Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
V1										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia
$$p \in \mathbb{R}$$
. La serie numerica $\sum_{n=1}^{\infty} (-1)^n n^2 \sin\left(\frac{5n+6}{n^p}\right)$

- R converge assolutamente se p=4.
- N converge assolutamente se p < 3.
- \overline{G} converge assolutamente se 3 .
- $\lceil I \rceil$ converge assolutamente se p > 4.
- $\overline{|E|}$ converge assolutamente se p=3.

Quiz 2. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{5^n}{2^{n/3} + 3^{n/5}} (x-7)^n \quad è$

- $\boxed{N} \ \frac{2^{1/3}}{5}.$
- $\boxed{I} \ \frac{5}{2^{1/3}}.$
- $G \frac{3^{1/5}}{5}$.
- $\boxed{R} \ \frac{5}{3^{1/5}}.$
- E 0

Quiz 3. Sia $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 4 + x^2 + y^2, x^2 + y^2 \le 2\}$. L'integrale $\int_{\Sigma} 3(z - x^2 - y^2) d\sigma$ vales

N 104 π .

M $12\pi \left(6\sqrt{2} + \arctan\left(2\sqrt{2}\right)\right)$.

R = 0.

G 52 π .

E $24\pi \left(6\sqrt{2} + \arctan\left(2\sqrt{2}\right)\right)$.

Quiz 4. L'integrale di linea del campo vettoriale $F(x,y) = \left(10xy + 3y^2 + \frac{x}{\sqrt{4 + x^2 + y^2}}, 5x^2 + 6xy + \frac{y}{\sqrt{4 + x^2 + y^2}}\right)$ lungo la curva parametrica $\gamma: [0,4] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^2 - 4t + \sin\left(2\pi t\right), \ t + t^3\left(e^{4t} - e^{16}\right)\right)$ vale

A 0.

 $M \sqrt{5} - 1.$

G $4\left(\sqrt{5}-1\right)$.

 $R 2\sqrt{2}$.

E $2(\sqrt{5}-1).$

Quiz 5. La derivata della funzione $f(x,y) = 3x^2y + 5xy^2 + 14\arctan(x+y)$ nel punto $(x_0,y_0) = (1,0)$ rispetto al vettore v = (-3,7) vale

G 49.

M 7.

R 3.

N 10.

E 0.

Quiz 6. Siano $H = \{(x,y) \in \mathbb{R}^2 : x^2 + e^{2y} < 2\}, \quad K = \{(x,y) \in \mathbb{R}^2 : 2 < x^2 + e^{y^2} < 3\},$ $I = \{(x,y) \in \mathbb{R}^2 : e^{-x^2 - y^2} < \frac{1}{2}\}.$

Quale delle seguenti affermazioni è corretta?

 \boxed{A} Solo l'insieme K è semplicemente connesso.

N Solo l'insieme H è semplicemente connesso.

 \boxed{M} Solo l'insieme I è semplicemente connesso.

 \boxed{R} Tutti i tre insiemi sono semplicemente connessi.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $F : \Omega \to \mathbb{R}^n$ un campo vettoriale conservativo su Ω e $f, g : \Omega \to \mathbb{R}$ due potenziali di F su Ω . Quale delle seguenti affermazioni è corretta?

A Nessuna delle altre è corretta.

 $R \mid f - g$ è costante su Ω .

 \boxed{N} Se Ω non è connesso per archi, allora f-g non è costante su Ω .

 \boxed{M} Se F è di classe C^1 su Ω , allora f-g è costante su Ω .

[E] Se Ω è connesso per archi, allora f-g è costante su Ω .

Quiz 8. Sia (a_n) una successione reale tale che $\sum_{n=0}^{\infty} a_n = S \in \mathbb{R}$.

La serie
$$\sum_{n=2}^{\infty} (2a_n - 3a_{n-1})$$

A converge al numero reale $a_0 + a_1 - S$.

M converge al numero reale -S.

 \overline{R} converge al numero reale $a_0 - 2a_1 - S$.

C converge al numero reale $3a_1 - S$.

|E| converge al numero reale $a_0 - a_1 - S$.

Quiz 9. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le 9, \ 0 \le x \le \sqrt{2} \right\}$. L'integrale $\int_{\Omega} 5x \, dx \, dy \, dz$ vale

M 45 π .

