Analisi Matematica II – 3 febbraio 2020 ore 16

T 7	\cap	\mathbf{T}	\sim
v	ι,		ι,

DATI DELLO STUDENTE

DAII DELLO SI ODENIE							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

N.

Punti

Quiz

Risp. esatte

Risposte ai quiz (esatta=2,5 punti; errata=-0,5 punti; non data=0 punti)

									Risp. errate		
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Risp. non date		
T71									Esercizio	F.	Punti
$\mid \mathbf{V} \perp$									Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{n \, 2^n + 3^n}{n^2 \, 4^n + 5^n} \, (x-1)^n \quad \grave{\mathrm{e}}$

- $\boxed{A} \frac{8}{3}$.
- $\boxed{B} \frac{3}{5}$
- C $\frac{5}{3}$.
- $D \frac{3}{4}$
- \boxed{E} $\frac{4}{3}$.

Quiz 2. Siano $F(x,y) = \left(\frac{1}{2}xy^2 - \frac{1}{30}, \ x^2y\right)$ e $\Omega = \left\{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \le 1, \ -x - 1 \le y \le (x+1)^2\right\}$. L'integrale di linea di F lungo la parte del bordo di Ω appartenente al I e II quadrante, percorsa in senso antiorario, vale

- $\boxed{A} \frac{1}{40}$.
- \boxed{B} 0.
- $C \frac{1}{20}$
- $\boxed{D} \ \frac{13}{120}$
- $E \frac{7}{40}$.

 Quiz 3. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 \log \left(1 + \frac{5}{n}\right)}{4n^3 + 1}$
- A diverge negativamente.
- \boxed{B} è indeterminata.
- \overline{C} diverge positivamente.
- \boxed{D} converge ma non assolutamente.
- \boxed{E} converge assolutamente.

Quiz 4. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 , $K = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \le 1\}$, $\sigma: K \to \mathbb{R}^3$ la calotta regolare $\sigma(x,y) = (x,y,x^2+y^2+3)$ e $\tau: K \to \mathbb{R}^3$ la calotta regolare $\tau(x,y) = (x,y,\sqrt{17-x^2-y^2})$.

Il flusso del rotore di F attraverso il sostegno di σ , orientato in modo che il versore normale al sostegno di σ formi un angolo acuto con il versore fondamentale dell'asse z, è uguale a

A 0.

$$\boxed{B} \int_{K} \operatorname{rot} F\left(x, y, \sqrt{17 - x^{2} - y^{2}}\right) \cdot \left(-\frac{x}{\sqrt{17 - x^{2} - y^{2}}}, -\frac{y}{\sqrt{17 - x^{2} - y^{2}}}, -1\right) dx dy.$$

$$C$$
 $\int_{K} \operatorname{rot} F(x, y, x^{2} + y^{2} + 3) \cdot (2x, 2y, 1) \ dx \ dy.$

$$\boxed{D} \int_{K} \operatorname{rot} F(x, y, x^{2} + y^{2} + 3) \cdot (2x, 2y, -1) \ dx \ dy.$$

$$\boxed{E} \int_{K} \operatorname{rot} F\left(x, y, \sqrt{17 - x^{2} - y^{2}}\right) \cdot \left(\frac{x}{\sqrt{17 - x^{2} - y^{2}}}, \frac{y}{\sqrt{17 - x^{2} - y^{2}}}, 1\right) dx dy.$$

Quiz 5. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : -\sqrt{x} \le y \le x, \ x \le 1\}$. L'integrale $\int_{\Omega} (6xy + 5y^3) \ dx \ dy$ vale

A 1.

$$\boxed{B} - \frac{5}{12}.$$

C 5.

$$D$$
 $-\frac{5}{6}$.

E $\frac{5}{2}$.

Quiz 6. Nell'ambito della teoria dei campi vettoriali nello spazio tridimensionale, quale delle seguenti affermazioni è corretta?

