Svolgimento dell'esame di Analisi Matematica II del 17 febbraio 2020 ore 13:30

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V1	В	D	E	A	D	D	D	\mathbf{C}

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare l'integrale di linea del campo vettoriale

$$F(x,y,z) = \left(\log\left(1 + x^6 + x^8\right), \ \frac{1}{2}z^2 + 4x^2y + e^{y^9}, \ 2xy + yz + \sqrt{1 + z^8}\right)$$

lungo il bordo della superficie

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : \ z = 2x^2 - 2y^2 + 5, \ x^2 + y^2 \le 9, \ x \ge 0, \ y \ge 0 \right\}$$

orientato positivamente rispetto al vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z.

SVOLGIMENTO

Si ha che F è di classe C^1 su \mathbb{R}^3 . Per il Teorema di Stokes si ha che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma,$$

dove rot F è il rotore del campo vettoriale F, che per ogni $(x, y, z) \in \mathbb{R}^3$ è

$$\operatorname{rot} F(x,y,z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \log\left(1+x^6+x^8\right) & \frac{1}{2}z^2+4x^2y+e^{y^9} & 2xy+yz+\sqrt{1+z^8} \end{vmatrix} = (2x,-2y,8xy).$$

La superficie Σ è il grafico della funzione $g:K\to\mathbb{R}$ definita da $g(x,y)=2x^2-2y^2+5$, dove

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x \ge 0, y \ge 0\}.$$

Quindi $\Sigma = \sigma(K)$, dove $\sigma(x,y) = (x, y, 2x^2 - 2y^2 + 5)$. Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy,$$

dove N(x,y) è un vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z. Un vettore normale a Σ è

$$N(x,y) = \left(-\frac{\partial g}{\partial x}(x,y), -\frac{\partial g}{\partial y}(x,y), 1\right) = (-4x, 4y, 1).$$

Questo vettore forma un angolo acuto con il versore fondamentale dell'asse z.

Si ha che

$$rot F(\sigma(x,y)) \cdot N(x,y) = rot F(x, y, 2x^2 - 2y^2 + 5) \cdot (-4x, 4y, 1) =
= (2x, -2y, 8xy) \cdot (-4x, 4y, 1) = 8xy - 8x^2 - 8y^2.$$

Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \left(8xy - 8x^2 - 8y^2 \right) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N$$

passando in coordinate polari centrate nell'origine si ottiene

$$= \int_{K'} \left(8\rho^3 \cos \vartheta \sin \vartheta - 8\rho^3 \right) d\rho d\vartheta =$$

con $K' = [0, 3] \times [0, \frac{\pi}{2}]$

$$=8\left(\int_0^3\rho^3\,d\rho\right)\left(\int_0^{\frac{\pi}{2}}(\cos\vartheta\sin\vartheta-1)\,d\vartheta\right)=8\left[\frac{1}{4}\rho^4\right]_0^3\left[\frac{1}{2}\sin^2\vartheta-\vartheta\right]_0^{\frac{\pi}{2}}=81-81\pi.$$

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V2	D	D	В	A	В	В		$ \mathbf{E} $

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare l'integrale di linea del campo vettoriale

$$F(x,y,z) = \left(\log\left(1 + x^2 + x^4\right), \ \frac{3}{4}z^2 + 3x^2y + e^{y^5}, \ 3xy + \frac{3}{2}yz + \sqrt{1 + z^4}\right)$$

lungo il bordo della superficie

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 3x^2 - 3y^2 + 4, x^2 + y^2 \le 4, x \le 0, y \le 0\}$$

orientato positivamente rispetto al vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z.

SVOLGIMENTO

Si ha che F è di classe C^1 su \mathbb{R}^3 . Per il Teorema di Stokes si ha che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma,$$

dove rot F è il rotore del campo vettoriale F, che per ogni $(x, y, z) \in \mathbb{R}^3$ è

$$\operatorname{rot} F(x, y, z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \log\left(1 + x^2 + x^4\right) & \frac{3}{4}z^2 + 3x^2y + e^{y^5} & 3xy + \frac{3}{2}yz + \sqrt{1 + z^4} \end{vmatrix} = \\ = (3x, -3y, 6xy).$$

La superficie Σ è il grafico della funzione $g:K\to\mathbb{R}$ definita da $g(x,y)=3x^2-3y^2+4$, dove

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, x \le 0, y \le 0\}.$$

Quindi $\Sigma = \sigma(K)$, dove $\sigma(x, y) = (x, y, 3x^2 - 3y^2 + 4)$. Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \mathrm{rot} F \cdot n \, d\sigma = \int_{K} \mathrm{rot} F(\sigma(x,y)) \cdot N(x,y) \, \, dx \, dy,$$

dove N(x,y) è un vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z. Un vettore normale a Σ è

$$N(x,y) = \left(-\frac{\partial g}{\partial x}(x,y), -\frac{\partial g}{\partial y}(x,y), 1\right) = (-6x, 6y, 1).$$

Questo vettore forma un angolo acuto con il versore fondamentale dell'asse z.