 $I 30\pi$.

 $N = 45\sqrt{2} \pi.$

G 90 π .

 $E 60\pi$.

Quiz 10. Siano $\Omega = \{(x,y,z) \in \mathbb{R}^3: \ x^2 + y^2 + z^2 \le 4, \ y \ge 0\}$ e $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 tale che $\operatorname{div} F(x,y,z) = 3$ per ogni $(x,y,z) \in \mathbb{R}^3$.

Il flusso uscente di F dal bordo di Ω vale

A 16 π .

 $I 32\pi$.

 $N 8\pi$.

 $\boxed{R} \ \frac{32}{3}\pi.$

E 0.

Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
$\sqrt{2}$										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia
$$p \in \mathbb{R}$$
. La serie numerica $\sum_{n=1}^{\infty} (-1)^n n^p \sin^3 \left(\frac{6n+4}{n^2} \right)$

- \overline{A} converge assolutamente se p=2.
- $\lceil I \rceil$ converge assolutamente se p > 3.
- \overline{C} converge assolutamente se 2 .
- \boxed{D} converge assolutamente se p < 2.
- \boxed{L} converge assolutamente se p=3.

Quiz 2. Il raggio di convergenza della serie di potenze
$$\sum_{n=1}^{\infty} (-1)^n \frac{7^n}{3^{n/4} + 4^{n/5}} (x+5)^n \quad è$$

- $A \frac{4^{1/5}}{7}$.
- $\boxed{I} \ \frac{7}{4^{1/5}}.$
- C $\frac{3^{1/4}}{7}$.
- $D \frac{7}{3^{1/4}}$
- L 0.

Quiz 3. Sia $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 3 + x^2 + y^2, x^2 + y^2 \le 6\}$. L'integrale $\int_{\Sigma} 2(z - x^2 - y^2) d\sigma$ vale

- A 0.
- L $6\pi \left(10\sqrt{6} + \arctan\left(2\sqrt{6}\right)\right)$.
- C 124 π .
- $D = 62\pi$.
- $E 3\pi \left(10\sqrt{6} + \arctan\left(2\sqrt{6}\right)\right).$

Quiz 4. L'integrale di linea del campo vettoriale $F(x,y) = \left(8xy + 6y^2 + \frac{x}{\sqrt{16 + x^2 + y^2}}, 4x^2 + 12xy + \frac{y}{\sqrt{16 + x^2 + y^2}}\right)$ lungo la curva parametrica $\gamma:[0,6] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t - t^4\left(e^{6t} - e^{36}\right), \ t^3 - 6t^2 - \sin\left(3\pi t\right)\right)$ vale

- A 0.
- $I \sqrt{13} 1.$
- C $4(\sqrt{13}-1)$.
- L $2\sqrt{13}$.
- $E 2 \left(\sqrt{13}-2\right).$

Quiz 5. La derivata della funzione $f(x,y) = 9x^2y + 7xy^2 + 10\arctan(x+y)$ nel punto $(x_0,y_0) = (0,1)$ rispetto al vettore v = (5,-7) vale

- A 10.
- L 25.
- R 7.
- \boxed{I} 12.
- E 0.

Quiz 6. Siano $H = \{(x,y) \in \mathbb{R}^2 : e^{x^2+y^2} > 2\}, \quad K = \{(x,y) \in \mathbb{R}^2 : 2 < e^{x^2} + y^2 < 3\},$ $I = \{(x,y) \in \mathbb{R}^2 : e^{2x} + y^2 < 2\}.$

Quale delle seguenti affermazioni è corretta?

- \overline{P} Solo l'insieme K è semplicemente connesso.
- \boxed{I} Solo l'insieme H è semplicemente connesso.
- \overline{A} Solo l'insieme I è semplicemente connesso.
- \boxed{S} Nessuno dei tre insiemi è semplicemente connesso.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $F : \Omega \to \mathbb{R}^n$ un campo vettoriale conservativo su Ω e $f, g : \Omega \to \mathbb{R}$ due potenziali di F su Ω . Quale delle seguenti affermazioni è corretta?