A Tutti i campi conservativi sono radiali.

 \boxed{B} Esistono campi radiali di classe C^1 che non sono irrotazionali.

 \overline{D} Nessuna delle altre è corretta.

 \fbox{E} Esistono campi conservativi che hanno un dominio che non è semplicemente connesso.

Quiz 7. Si consideri la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3 : z = 2x^2 + 3xy + 4, x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$. L'integrale

$$\int_{\Sigma} \frac{z - 2x^2 - 4}{\sqrt{25x^2 + 24xy + 9y^2 + 1}} \, d\sigma \quad \text{vale}$$

A 4.

B 8.

C 0.

D 6.

|E| 12.

Quiz 8. La funzione $f(x,y) = (x^2 + y^2 - 3) e^{2-y^2} + 5$

 \overline{A} ha tre punti stazionari: uno di massimo locale e due di sella.

 \overline{B} ha due punti stazionari: uno di minimo locale e uno di sella.

 \boxed{C} ha tre punti stazionari: uno di minimo locale e due di sella.

 \boxed{D} ha solo un punto stazionario che è di minimo locale.

 \overline{E} ha solo un punto stazionario che è di massimo locale.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(3x^2 - 7x^2y + e^{y^4 - z^2}, 7xy^2 + \arctan\left(1 + \sin^2 z\right), \frac{3}{2}z^2 + \log\left(5 + x^4y^6\right)\right)$$

attraverso il bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{y^2 + z^2} \le x \le 2 - y^2 - z^2 \right\}.$$

Analisi Matematica II - 3 febbraio 2020 ore 16

VOTO

DATI DELLO STUDENTE

DAII DELLO STODENTE							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

N.

Punti

Quiz

Risp. esatte

Risposte ai quiz 2.5 punti; errata=-0.5 punti; non data=0 punti)

(esatta=2, 5 punti, errata==0, 5 punti, non data=0 punti)								Risp. errate			
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Risp. non date		
779									Esercizio	F.	Punti
VZ									Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. Si consideri la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3: z = 3y^2 + 4xy + 5, x^2 + y^2 \le 9, x \ge 0, y \le 0\}$. L'integrale

$$\int_{\Sigma} \frac{z - 3y^2 - 5}{\sqrt{16x^2 + 48xy + 52y^2 + 1}} \, d\sigma \quad \text{vale}$$

- A 0.
- B -81.
- C $-\frac{81}{2}$
- D -54.
- \boxed{E} -108.

Quiz 2. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{2 + (-1)^n n^2}{(n^2 + 1) \log (n + 1)}$

- A converge ma non assolutamente.
- \boxed{B} diverge positivamente.
- \overline{C} converge assolutamente.
- \boxed{D} diverge negativamente.
- \fbox{E} è indeterminata.

Quiz 3. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{n \, 5^n + 4^n}{n^2 \, 6^n + 7^n} (x+1)^n \quad \text{è}$

- $\boxed{A} \frac{5}{6}.$
- $\boxed{B} \frac{6}{5}$.
- C $\frac{5}{7}$.
- $\boxed{D} \frac{7}{5}.$
- E $\frac{1}{5}$

Quiz 4. Nell'ambito della teoria dei campi vettoriali nello spazio tridimensionale, quale delle seguenti affermazioni è corretta?

- A Tutti i campi conservativi hanno un dominio che è semplicemente connesso.
- B Tutti i campi irrotazionali sono conservativi.
- C Esistono campi radiali di classe C^1 che non sono irrotazionali.
- D Esistono campi conservativi che non sono radiali.
- |E| Nessuna delle altre è corretta.

Quiz 5. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 , $K = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \leq 2\}$, $\sigma: K \to \mathbb{R}^3$ la calotta regolare $\sigma(x,y) = (x,y,1-x^2-y^2)$ e $\tau: K \to \mathbb{R}^3$ la calotta regolare $\tau(x,y) = (x,y,-\sqrt{3-x^2-y^2})$.

