Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
V1										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia a > 0. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{a}{1+a}\right)^n$ converge a

- A a.
- I 1 + a.
- $\boxed{L} \ \frac{a^2}{1+a}.$
- $\boxed{P} \ \frac{1}{1-a}.$
- T $\frac{a}{1+a}$.

$$g(x) = \begin{cases} -2x & \text{se } -\pi \le x \le 0 \\ 2\pi & \text{se } 0 < x < \pi, \end{cases}$$
 e siano a_n, b_n , per ogni $n \in \mathbb{N}, n \ge 1$, i coefficienti di Fourier di f .

La serie
$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

- \boxed{A} converge a $\frac{5}{6}\pi^2$.
- I converge a $\frac{5}{24}\pi^2$.
- L converge a $\frac{5}{12}\pi^2$.
- P converge a $\frac{5}{48} \pi^2$.
- T diverge positivamente.

Quiz 3. Sia $\Omega = \{(x, y, z) \in \mathbb{R}^3: \ 4 \le x^2 + y^2 + z^2 \le 9, \ z \ge 0\}$. L'integrale $\int_{\Omega} \frac{4z}{x^2 + y^2 + z^2} \, dx \, dy \, dz$ valed

- $A 20\pi$.
- $I 8\pi (\log 3 \log 2).$
- L 0.
- $P 10\pi$.
- $T = 4\pi (\log 3 \log 2).$

Quiz 4. Il flusso del campo vettoriale $F(x,y,z) = \left(\frac{x}{z-3}, \frac{y}{z-3}, z-e^{xy}\right)$ attraverso la superficie $\Sigma = \left\{(x,y,z) \in \mathbb{R}^3: z=3+e^{xy}, \ 0 \leq x \leq 2, \ 0 \leq y \leq x\right\}$, orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- A 4.
- I 2.
- L 8.
- P 1.
- T 0.

Quiz 5. Il campo vettoriale $F(x,y) = (|8y^2 - 4x| + 20y^2, y|8x - 4| + 32xy)$ è conservativo sull'insieme

- A $\{(x,y) \in \mathbb{R}^2 : 2y^2 < x < \frac{1}{2} \}.$
- $\boxed{I} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ \frac{1}{2} < x < 2y^2 \bigg\}.$
- $\boxed{L} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ 2x^2 < y < \frac{1}{2} \bigg\}.$
- $\boxed{P} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ \frac{1}{2} < y < 2x^2 \bigg\}.$
- T \mathbb{R}^2 .

Quiz 6. Siano $n \in \mathbb{N}$, $n \ge 2$, e $f(x,y) = x^n (y^n - 5)$. Quale delle seguenti affermazioni è corretta?

- \boxed{A} La funzione f non ha punti di massimo locale se n è pari.
- I La funzione f ha punti di minimo locale se e solo se n è dispari.
- L La funzione f non ha punti di sella se n è pari.
- \boxed{P} La funzione f non ha punti di sella se n è dispari.
- T La funzione f ha punti di minimo locale se e solo se n è pari.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f: \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

- A Nessuna delle altre è corretta.
- F Se esiste $\nabla f(x_0)$, allora f è differenziabile in x_0 .
- $\boxed{0}$ Se esiste $\nabla f(x_0)$, allora f è continua in x_0 .
- R Se f non è differenziabile in x_0 , allora f non è continua in x_0 .
- T Se f non è continua in x_0 , allora f non è differenziabile in x_0 .

Quiz 8. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega = \mathbb{R}^n \setminus \{0\}$ e $F : \Omega \to \mathbb{R}^n$ il campo vettoriale $F(x) = x \left(5 + 4\|x\|^2\right) e^{4\|x\|^2}$, dove $\|x\|$ è la norma di x in \mathbb{R}^n .

Quale delle seguenti affermazioni è corretta?

- \boxed{A} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2}e^{4\|x\|^2} (\|x\|^2 + 1)$.
- F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2} ||x||^2 e^{4||x||^2}$.
- M F è conservativo su Ω e un potenziale di F su Ω è $f(x) = 2||x||^2 e^{4||x||^2}$.
- \boxed{O} F è conservativo su Ω e un potenziale di F su Ω è $f(x)=2\|x\|\,e^{4\|x\|^2}$.
- R F non è conservativo su Ω .