- A f g è costante su Ω .
- \boxed{R} Se Ω è connesso per archi, allora esiste $c \in \mathbb{R}$ tale che f(x) g(x) = c per ogni $x \in \Omega$.
- \boxed{S} Se Ω è connesso per archi, allora per ogni $c \in \mathbb{R}$ esiste $x \in \Omega$ tale che f(x) g(x) = c.
- P Se F è di classe C^1 su Ω , allora f-g è costante su Ω .
- I Nessuna delle altre è corretta.

Quiz 8. Sia (a_n) una successione reale tale che $\sum_{n=0}^{\infty} a_n = S \in \mathbb{R}$.

La serie
$$\sum_{n=2}^{\infty} (3a_n - 2a_{n-1})$$

- P converge al numero reale $S a_0 a_1$.
- \boxed{S} converge al numero reale S.
- R converge al numero reale $S a_0 2a_1$.
- \boxed{A} converge al numero reale $S-3a_1$.
- I converge al numero reale $S a_0 3a_1$.

Quiz 9. Sia $\Omega = \{(x, y, z) \in \mathbb{R}^3 : x^2 + z^2 \le 2, 0 \le y \le 3\}$. L'integrale $\int_{\Omega} 3y \, dx \, dy \, dz$ vale

- $S = 27\pi$.
- $O 18\pi$.
- T $27\sqrt{2}\pi$.
- $P 54\pi$.
- $I 36\pi$.

Quiz 10. Siano $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \le 9, x \ge 0\}$ e $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 tale che $\operatorname{div} F(x, y, z) = 4$ per ogni $(x, y, z) \in \mathbb{R}^3$.

Il flusso uscente di F dal bordo di Ω vale

- $A 8\pi$.
- O 144 π .
- |S| 36 π .
- $P 72\pi$.
- T 0.

Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
V3										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia
$$p \in \mathbb{R}$$
. La serie numerica $\sum_{n=1}^{\infty} (-1)^n n^4 \sin^p \left(\frac{6n+5}{n^2} \right)$

- \overline{O} converge assolutamente se p > 5.
- \boxed{S} converge assolutamente se p < 4.
- T converge assolutamente se 4 .
- R converge assolutamente se p = 5.
- \overline{E} converge assolutamente se p=4.

Quiz 2. Il raggio di convergenza della serie di potenze
$$\sum_{n=1}^{\infty} (-1)^n \, \frac{2^{n/3} + 3^{n/5}}{5^n} \, (x-9)^n \quad \text{è}$$

- $A \frac{2^{1/3}}{5}$.
- $\boxed{S} \ \frac{5}{2^{1/3}}.$
- $C \frac{3^{1/5}}{5}$.
- $\boxed{T} \ \frac{5}{3^{1/5}}.$
- E = 0

Quiz 3. Sia $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 3 - x^2 - y^2, x^2 + y^2 \le 2\}$. L'integrale $\int_{\Sigma} 4(z + x^2 + y^2) d\sigma$ vale

- A 0.
- \boxed{S} $12\pi \left(6\sqrt{2} + \arctan\left(2\sqrt{2}\right)\right)$.
- $T = 52\pi$.
- $R \mid 104\pi.$
- E $24\pi \left(6\sqrt{2} + \arctan\left(2\sqrt{2}\right)\right)$.

Quiz 4. L'integrale di linea del campo vettoriale $F(x,y) = \left(14xy + 5y^2 + \frac{x}{\sqrt{9 + x^2 + y^2}}, 7x^2 + 10xy + \frac{y}{\sqrt{9 + x^2 + y^2}}\right)$ lungo la curva parametrica $\gamma: [0,5] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t^2 - 5t + \sin\left(4\pi t\right), \ t + t^3\left(e^{5t} - e^{25}\right)\right)$ vale

- $A \sqrt{34} 3.$
- $\boxed{S} \ \frac{1}{2} \left(\sqrt{34} 3 \right).$
- C $2(\sqrt{34}-3)$.
- $O \sqrt{34}$.
- E 0.

Quiz 5. La derivata della funzione $f(x,y) = 4x^2y + 6xy^2 + 16\arctan(x+y)$ nel punto $(x_0,y_0) = (1,0)$ rispetto al vettore v = (-4,8) vale

- A 4.
- O 8.
- C 64.
- R 12.
- T 0.

