante su Ω .
- \boxed{A} La funzione 3g è un potenziale di G su Ω mentre la funzione h non lo è.
- \boxed{P} La funzione h è un potenziale di G su Ω mentre la funzione 3g non lo è.
- \boxed{I} Le funzioni 3g e h sono due potenziali di G su Ω e la funzione 3g-h è costante su Ω .

Quiz 8. Siano (a_n) e (b_n) due successioni reali. Quale delle seguenti affermazioni è corretta?

 \boxed{O} Se $a_n \sim b_n$ per $n \to +\infty$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

 \boxed{P} Se $a_n \geq 0, b_n \geq 0$ per ogni $n \in \mathbb{N}, a_n = o(b_n)$ per $n \to +\infty$ e $\sum a_n$ converge, allora $\sum b_n$ converge.

S Se $a_n \ge 0$, $b_n \ge 0$ per ogni $n \in \mathbb{N}$, $a_n = o(b_n)$ per $n \to +\infty$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

A Se $a_n = o(b_n)$ per $n \to +\infty$ e $\sum b_n$ converge, allora $\sum a_n$ converge.

 \overline{E} Nessuna delle altre è corretta.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(\sin\left(y^4 - z^5\right) - 5xy, \ 2y^2\left(x^2 + z^2\right) - e^{x^3 + z^2}, \ 5yz - \log\left(1 + x^4y^2\right)\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ 3\sqrt{x^2 + z^2} - \frac{5}{3} \le y \le \sqrt{\frac{25}{9} - x^2 - z^2} \right\}.$$

VOTO

DATI DELLO STUDENTE

DATI DELLO STUDENTE							
COGNOME	NOME	MATRICOLA					

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V3								

Quiz	N.	Punti
Risp. corrette		
Risp. errate		
Risp. non date		
Esercizio	F.	Punti
Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \, \frac{3n+7}{5+n^2 \, \log^3 n}$

- A diverge negativamente.
- \overline{O} converge ma non assolutamente.
- $\overline{|S|}$ è indeterminata.
- T diverge positivamente.
- \boxed{P} converge assolutamente.

Quiz 2. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{3^n n^{2n}}{(2n)!} (x-2)^n \quad è$

- $P \frac{3e^2}{4}.$
- O $\frac{4}{3e^2}$
- $\boxed{S} \frac{3e^2}{2}$
- $T \frac{2}{3e^2}$
- G 0.

Quiz 3. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x \ge 0, y \le -2\}$. L'integrale $\int_{\Omega} x \sqrt{x^2 + y^2} \, dx \, dy$ valed

- $\boxed{S} \quad \frac{43}{12}.$
- $T \frac{43}{24}$.
- G $\frac{4}{3}$.
- $A = \frac{2}{2}$.
- $\boxed{B} \frac{6}{7}$

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $\boxed{B} \ \frac{55}{2}\pi.$
- $\boxed{A} \ \frac{5}{3} \left(6\sqrt{6} 5\sqrt{5}\right) \pi.$
- $\boxed{T} \ \frac{55}{4}\pi.$
- $\boxed{G} \ \frac{10}{3} \left(6\sqrt{6} 5\sqrt{5} \right) \pi.$
- \boxed{S} 0.

Quiz 5. Si considerino il campo vettoriale $F(x,y) = \left(\frac{14xy^4}{1+x^2y^4} - 4x, \frac{28x^2y^3}{1+x^2y^4} - 2\right)$ e la curva parametrica $\gamma:[0,4] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^7 - 4t^6 + t \cos{(4-t)}, \ t^4 - 4t^3 + (4-t) e^{5t^2}\right)$.

L'integrale di linea di Flungo γ vale

- A -24.
- S 24.
- \boxed{B} -48.
- G 48.
- P 0.

Quiz 6. La funzione $f(x,y) = 18 - (x^2 + 2y^2) e^{-x^2 - y^2}$

- \overline{P} ha solo un punto stazionario che è di massimo locale.
- $oxedsymbol{L}$ ha solo un punto stazionario che è di minimo locale.
- \boxed{I} ha tre punti stazionari: uno di minimo locale, uno di massimo locale e uno di sella.
- $\lceil S \rceil$ ha cinque punti stazionari: uno di massimo locale, due di minimo locale e due di sella.
- \boxed{T} ha cinque punti stazionari: uno di minimo locale, due di massimo locale e due di sella.