Quiz 9. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, y \le x + 2, x \le 0\}$. L'integrale $\int_{\Omega} 3xy \, dx \, dy$ vale

- A 8.
- |F| 4.
- O 16.
- R 2.
- M 0.

Quiz 10. Siano $F: \mathbb{R}^2 \to \mathbb{R}^2$ un campo vettoriale di classe C^1 , $F = (f_1, f_2)$, tale che $\frac{\partial f_2}{\partial x}(x, y) - \frac{\partial f_1}{\partial y}(x, y) = 5$ per ogni $(x, y) \in \mathbb{R}^2$, e $\Omega = \{(x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 \le 16\}$.

L'integrale di linea di Flungo il bordo di Ω percorso positivamente vale

- A 120 π .
- $F 30\pi$.
- M 15 π .
- $O 60\pi$.
- R 0.

Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
$\sqrt{2}$										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia a < 0. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{a}{a-1}\right)^n$ converge a

$$\boxed{A} \ \frac{1}{1-a}.$$

$$|E| 1-a.$$

$$M$$
 $-a$.

$$R$$
 $-\frac{a^2}{a-1}$.

$$X = \frac{a}{a-1}$$
.

$$g(x) = \begin{cases} 4x & \text{se } -\pi \le x \le 0 \\ -4\pi & \text{se } 0 < x < \pi, \end{cases}$$
 e siano a_n, b_n , per ogni $n \in \mathbb{N}, n \ge 1$, i coefficienti di Fourier di f .

La serie
$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

$$\boxed{A}$$
 converge a $\frac{20}{3} \pi^2$.

$$E$$
 converge a $\frac{5}{6}\pi^2$.

$$M$$
 converge a $\frac{10}{3} \pi^2$.

$$R$$
 converge a $\frac{5}{12}\pi^2$.

$$X$$
 diverge positivamente.

Quiz 3. Sia $\Omega = \{(x, y, z) \in \mathbb{R}^3: 9 \le x^2 + y^2 + z^2 \le 16, z \ge 0\}$. L'integrale $\int_{\Omega} \frac{6z}{x^2 + y^2 + z^2} dx dy dz$ vale

- $A 21\pi$.
- $E 12\pi (\log 4 \log 3).$
- M 0.
- $R 42\pi$.
- $\boxed{X} 6\pi (\log 4 \log 3).$

Quiz 4. Il flusso del campo vettoriale $F(x,y,z) = \left(\frac{x}{6-z}, \frac{y}{6-z}, -z - e^{xy}\right)$ attraverso la superficie $\Sigma = \left\{(x,y,z) \in \mathbb{R}^3: z = 6 - e^{xy}, \ 0 \le y \le 4, \ 0 \le x \le y\right\}$, orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- A 32.
- |E| 16.
- M 64.
- R 4.
- X 0.

Quiz 5. Il campo vettoriale $F(x,y) = (x|32y-2|+8xy, |8x^2-2y|-4x^2)$ è conservativo sull'insieme

- A \mathbb{R}^2 .
- E $\{(x,y) \in \mathbb{R}^2 : \frac{1}{16} < y < 4x^2 \}.$
- $\boxed{M} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ 4y^2 < x < \frac{1}{16} \bigg\}.$
- R $\{(x,y) \in \mathbb{R}^2 : \frac{1}{16} < x < 4y^2 \}.$
- X $\{(x,y) \in \mathbb{R}^2 : 4x^2 < y < \frac{1}{16} \}.$

Quiz 6. Siano $n \in \mathbb{N}$, $n \ge 2$, e $f(x,y) = y^n (x^n - 3)$. Quale delle seguenti affermazioni è corretta?

- \overline{A} La funzione f ha punti di minimo locale se e solo se n è pari.
- [E] La funzione f ha punti di minimo locale se e solo se n è dispari.
- \overline{G} La funzione f non ha punti di sella se n è pari.
- M La funzione f non ha punti di sella se n è dispari.
- \boxed{N} La funzione f non ha punti di massimo locale se n è pari.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f: \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

A Se f non è differenziabile in x_0 , allora f non è continua in x_0 .

E Se esiste $\nabla f(x_0)$, allora f è differenziabile in x_0 .

G Se esiste $\nabla f(x_0)$, allora f è continua in x_0 .

M Se f è differenziabile in x_0 , allora esiste $\nabla f(x_0)$.

 \overline{N} Nessuna delle altre è corretta.