Quiz 6. Siano $H = \left\{ (x,y) \in \mathbb{R}^2 : 2 < x^2 + e^{y^2} < 3 \right\}, \quad K = \left\{ (x,y) \in \mathbb{R}^2 : x^2 + e^{2y} < 2 \right\},$ $I = \left\{ (x,y) \in \mathbb{R}^2 : e^{-x^2 - y^2} < \frac{1}{2} \right\}.$

Quale delle seguenti affermazioni è corretta?

- \boxed{A} Tutti i tre insiemi sono semplicemente connessi.
- \overline{R} Solo l'insieme H è semplicemente connesso.
- \boxed{C} Solo l'insieme I è semplicemente connesso.
- \boxed{O} Solo l'insieme K è semplicemente connesso.
- $\lceil T \rceil$ Nessuno dei tre insiemi è semplicemente connesso.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $F : \Omega \to \mathbb{R}^n$ un campo vettoriale conservativo su Ω e $f, g : \Omega \to \mathbb{R}$ due potenziali di F su Ω . Quale delle seguenti affermazioni è corretta?

A f - g è costante su Ω .

 \boxed{R} Se Ω è connesso per archi, allora f-g è costante su Ω .

C Se Ω non è connesso per archi, allora f-g non è costante su Ω .

T Se F è di classe C^1 su Ω , allora f-g è costante su Ω .

|E| Nessuna delle altre è corretta.

Quiz 8. Sia (a_n) una successione reale tale che $\sum_{n=0}^{\infty} a_n = S \in \mathbb{R}$.

La serie
$$\sum_{n=2}^{\infty} (3a_{n-1} - 2a_n)$$

A converge al numero reale $S - 3a_1$.

T converge al numero reale S.

C converge al numero reale $S - a_0 - a_1$.

R converge al numero reale $S - a_0 + 2a_1$.

E converge al numero reale $S - a_0 + a_1$.

Quiz 9. Sia $\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : y^2 + z^2 \le 9, -\sqrt{2} \le x \le 0 \right\}$. L'integrale $\int_{\Omega} 5x \, dx \, dy \, dz$ vale

 $A - 60\pi$.

R -30π .

C $-45\sqrt{2}\pi$.

T -90π .

 \boxed{E} -45π .

Quiz 10. Siano $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \le 4, y \le 0\}$ e $F : \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 tale che divF(x, y, z) = -3 per ogni $(x, y, z) \in \mathbb{R}^3$.

Il flusso uscente di F dal bordo di Ω vale

A -32π .

T -16π .

C -8π .

 $\boxed{R} - \frac{32}{3}\pi.$

E 0.

Riservato al docente

VOTO				Quiz	N.	Punti
	DATI I	DELLO STUDENT	E	Risp. corrette		
	COGNOME	NOME	MATRICOLA	Risp. errate		
				Risp. non date		

TEMPO A DISPOSIZIONE: 90 MINUTI

Risposte ai quiz (corretta=3 punti; errata=-1 punti; non data=0 punti)

Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Quiz 9	Quiz 10
V4										

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

Quiz 1. Sia
$$p \in \mathbb{R}$$
. La serie numerica $\sum_{n=1}^{\infty} (-1)^n n^2 \sin\left(\frac{n^p}{3n+2}\right)$

- A converge assolutamente se p = -2.
- R converge assolutamente se p > -1.
- $\overline{|S|}$ converge assolutamente se -2 .
- T converge assolutamente se p < -2.
- E' converge assolutamente se p = -1.

Quiz 2. Il raggio di convergenza della serie di potenze
$$\sum_{n=1}^{\infty} (-1)^n \, \frac{3^{n/4} + 4^{n/5}}{7^n} \, (x+9)^n \quad \text{è}$$

- $\boxed{A} \ \frac{7}{4^{1/5}}.$
- $R \frac{4^{1/5}}{7}$.
- $\boxed{S} \ \frac{3^{1/4}}{7}.$
- $\boxed{T} \ \frac{7}{3^{1/4}}.$
- E' 0.

Quiz 3. Sia $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 2 - x^2 - y^2, x^2 + y^2 \le 6\}$. L'integrale $\int_{\Sigma} 3(z + x^2 + y^2) d\sigma$ vales

 $\boxed{A} \ 3\pi \left(10\sqrt{6} + \arctan\left(2\sqrt{6}\right)\right).$

R $6\pi \left(10\sqrt{6} + \arctan\left(2\sqrt{6}\right)\right)$.