Il flusso del rotore di F attraverso il sostegno di σ , orientato in modo che il versore normale al sostegno di σ formi un angolo acuto con il versore fondamentale dell'asse z, è uguale a

$$A \int_K \operatorname{rot} F(x, y, 1 - x^2 - y^2) \cdot (2x, 2y, -1) \ dx \ dy.$$

$$\boxed{B} \int_{K} \operatorname{rot} F\left(x, y, -\sqrt{3 - x^{2} - y^{2}}\right) \cdot \left(\frac{x}{\sqrt{3 - x^{2} - y^{2}}}, \frac{y}{\sqrt{3 - x^{2} - y^{2}}}, -1\right) dx dy.$$

$$C$$
 $\int_K \operatorname{rot} F(x, y, 1 - x^2 - y^2) \cdot (-2x, -2y, 1) \ dx \ dy.$

$$\boxed{D} \int_{K} \operatorname{rot} F\left(x, y, -\sqrt{3 - x^{2} - y^{2}}\right) \cdot \left(-\frac{x}{\sqrt{3 - x^{2} - y^{2}}}, -\frac{y}{\sqrt{3 - x^{2} - y^{2}}}, 1\right) dx dy.$$

E 0.

Quiz 6. Sia
$$\Omega = \{(x,y) \in \mathbb{R}^2 : -\sqrt{y} \le x \le y, y \le 1\}$$
. L'integrale $\int_{\Omega} (8xy + 3x^3) dx dy$ vale

$$A = \frac{167}{30}$$
. $B = \frac{13}{30}$. $C = \frac{167}{60}$. $D = \frac{13}{15}$. $E = 1$.

Quiz 7. Siano
$$F(x,y) = \left(xy^2, \ \frac{1}{2}x^2y + \frac{1}{20}\right) \in \Omega = \left\{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \le 1, \ y - 1 \le x \le (y-1)^2\right\}.$$

L'integrale di linea di F lungo la parte del bordo di Ω appartenente al I e IV quadrante, percorsa in senso antiorario, vale

- A 0.
- $\boxed{B} \frac{1}{20}.$
- C $\frac{5}{24}$.
- $D \frac{1}{40}$.
- $\boxed{E} \ \frac{13}{120}.$

Quiz 8. La funzione
$$f(x,y) = (x^2 + y^2 - 8) e^{5-x^2} - 2$$

- \boxed{A} ha due punti stazionari: uno di minimo locale e uno di sella.
- \overline{B} ha solo un punto stazionario che è di minimo locale.
- \boxed{C} ha tre punti stazionari: uno di massimo locale e due di sella.
- \boxed{D} ha solo un punto stazionario che è di massimo locale.
- $\fbox{$E$}$ ha tre punti stazionari: uno di minimo locale e due di sella.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(\frac{5}{2}x^2 + \log\left(2 + y^4z^6\right), \ \frac{3}{2}y^2 - 8y^2z + e^{x^4 - z^2}, \ 8yz^2 + \arctan\left(1 + \sin^2 x\right)\right)$$

attraverso il bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \sqrt{x^2 + z^2} \le y \le 6 - x^2 - z^2 \right\}.$$

Analisi Matematica II – 3 febbraio 2020 ore 16

VOTO

DATI DELLO STUDENTE

DAII DELLO SI ODENIE							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

Risposte ai quiz (esatta=2,5 punti; errata=-0,5 punti; non data=0 punti)

	1							
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8
779								
V3								
• •								

Quiz	N.	Punti
Risp. esatte		
Risp. errate		
Risp. non date		
Esercizio	F.	Punti
Svolg.=		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. Nell'ambito della teoria dei campi vettoriali nello spazio tridimensionale, quale delle seguenti affermazioni è corretta?