Quiz 7. Siano $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : x \neq 0 \right\}, \ F : \Omega \to \mathbb{R}^2$ un campo vettoriale conservativo su $\Omega, \ f : \Omega \to (0,+\infty)$ un potenziale di F su $\Omega, \ G : \Omega \to \mathbb{R}^2$ il campo vettoriale $G(x,y) = \frac{1}{1 + [f(x,y)]^2} F(x,y)$ e $g,h : \Omega \to \mathbb{R}$ le funzioni $g(x,y) = \frac{1}{2} \arctan [f(x,y)], \ h(x,y) = -\arctan \frac{1}{f(x,y)}.$

- \boxed{I} Le funzioni 2g e h sono due potenziali di G su Ω ma la funzione 2g-h non è costante su Ω .
- $\fbox{$B$}$ Le funzioni 2g e h sono due potenziali di G su Ω e la funzione 2g-h è costante su Ω .
- \fbox{A} La funzione 2g è un potenziale di G su Ω mentre la funzione h non lo è.
- \boxed{T} La funzione h è un potenziale di G su Ω mentre la funzione 2g non lo è.
- \boxed{P} Le funzioni 2g e h non sono potenziali di G su Ω .

Quiz 8. Siano (a_n) una successione reale e $S_n = \sum_{k=0}^n |a_k|$. Quale delle seguenti affermazioni è corretta?

- T Se $\sum_{n=0}^{\infty} a_n$ converge assolutamente, allora $\lim_{n} S_n = 0$.
- \boxed{B} Se $\lim_{n} |a_n| = 0$, allora $\sum_{n=0}^{\infty} a_n$ converge assolutamente.
- \boxed{A} Se $\sum_{n=0}^{\infty} a_n$ converge assolutamente, allora $\lim_{n} |a_n| = 0$.
- \boxed{S} Se $\sum_{n=0}^{\infty} a_n$ non converge assolutamente, allora $\lim_{n} |a_n| \neq 0$.
- \boxed{P} Se $\lim_{n} S_n \neq 0$, allora $\sum_{n=0}^{\infty} a_n$ non converge assolutamente.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(e^{y^4 - z^6} - \frac{5}{2}x^2(y^2 + z^2), \cos(x^5 + z^4) - 9xy, 9xz - \log(1 + x^6y^8)\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3: \ 2\sqrt{y^2 + z^2} - \frac{5}{2} \le x \le \sqrt{\frac{25}{4} - y^2 - z^2} \right\}.$$

VOTO

DATI DELLO STUDENTE

DATI DELLO STUDENTE							
COGNOME	NOME	MATRICOLA					

Riservato al docente

TEMPO A DISPOSIZIONE: 2 ORE

Risposte ai quiz (corretta=2,5 punti; errata=-0,5 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V4								

Quiz	N.	Punti
Risp. corrette		
Risp. errate		
Risp. non date		
Esercizio	F.	Punti
Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{6 - (-1)^n n^2}{5 + n^3 \log n}$

- \overline{K} diverge positivamente.
- \overline{L} converge ad un numero maggiore di zero.
- \overline{I} è indeterminata.
- T converge ad un numero minore di zero.
- \boxed{G} diverge negativamente.

Quiz 2. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \, \frac{2^n \, n^{3n}}{(3n)!} \, (x+2)^n \quad \text{è}$

- L $\frac{27}{2e^3}$.
- $\boxed{I} \ \frac{2e^3}{27}.$
- $A \frac{e^3}{27}$
- T $\frac{27}{e^3}$
- K 0.

 $\mathbf{Quiz} \ \mathbf{3.} \ \mathrm{Sia} \ \Omega = \left\{ (x,y) \in \mathbb{R}^2: \ x^2 + y^2 \leq 9, \ x \geq 0, \ y \leq -2 \right\}. \ \mathrm{L'integrale} \ \int_{\Omega} x \left(x^2 + y^2 \right) \, dx \, dy \quad \text{ vale}$

- $O = \frac{43}{6}$.
- $A \frac{97}{20}$.
- $\boxed{T} \ \frac{43}{12}.$
- $\boxed{I} \ \frac{97}{10}.$
- $K \frac{6}{7}$.