Si ha che

$$rot F(\sigma(x,y)) \cdot N(x,y) = rot F(x, y, 3x^2 - 3y^2 + 4) \cdot (-6x, 6y, 1) =
= (3x, -3y, 6xy) \cdot (-6x, 6y, 1) = 6xy - 18x^2 - 18y^2.$$

Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \left(6xy - 18x^{2} - 18y^{2} \right) \, dx \, dy = \int_{K} \left(6xy - 18y - 18y^{2} \right) \, dx \, dy = \int_{K} \left(6xy - 18y - 18y^{2} \right) \, dx \, dy = \int_{K} \left(6xy - 18y - 18y - 18y \right) \, dx \, dy = \int_{K} \left(6xy - 18y -$$

passando in coordinate polari centrate nell'origine si ottiene

$$= \int_{K'} \left(6\rho^3 \cos \vartheta \sin \vartheta - 18\rho^3 \right) d\rho d\vartheta =$$

 $\operatorname{con} K' = [0, 2] \times \left[\pi, \frac{3}{2}\pi\right]$

$$=6\left(\int_0^2\rho^3\,d\rho\right)\left(\int_\pi^{\frac{3}{2}\pi}(\cos\vartheta\sin\vartheta-3)\,d\vartheta\right)=6\left[\frac{1}{4}\rho^4\right]_0^2\left[\frac{1}{2}\sin^2\vartheta-3\vartheta\right]_\pi^{\frac{3}{2}\pi}=12-36\pi.$$

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V3	A	\mathbf{C}	В	В	\mathbf{E}	\mathbf{B}	\mathbf{C}	D

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare l'integrale di linea del campo vettoriale

$$F(x,y,z) = \left(\log\left(1 + x^4 + x^6\right), \ \frac{1}{2}z^2 - 4x^2y + e^{y^7}, \ 2xy + yz + \sqrt{1 + z^6}\right)$$

lungo il bordo della superficie

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 7 - 2x^2 + 2y^2, x^2 + y^2 \le 9, x \ge 0, y \le 0\}$$

orientato positivamente rispetto al vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z.

SVOLGIMENTO

Si ha che F è di classe C^1 su \mathbb{R}^3 . Per il Teorema di Stokes si ha che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma,$$

dove rotF è il rotore del campo vettoriale F, che per ogni $(x, y, z) \in \mathbb{R}^3$ è

$$\operatorname{rot} F(x,y,z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \log\left(1 + x^4 + x^6\right) & \frac{1}{2}z^2 - 4x^2y + e^{y^7} & 2xy + yz + \sqrt{1 + z^6} \end{vmatrix} = (2x, -2y, -8xy).$$

La superficie Σ è il grafico della funzione $g:K\to\mathbb{R}$ definita da $g(x,y)=7-2x^2+2y^2,$ dove

$$K = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x \ge 0, y \le 0\}.$$

Quindi $\Sigma = \sigma(K)$, dove $\sigma(x, y) = (x, y, 7 - 2x^2 + 2y^2)$. Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy,$$

dove N(x,y) è un vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z. Un vettore normale a Σ è

$$N(x,y) = \left(-\frac{\partial g}{\partial x}(x,y),\, -\frac{\partial g}{\partial y}(x,y),\, 1\right) = \left(4x,\, -4y,\, 1\right).$$

Questo vettore forma un angolo acuto con il versore fondamentale dell'asse z.