Quiz 8. Siano $n \in \mathbb{N}$, $n \ge 2$, $\Omega = \mathbb{R}^n \setminus \{0\}$ e $F : \Omega \to \mathbb{R}^n$ il campo vettoriale $F(x) = x \left(9 - 4\|x\|^2\right) e^{-4\|x\|^2}$, dove $\|x\|$ è la norma di x in \mathbb{R}^n .

Quale delle seguenti affermazioni è corretta?

A F non è conservativo su Ω .

 \boxed{E} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2} ||x||^2 e^{-4||x||^2}$.

 \boxed{G} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2}e^{-4\|x\|^2} (\|x\|^2 - 2)$.

M F è conservativo su Ω e un potenziale di F su Ω è $f(x) = -2||x|| e^{-4||x||^2}$.

 \boxed{N} F è conservativo su Ω e un potenziale di F su Ω è $f(x)=-2\|x\|^2\,e^{-4\|x\|^2}.$

Quiz 9. Sia $\Omega = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \le 9, x \le y + 3, y \le 0\}$. L'integrale $\int_{\Omega} 4xy \, dx \, dy$ vales

A 9.

E 27.

G 3.

M 54.

N 0.

Quiz 10. Siano $F: \mathbb{R}^2 \to \mathbb{R}^2$ un campo vettoriale di classe C^1 , $F = (f_1, f_2)$, tale che $\frac{\partial f_2}{\partial x}(x, y) - \frac{\partial f_1}{\partial y}(x, y) = -2$ per ogni $(x, y) \in \mathbb{R}^2$, e $\Omega = \{(x, y) \in \mathbb{R}^2 : 9 \le x^2 + y^2 \le 36\}$.

L'integrale di linea di Flungo il bordo di Ω percorso positivamente vale

A 0.

E -27π .

G -18π .

M -108π .

 $N - 54\pi$.

Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	${f E}$	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
$\sqrt{3}$										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia a>1. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{a-1}{a}\right)^n$ converge a

- A a.
- $\boxed{E} \ \frac{(a-1)^2}{a}.$
- I a 1.
- $\boxed{R} \ \frac{1}{1-a}.$
- $\boxed{S} \ \frac{a-1}{a}.$

$$g(x) = \begin{cases} 3\pi & \text{se } -\pi \le x \le 0 \\ 3x & \text{se } 0 < x < \pi, \end{cases}$$
 e siano a_n, b_n , per ogni $n \in \mathbb{N}, n \ge 1$, i coefficienti di Fourier di f .

La serie
$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

- A converge a $\frac{15}{64} \pi^2$.
- E converge a $\frac{15}{32}\pi^2$.
- I converge a $\frac{15}{16} \pi^2$.
- R converge a $\frac{15}{8}\pi^2$.
- \overline{S} diverge positivamente.

Quiz 3. Sia $\Omega = \{(x, y, z) \in \mathbb{R}^3: 9 \le x^2 + y^2 + z^2 \le 25, z \le 0\}$. L'integrale $\int_{\Omega} \frac{8z}{x^2 + y^2 + z^2} dx dy dz$ vale

- $A 64\pi$.
- $|E| 16\pi (\log 5 \log 3).$
- I 0.
- R -128π .
- $|S| -8\pi (\log 5 \log 3).$

Quiz 4. Il flusso del campo vettoriale $F(x,y,z) = \left(\frac{x}{z-9}, \frac{y}{z-9}, z-e^{xy}\right)$ attraverso la superficie $\Sigma = \left\{(x,y,z) \in \mathbb{R}^3: z=9+e^{xy}, \ 0 \leq x \leq 4, \ 0 \leq y \leq x\right\}$, orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- A 16.
- |E| 8.
- \boxed{I} 32.
- R 2.
- S 0.

Quiz 5. Il campo vettoriale $F(x,y) = (|6y^2 - 2x| + 15y^2, y|6x - 2| + 24xy)$ è conservativo sull'insieme

- A \mathbb{R}^2 .
- $\boxed{E} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ \frac{1}{3} < x < 3y^2 \bigg\}.$
- I $\{(x,y) \in \mathbb{R}^2 : 3x^2 < y < \frac{1}{3} \}.$
- $\boxed{R} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ \frac{1}{3} < y < 3x^2 \bigg\}.$
- $\boxed{S} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ 3y^2 < x < \frac{1}{3} \bigg\}.$

Quiz 6. Siano $n \in \mathbb{N}$, $n \ge 2$, e $f(x,y) = x^n (7 - y^n)$. Quale delle seguenti affermazioni è corretta?