- A Tutti i campi conservativi sono radiali.
- B Nessuna delle altre è corretta.
- C Esistono campi radiali di classe C^1 che non sono irrotazionali.
- \boxed{D} Tutti i campi irrotazionali sono conservativi.

Quiz 2. La funzione
$$f(x,y) = (3 - x^2 - y^2) e^{6-y^2} + 7$$

- \overline{A} ha solo un punto stazionario che è di minimo locale.
- \boxed{B} ha solo un punto stazionario che è di massimo locale.
- \boxed{C} ha tre punti stazionari: uno di massimo locale e due di sella.
- \boxed{D} ha tre punti stazionari: uno di minimo locale e due di sella.
- |E| ha due punti stazionari: uno di massimo locale e uno di sella.

Quiz 3. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 , $K = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \le 1\}$, $\sigma: K \to \mathbb{R}^3$ la calotta regolare $\sigma(x,y) = (x,y,x^2+y^2+3)$ e $\tau: K \to \mathbb{R}^3$ la calotta regolare $\tau(x,y) = (x,y,\sqrt{17-x^2-y^2})$.

Il flusso del rotore di F attraverso il sostegno di τ , orientato in modo che il versore normale al sostegno di τ formi un angolo acuto con il versore fondamentale dell'asse z, è uguale a

A 0.

$$B \int_K \operatorname{rot} F(x, y, x^2 + y^2 + 3) \cdot (2x, 2y, -1) \ dx \ dy.$$

$$\boxed{C} \int_{K} \operatorname{rot} F\left(x, y, \sqrt{17 - x^{2} - y^{2}}\right) \cdot \left(\frac{x}{\sqrt{17 - x^{2} - y^{2}}}, \frac{y}{\sqrt{17 - x^{2} - y^{2}}}, -1\right) dx dy.$$

$$\boxed{D} \int_{K} \operatorname{rot} F\left(x, y, \sqrt{17 - x^{2} - y^{2}}\right) \cdot \left(-\frac{x}{\sqrt{17 - x^{2} - y^{2}}}, -\frac{y}{\sqrt{17 - x^{2} - y^{2}}}, 1\right) dx dy.$$

$$E \int_K \operatorname{rot} F(x, y, x^2 + y^2 + 3) \cdot (-2x, -2y, 1) \ dx \, dy.$$

Quiz 4. Siano
$$F(x,y) = \left(\frac{1}{2}xy^2 + \frac{1}{30}, \ x^2y\right)$$
 e $\Omega = \left\{(x,y) \in \mathbb{R}^2: \ x^2 + y^2 \le 1, \ x - 1 \le y \le (x-1)^2\right\}$.

L'integrale di linea di F lungo la parte del bordo di Ω appartenente al I e II quadrante, percorsa in senso antiorario, vale

A 0.

$$\boxed{B} - \frac{1}{20}.$$

$$\boxed{C} - \frac{13}{120}.$$

$$\boxed{D} - \frac{1}{40}.$$

$$\boxed{E} - \frac{7}{40}.$$

Quiz 5. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : -x \le y \le \sqrt{x}, \ x \le 1\}$. L'integrale $\int_{\Omega} (6xy - 5y^3) \ dx \ dy$ valored

- A -1.
- $\boxed{B} \frac{1}{12}$.
- C -2.
- D $-\frac{5}{2}$.
- $E \frac{1}{6}$.

Quiz 6. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 4^n + 5^n}{n 2^n + 3^n} (x-2)^n \quad \text{è}$

- $A \frac{3}{5}$
- $\boxed{B} \ \frac{3}{4}.$
- C $\frac{4}{3}$.
- $D \frac{5}{3}$
- $E \frac{13}{5}$.

Quiz 7. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{4 \log (n+1)}{n+1 + \log (n+1)}$

- A è indeterminata.
- B diverge positivamente.
- \boxed{C} diverge negativamente.
- D converge ma non assolutamente.
- \overline{E} converge assolutamente.