S 0.

T 62 π .

E' 124 π .

Quiz 4. L'integrale di linea del campo vettoriale $F(x,y) = \left(18xy + 7y^2 + \frac{x}{\sqrt{25 + x^2 + y^2}}, 9x^2 + 14xy + \frac{y}{\sqrt{25 + x^2 + y^2}}\right)$ lungo la curva parametrica $\gamma:[0,2] \to \mathbb{R}^2$ definita da $\gamma(t) = \left(t - t^4\left(e^{2t} - e^4\right), \ t^3 - 2t^2 - \sin\left(6\pi t\right)\right)$ vale

 $\boxed{M} \ \frac{1}{2} \left(\sqrt{29} - 5 \right).$

 \boxed{S} $\sqrt{29} - 5$.

 $\boxed{R} \ 2\left(\sqrt{29}-5\right).$

 $L \sqrt{29}$.

E 0.

Quiz 5. La derivata della funzione $f(x,y) = 6x^2y + 8xy^2 + 8\arctan(x+y)$ nel punto $(x_0,y_0) = (0,1)$ rispetto al vettore v = (4,-8) vale

 $A \mid 0.$

L 8.

M 6.

|S| 12.

E 16.

Quiz 6. Siano $H = \{(x,y) \in \mathbb{R}^2 : e^{x^2+y^2} > 2\}, \qquad K = \{(x,y) \in \mathbb{R}^2 : e^{2x} + y^2 < 2\},$ $I = \{(x,y) \in \mathbb{R}^2 : 2 < e^{x^2} + y^2 < 3\}.$

Quale delle seguenti affermazioni è corretta?

 \fbox{R} Solo l'insieme H è semplicemente connesso.

 $\fbox{$L$}$ Solo l'insieme I è semplicemente connesso.

 \overline{M} Solo l'insieme K è semplicemente connesso.

 \boxed{P} Tutti i tre insiemi sono semplicemente connessi.

[E] Nessuno dei tre insiemi è semplicemente connesso.

Quiz 7. Siano $n \in \mathbb{N}$, $n \geq 2$, $\Omega \subseteq \mathbb{R}^n$ un aperto non vuoto, $F : \Omega \to \mathbb{R}^n$ un campo vettoriale conservativo su Ω e $f, g : \Omega \to \mathbb{R}$ due potenziali di F su Ω . Quale delle seguenti affermazioni è corretta?

A f - g è costante su Ω .

 \boxed{P} Se Ω è connesso per archi, allora esiste $c \in \mathbb{R}$ tale che f(x) - g(x) = c per ogni $x \in \Omega$.

M Se Ω è connesso per archi, allora per ogni $c \in \mathbb{R}$ esiste $x \in \Omega$ tale che f(x) - g(x) = c.

 \overline{R} Se F è di classe C^1 su Ω , allora f-g è costante su Ω .

 \boxed{E} Nessuna delle altre è corretta.

Quiz 8. Sia (a_n) una successione reale tale che $\sum_{n=0}^{\infty} a_n = S \in \mathbb{R}$.

La serie
$$\sum_{n=2}^{\infty} (2a_{n-1} - 3a_n)$$

A converge al numero reale $3a_1 - S$.

M converge al numero reale -S.

 \overline{P} converge al numero reale $a_0 + 2a_1 - S$.

 \boxed{R} converge al numero reale $a_0 + 3a_1 - S$.

 \boxed{E} converge al numero reale $a_0 + a_1 - S$.

Quiz 9. Sia $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + z^2 \le 2, -3 \le y \le 0\}$. L'integrale $\int_{\Omega} 3y \, dx \, dy \, dz$ vale

 $A - 36\pi$.

M -18π .

 $\boxed{P} -27\sqrt{2}\,\pi.$

R -54π .

 $|E| - 27\pi.$

Quiz 10. Siano $\Omega = \{(x, y, z) \in \mathbb{R}^3: x^2 + y^2 + z^2 \le 9, x \le 0\}$ e $F : \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 tale che $\operatorname{div} F(x, y, z) = -4$ per ogni $(x, y, z) \in \mathbb{R}^3$.

Il flusso uscente di F dal bordo di Ω vale

A -72π .

M -144π .

 $P - 36\pi$.

R -8π .

E 0.