- \boxed{A} La funzione f ha punti di massimo locale se e solo se n è pari.
- \fbox{E} La funzione f ha punti di massimo locale se e solo se n è dispari.
- \boxed{I} La funzione f non ha punti di sella se n è pari.
- \boxed{R} La funzione f non ha punti di sella se n è dispari.
- \boxed{S} La funzione f non ha punti di minimo locale se n è pari.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f: \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

- A Nessuna delle altre è corretta.
- D Se esiste $\nabla f(x_0)$, allora f è differenziabile in x_0 .
- E Se esiste $\nabla f(x_0)$, allora f è continua in x_0 .
- I Se f non è differenziabile in x_0 , allora f non è continua in x_0 .
- M Se f è differenziabile in x_0 , allora f è continua in x_0 .

Quiz 8. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega = \mathbb{R}^n \setminus \{0\}$ e $F : \Omega \to \mathbb{R}^n$ il campo vettoriale $F(x) = x \left(7 + 6\|x\|^2\right) e^{6\|x\|^2}$, dove $\|x\|$ è la norma di x in \mathbb{R}^n .

Quale delle seguenti affermazioni è corretta?

- \boxed{A} F è conservativo su Ω e un potenziale di F su Ω è $f(x)=3\|x\|\,e^{6\|x\|^2}.$
- \boxed{D} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2} ||x||^2 e^{6||x||^2}$
- \overline{E} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = 3||x||^2 e^{6||x||^2}$.
- I F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2} e^{6\|x\|^2} (\|x\|^2 + 1)$.
- M F non è conservativo su Ω .

Quiz 9. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 4, y \le 2 - x, x \ge 0\}$. L'integrale $\int_{\Omega} (-3xy) \, dx \, dy$ vale

- A 8.
- D 4.
- |E| 16.
- I 2.
- M 0.

Quiz 10. Siano $F: \mathbb{R}^2 \to \mathbb{R}^2$ un campo vettoriale di classe C^1 , $F = (f_1, f_2)$, tale che $\frac{\partial f_2}{\partial x}(x, y) - \frac{\partial f_1}{\partial y}(x, y) = 1$ per ogni $(x, y) \in \mathbb{R}^2$, e $\Omega = \{(x, y) \in \mathbb{R}^2 : 16 \le x^2 + y^2 \le 64\}$.

L'integrale di linea di Flungo il bordo di Ω percorso positivamente vale

- $A 96\pi$.
- $D 24\pi$.
- E 12 π .
- I 48 π .
- M 0.

Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
V4										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia a < -1. La serie numerica $\sum_{n=2}^{\infty} \left(\frac{a+1}{a}\right)^n$ converge a

$$E \frac{a+1}{a}$$
.

$$I$$
 $-a$.

$$R$$
 $-a-1$.

$$\boxed{S} \ \frac{1}{1-a}.$$

$$V$$
 $-\frac{(a+1)^2}{a}$.

$$g(x) = \begin{cases} -6\pi & \text{se } -\pi \le x \le 0 \\ -6x & \text{se } 0 < x < \pi, \end{cases}$$
 e siano a_n, b_n , per ogni $n \in \mathbb{N}, n \ge 1$, i coefficienti di Fourier di f .

La serie
$$\sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

$$E$$
 converge a $\frac{15}{2} \pi^2$.

$$I$$
 converge a $\frac{15}{8}\pi^2$.

$$R$$
 converge a $15\pi^2$.

$$\boxed{S}$$
 converge a $\frac{15}{16} \pi^2$.

$$\overline{V}$$
 diverge positivamente.

Quiz 3. Sia $\Omega = \{(x, y, z) \in \mathbb{R}^3 : 16 \le x^2 + y^2 + z^2 \le 36, z \le 0\}$. L'integrale $\int_{\Omega} \frac{5z}{x^2 + y^2 + z^2} \, dx \, dy \, dz$ vale

$$\boxed{E}$$
 -100π .