Quiz 8. Si consideri la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3: z = 2x^2 - 5xy + 6, x^2 + y^2 \le 4, x \le 0, y \le 0\}$. L'integrale

$$\int_{\Sigma} \frac{z - 2x^2 - 6}{\sqrt{41x^2 - 40xy + 25y^2 + 1}} \, d\sigma \quad \text{vale}$$

$$\boxed{A} - \frac{40}{3}$$
. $\boxed{B} - 10$. \boxed{C} 0. $\boxed{D} - \frac{20}{3}$. $\boxed{E} - 20$.

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(7x^2y - 3x^2 + e^{y^4 - z^2}, \arctan\left(1 + \sin^2 z\right) - 7xy^2, \log\left(5 + x^4y^6\right) - \frac{3}{2}z^2\right)$$

attraverso il bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3: \ y^2 + z^2 - 2 \le x \le -\sqrt{y^2 + z^2} \right\}.$$

Analisi Matematica II – 3 febbraio 2020 ore 16

VOTO

DATI DELLO STUDENTE

DAII DELLO STODENTE							
COGNOME	NOME	MATRICOLA					

TEMPO A DISPOSIZIONE: 2 ORE

Riservato al docente

N.

Punti

Quiz

Risp. esatte

Risposte ai quiz (esatta=2,5 punti; errata=-0,5 punti; non data=0 punti)

$\sqrt{4}$									Svolg.=		
T 7 1									Esercizio	F.	Punti
Versione	Quiz 1	Quiz 2	Quiz 3	Quiz 4	Quiz 5	Quiz 6	Quiz 7	Quiz 8	Risp. non date		
	, <u>-</u>	,					,		Risp. errate		

- Compilare in STAMPATELLO MAIUSCOLO la tabella "DATI DELLO STUDENTE".
- Scrivere la risposta individuata ad ogni quiz nella tabella "Risposte ai quiz".
- Non usare libri, appunti, calcolatrici, computer, telefonini.

RESTITUIRE SOLO QUESTI DUE FOGLI!

Quiz 1. Il raggio di convergenza della serie di potenze $\sum_{n=1}^{\infty} (-1)^n \, \frac{n^2 \, 6^n + 7^n}{n \, 5^n + 4^n} \, (x+2)^n \quad \text{è}$

- $\boxed{A} \frac{19}{7}$.
- $\boxed{B} \frac{7}{5}$
- C $\frac{5}{7}$
- $D \frac{5}{6}$
- $E \frac{6}{5}$.

Quiz 2. La serie numerica $\sum_{n=1}^{\infty} (-1)^n \frac{3 - (-1)^n n^3}{(n^3 + 1) \log (n + 2)}$

- \overline{A} è indeterminata.
- \boxed{B} converge ma non assolutamente.
- C diverge positivamente.
- \boxed{D} diverge negativamente.

Quiz 3. Siano $F(x,y) = \left(xy^2, \frac{1}{2}x^2y - \frac{1}{20}\right)$ e $\Omega = \left\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, -y - 1 \le x \le (y+1)^2\right\}$. L'integrale di linea di F lungo la parte del bordo di Ω appartenente al I e IV quadrante, percorsa in senso antiorario, vale

- $\boxed{A} \frac{1}{20}$.
- \boxed{B} 0.
- $\boxed{C} \frac{13}{120}.$
- $\boxed{D} \frac{1}{40}.$
- E $-\frac{5}{24}$.

Quiz 4. Si consideri la superficie $\Sigma = \{(x, y, z) \in \mathbb{R}^3: z = 3y^2 - 8xy + 7, x^2 + y^2 \le 9, x \le 0, y \ge 0\}$. L'integrale

$$\int_{\Sigma} \frac{z - 3y^2 - 7}{\sqrt{64x^2 - 96xy + 100y^2 + 1}} \, d\sigma \quad \text{vale}$$

A 81.