Si ha che

$$rot F(\sigma(x,y)) \cdot N(x,y) = rot F(x, y, 7 - 2x^2 + 2y^2) \cdot (4x, -4y, 1) =
= (2x, -2y, -8xy) \cdot (4x, -4y, 1) = 8x^2 + 8y^2 - 8xy.$$

Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \left(8x^{2} + 8y^{2} - 8xy \right) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,y)) \cdot N(x,y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x,$$

passando in coordinate polari centrate nell'origine si ottiene

$$= \int_{K'} \left(8\rho^3 - 8\rho^3 \cos \vartheta \sin \vartheta \right) d\rho d\vartheta =$$

con $K' = [0, 3] \times [-\frac{\pi}{2}, 0]$

$$=8\left(\int_0^3 \rho^3 \, d\rho\right)\left(\int_{-\frac{\pi}{2}}^0 (1-\cos\vartheta\sin\vartheta) \, d\vartheta\right)=8\left[\frac{1}{4}\rho^4\right]_0^3\left[\vartheta-\frac{1}{2}\sin^2\vartheta\right]_{-\frac{\pi}{2}}^0=81+81\pi.$$

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
V4	\mathbf{E}	\mathbf{E}	В	D	A	В	\mathbf{E}	$ \mathbf{C} $

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare l'integrale di linea del campo vettoriale

$$F(x,y,z) = \left(\log\left(1 + x^4 + x^8\right), \ \frac{3}{4}z^2 - 3x^2y + e^{y^3}, \ 3xy + \frac{3}{2}yz + \sqrt{1+z^2}\right)$$

lungo il bordo della superficie

$$\Sigma = \left\{ (x, y, z) \in \mathbb{R}^3 : \ z = 8 - 3x^2 + 3y^2, \ x^2 + y^2 \le 4, \ x \le 0, \ y \ge 0 \right\}$$

orientato positivamente rispetto al vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z.

SVOLGIMENTO

Si ha che F è di classe C^1 su \mathbb{R}^3 . Per il Teorema di Stokes si ha che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma,$$

dove rotF è il rotore del campo vettoriale F, che per ogni $(x, y, z) \in \mathbb{R}^3$ è

$$\operatorname{rot} F(x, y, z) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \log\left(1 + x^4 + x^8\right) & \frac{3}{4}z^2 - 3x^2y + e^{y^3} & 3xy + \frac{3}{2}yz + \sqrt{1 + z^2} \end{vmatrix} = \\ = (3x, -3y, -6xy).$$

La superficie Σ è il grafico della funzione $g:K\to\mathbb{R}$ definita da $g(x,y)=8-3x^2+3y^2$, dove

$$K = \left\{ (x,y) \in \mathbb{R}^2: \ x^2 + y^2 \le 4, \ x \le 0, \ y \ge 0 \right\}.$$

Quindi $\Sigma = \sigma(K)$, dove $\sigma(x,y) = (x, y, 8 - 3x^2 + 3y^2)$. Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy,$$

dove N(x,y) è un vettore normale a Σ che forma un angolo acuto con il versore fondamentale dell'asse z. Un vettore normale a Σ è

$$N(x,y) = \left(-\frac{\partial g}{\partial x}(x,y), -\frac{\partial g}{\partial y}(x,y), 1\right) = (6x, -6y, 1).$$

Questo vettore forma un angolo acuto con il versore fondamentale dell'asse z.

Si ha che

$$rot F(\sigma(x,y)) \cdot N(x,y) = rot F(x, y, 8 - 3x^2 + 3y^2) \cdot (6x, -6y, 1) =$$

$$= (3x, -3y, -6xy) \cdot (6x, -6y, 1) = 18x^2 + 18y^2 - 6xy.$$

Ne segue che

$$\int_{\partial \Sigma} F \cdot dP = \int_{\Sigma} \operatorname{rot} F \cdot n \, d\sigma = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \left(18x^{2} + 18y^{2} - 6xy \right) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \cdot N(x, y) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy = \int_{K} \operatorname{rot} F(\sigma(x, y)) \, dx \, dy$$

passando in coordinate polari centrate nell'origine si ottiene

$$= \int_{K'} \left(18\rho^3 - 6\rho^3 \cos \vartheta \sin \vartheta \right) d\rho d\vartheta =$$

 $con K' = [0, 2] \times \left[\frac{\pi}{2}, \pi\right]$

$$= 6 \left(\int_0^2 \rho^3 \, d\rho \right) \left(\int_{\frac{\pi}{2}}^\pi (3 - \cos \vartheta \sin \vartheta) \, d\vartheta \right) = 6 \left[\frac{1}{4} \rho^4 \right]_0^2 \left[3\vartheta - \frac{1}{2} \sin^2 \vartheta \right]_{\frac{\pi}{2}}^\pi = 36\pi + 12.$$