 $\boxed{I} -10\pi (\log 6 - \log 4).$

$$R$$
 -50π .

$$V -5\pi (\log 6 - \log 4).$$

Quiz 4. Il flusso del campo vettoriale $F(x,y,z) = \left(\frac{x}{14-z}, \frac{y}{14-z}, -z - e^{xy}\right)$ attraverso la superficie $\Sigma = \left\{(x,y,z) \in \mathbb{R}^3: z = 14 - e^{xy}, \ 0 \le y \le 6, \ 0 \le x \le y\right\}$, orientata in modo che il vettore normale a Σ formi un angolo acuto con il versore fondamentale dell'asse z, vale

- E 12.
- I 144.
- R 288.
- \boxed{S} 72.
- V 0.

Quiz 5. Il campo vettoriale $F(x,y) = \left(x |20y - 1| + 5xy, |5x^2 - y| - \frac{5}{2}x^2\right)$ è conservativo sull'insieme

$$\boxed{E} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ \frac{1}{20} < y < 5x^2 \bigg\}.$$

$$\boxed{I} \ \bigg\{ (x,y) \in \mathbb{R}^2: \ 5x^2 < y < \frac{1}{20} \bigg\}.$$

$$R$$
 $\{(x,y) \in \mathbb{R}^2 : 5y^2 < x < \frac{1}{20} \}.$

$$S$$
 $\{(x,y) \in \mathbb{R}^2 : \frac{1}{20} < x < 5y^2 \}.$

 $V \mathbb{R}^2$.

Quiz 6. Siano $n \in \mathbb{N}$, $n \ge 2$, e $f(x,y) = y^n (9 - x^n)$. Quale delle seguenti affermazioni è corretta?

- \boxed{A} La funzione f non ha punti di sella se n è pari.
- I La funzione f ha punti di massimo locale se e solo se n è dispari.
- \boxed{G} La funzione f ha punti di massimo locale se e solo se n è pari.
- $\lceil N \rceil$ La funzione f non ha punti di sella se n è dispari.
- \boxed{R} La funzione f non ha punti di minimo locale se n è pari.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $x_0 \in \Omega$ e $f: \Omega \to \mathbb{R}$ una funzione.

Quale delle seguenti affermazioni è corretta?

 \overline{A} Se f non è differenziabile in x_0 , allora f non è continua in x_0 .

I Se esiste $\nabla f(x_0)$, allora f è differenziabile in x_0 .

G Se esiste $\nabla f(x_0)$, allora f è continua in x_0 .

N Se non esiste $\nabla f(x_0)$, allora f non è differenziabile in x_0 .

R Nessuna delle altre è corretta.

Quiz 8. Siano $n \in \mathbb{N}$, $n \ge 2$, $\Omega = \mathbb{R}^n \setminus \{0\}$ e $F : \Omega \to \mathbb{R}^n$ il campo vettoriale $F(x) = x \left(7 - 3\|x\|^2\right) e^{-3\|x\|^2}$, dove $\|x\|$ è la norma di x in \mathbb{R}^n .

Quale delle seguenti affermazioni è corretta?

 \boxed{A} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = \frac{1}{2}e^{-3\|x\|^2} (\|x\|^2 - 2)$.

 $\boxed{I} \ F \ \mbox{è conservativo su} \ \Omega \ \mbox{e un potenziale di} \ F \ \mbox{su} \ \Omega \ \mbox{è} \ f(x) = \frac{1}{2} \|x\|^2 \, e^{-3\|x\|^2}.$

 \boxed{G} F è conservativo su Ω e un potenziale di F su Ω è $f(x) = -\frac{3}{2} ||x||^2 e^{-3||x||^2}$.

N F è conservativo su Ω e un potenziale di F su Ω è $f(x) = -\frac{3}{2} ||x|| e^{-3||x||^2}$.

R F non è conservativo su Ω .

Quiz 9. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 9, x \le 3 - y, y \ge 0\}$. L'integrale $\int_{\Omega} (-4xy) dx dy$ vale

A 0.

I 9.

G 3.

N 54.

R 27.

Quiz 10. Siano $F: \mathbb{R}^2 \to \mathbb{R}^2$ un campo vettoriale di classe C^1 , $F = (f_1, f_2)$, tale che $\frac{\partial f_2}{\partial x}(x, y) - \frac{\partial f_1}{\partial y}(x, y) = -1$ per ogni $(x, y) \in \mathbb{R}^2$, e $\Omega = \{(x, y) \in \mathbb{R}^2 : 25 \le x^2 + y^2 \le 100\}$.

L'integrale di linea di Flungo il bordo di Ω percorso positivamente vale

A -25π .

I -75π .

G -50π .

N -150π .

R 0.