Il flusso di F attraverso Σ , orientata in modo che il versore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- $T \left(6\sqrt{6} 5\sqrt{5}\right)\pi.$
- $\boxed{A} \ \frac{39}{4}\pi.$
- $\boxed{G} \ \frac{39}{2}\pi.$
- $\boxed{O} \ 2\pi \left(6\sqrt{6} 5\sqrt{5}\right).$
- K = 0.

Quiz 5. Si considerino il campo vettoriale $F(x,y) = \left(\frac{28x^3y^2}{1+x^4y^2} - 3, \frac{14x^4y}{1+x^4y^2} - 6y\right)$ e la curva parametrica $\gamma:[0,5] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^4 - 5t^3 + (5-t)e^{7t^2}, t^7 - 5t^6 + t\cos(5-t)\right)$.

L'integrale di linea di Flungo γ vale

- G -120.
- A 60.
- T -60.
- O 120.
- $K \mid 0.$

Quiz 6. La funzione $f(x,y) = 19 - (2x^2 + y^2) e^{-x^2 - y^2}$

- \overline{A} ha cinque punti stazionari: uno di massimo locale, due di minimo locale e due di sella.
- \boxed{G} ha solo un punto stazionario che è di minimo locale.
- \boxed{T} ha tre punti stazionari: uno di minimo locale, uno di massimo locale e uno di sella.
- $\fbox{$L$}$ ha solo un punto stazionario che è di massimo locale.
- \boxed{I} ha cinque punti stazionari: uno di minimo locale, due di massimo locale e due di sella.

 $\begin{aligned} \mathbf{Quiz} \ \mathbf{7.} \ \mathrm{Siano} \ \Omega &= \left\{ (x,y) \in \mathbb{R}^2: \ y \neq 0 \right\}, F: \Omega \to \mathbb{R}^2 \ \mathrm{un} \ \mathrm{campo} \ \mathrm{vettoriale} \ \mathrm{conservativo} \ \mathrm{su} \ \Omega, f: \Omega \to (-\infty,0) \ \mathrm{un} \ \mathrm{potenziale} \\ \mathrm{di} \ F \ \mathrm{su} \ \Omega, G: \Omega \to \mathbb{R}^2 \ \mathrm{il} \ \mathrm{campo} \ \mathrm{vettoriale} \ G(x,y) &= \frac{1}{1 + [f(x,y)]^2} \ F(x,y) \ \mathrm{e} \ g, h: \Omega \to \mathbb{R} \ \mathrm{le} \ \mathrm{funzioni} \ g(x,y) = \mathrm{arctan} \ [f(x,y)], \\ h(x,y) &= -\frac{1}{3} \ \mathrm{arctan} \ \frac{1}{f(x,y)}. \end{aligned}$

- $\lceil T \rceil$ Le funzioni g e 3h non sono potenziali di G su Ω .
- A Le funzioni g e 3h sono due potenziali di G su Ω ma la funzione g-3h non è costante su Ω .
- \boxed{G} La funzione g è un potenziale di G su Ω mentre la funzione 3h non lo è.
- \fbox{K} La funzione 3h è un potenziale di G su Ω mentre la funzione g non lo è.
- \boxed{O} Le funzioni g e 3h sono due potenziali di G su Ω e la funzione g-3h è costante su Ω .

Quiz 8. Siano (a_n) e (b_n) due successioni reali. Quale delle seguenti affermazioni è corretta?

 \boxed{O} Se $a_n \leq b_n$ per ogni $n \in \mathbb{N}$ e $\sum b_n$ converge, allora $\sum a_n$ converge.

K Se $0 \le a_n \le b_n$ per ogni $n \in \mathbb{N}$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

 \boxed{A} Se $a_n \leq 0 \leq b_n$ per ogni $n \in \mathbb{N}$ e $\sum a_n$ diverge, allora $\sum b_n$ diverge.

L Se $0 \le a_n \le b_n$ per ogni $n \in \mathbb{N}$ e $\sum a_n$ converge, allora $\sum b_n$ converge.

G Nessuna delle altre è corretta.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(11xy - \sin\left(z^4 - y^5\right), \ e^{x^2 + z^3} - 2y^2\left(x^2 + z^2\right), \ \log\left(1 + x^2y^4\right) - 11yz\right)$$

dal bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3: \ 3\sqrt{x^2 + z^2} - \frac{5}{3} \le y \le \sqrt{\frac{25}{9} - x^2 - z^2} \right\}.$$