B 0.

 \boxed{C} 162.

 \boxed{D} 108.

 \boxed{E} 216.

Quiz 5. La funzione $f(x,y) = (8 - x^2 - y^2) e^{3-x^2} - 4$

 \overline{A} ha tre punti stazionari: uno di massimo locale e due di sella.

 \boxed{B} ha tre punti stazionari: uno di minimo locale e due di sella.

 \boxed{C} ha solo un punto stazionario che è di massimo locale.

 \boxed{D} ha solo un punto stazionario che è di minimo locale.

Quiz 6. Sia $\Omega = \{(x,y) \in \mathbb{R}^2 : -y \le x \le \sqrt{y}, y \le 1\}$. L'integrale $\int_{\Omega} (8xy - 3x^3) dx dy$ vales

 $\boxed{A} \frac{7}{30}$. $\boxed{B} - \frac{113}{60}$. \boxed{C} 1. $\boxed{D} - \frac{113}{30}$. $\boxed{E} \frac{7}{15}$.

Quiz 7. Nell'ambito della teoria dei campi vettoriali nello spazio tridimensionale, quale delle seguenti affermazioni è corretta?

 \overline{A} Nessuna delle altre è corretta.

 \overline{B} Tutti i campi irrotazionali sono conservativi.

 \boxed{C} Tutti i campi conservativi hanno un dominio che è semplicemente connesso.

 \boxed{D} Esistono campi radiali di classe C^1 che non sono irrotazionali.

Quiz 8. Siano $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vettoriale di classe C^1 , $K = \{(x,y) \in \mathbb{R}^2: x^2 + y^2 \leq 2\}$, $\sigma: K \to \mathbb{R}^3$ la calotta regolare $\sigma(x,y) = (x,y,1-x^2-y^2)$ e $\tau: K \to \mathbb{R}^3$ la calotta regolare $\tau(x,y) = (x,y,-\sqrt{3-x^2-y^2})$.

Il flusso del rotore di F attraverso il sostegno di τ , orientato in modo che il versore normale al sostegno di τ formi un angolo acuto con il versore fondamentale dell'asse z, è uguale a

A 0.

$$B \int_K \operatorname{rot} F(x, y, 1 - x^2 - y^2) \cdot (-2x, -2y, -1) \ dx \, dy.$$

$$\boxed{C} \int_{K} \operatorname{rot} F\left(x, y, -\sqrt{3 - x^{2} - y^{2}}\right) \cdot \left(-\frac{x}{\sqrt{3 - x^{2} - y^{2}}}, -\frac{y}{\sqrt{3 - x^{2} - y^{2}}}, -1\right) dx dy.$$

$$\boxed{D} \int_{K} \operatorname{rot} F\left(x, y, -\sqrt{3 - x^2 - y^2}\right) \cdot \left(\frac{x}{\sqrt{3 - x^2 - y^2}}, \frac{y}{\sqrt{3 - x^2 - y^2}}, 1\right) \, dx \, dy.$$

$$\boxed{E} \int_{K} \operatorname{rot} F\left(x, y, 1 - x^{2} - y^{2}\right) \cdot (2x, 2y, 1) \ dx \, dy.$$

Esercizio. (10 punti = 7 per lo svolgimento corretto e 3 per la forma)

Calcolare il flusso uscente del campo vettoriale

$$F(x,y,z) = \left(\log\left(2 + y^4z^6\right) - \frac{5}{2}x^2, \ 8y^2z - \frac{3}{2}y^2 + e^{x^4 - z^2}, \ \arctan\left(1 + \sin^2x\right) - 8yz^2\right)$$

attraverso il bordo dell'insieme

$$\Omega = \left\{ (x, y, z) \in \mathbb{R}^3 : \ x^2 + z^2 - 6 \le y \le -\sqrt{x^2 + z^2} \right\}.$$