
The Modelica.Fluid libraryThe Modelica.Fluid library

Francesco CasellaFrancesco Casella
(francesco.casella@polimi.it)(francesco.casella@polimi.it)

Dipartimento di Elettronica e InformazioneDipartimento di Elettronica e Informazione
Politecnico di MilanoPolitecnico di Milano

2

Brief history

• Development started around 2002 (?) as Modelica_Fluid

• Goal: become part of the MSL for basic support to thermofluid system
modelling

• Connector concept based on coupled flow/effor variables for energy (and
partial mass) balances not completely satisfactory for numerical reasons

• Design of the Modelica_Fluid connectors (→ affecting the whole library!)
swinged back and forth many times

• Eventually (2009): definition of stream connectors in Modelica 3.1

• Modelica.Fluid becomes part of MSL 3.1 (Aug. 2009)

3

Goals and scope

• Support the modelling of 0D-1D thermofluid systems with purely
convective heat transport across ports

– thermal power plants (fossil-fired, biomass, solar, nuclear)
– heating systems
– air conditioning and ventilation systems
– no thermal conduction across ports (liquid metals at low flows)
– no gasdynamics (supersonic flows, shock phenomena etc.)

• Use Modelica.Media for medium property computations
• Define common interfaces for cross-library compatibility
• Provide most commonly used components (sources, valves, pumps, …)

• Provide a wide range of ready-made components?

• Discussion

4

FluidPort connector

• Applicability:
– purely convective heat and mass transport,(no heat conduction nor

mass diffusion across ports)
– one or two phases
– one or more substances

• Discussion on the meaning of the variables

• Only specific enthalpy discussed in the following for simplicity

connector FluidPort
 replaceable package Medium = Modelica.Media.Interfaces.PartialMedium
 "Medium model";
 flow Medium.MassFlowRate m_flow
 "Mass flow rate from the connection point into the component";
 Medium.AbsolutePressure p
 "Thermodynamic pressure in the connection point";
 stream Medium.SpecificEnthalpy h_outflow
 "Specific enthalpy close to connection point if m_flow < 0";
 stream Medium.MassFraction Xi_outflow[Medium.nXi]
 "Independent mixture mass fractions close to connection point if m_flow < 0";
 stream Medium.ExtraProperty C_outflow[Medium.nC]
 "Properties c_i/m close to the connection point if m_flow < 0";
end FluidPort;

5

Stream variables – First step

• Simple fluid port design – no flow reversal allowed

• Limitations:
– no support for flow reversal
– only one FluidPortB allowed in the connection set
– explicit mixing junctions required

connector FluidPortA “Port for entering flow”
 flow MassFlowRate m_flow “Flow into connector”;
 AbsolutePressure p “Thermodynamic pressure at the connector”;
 input SpecificEnthalpy h “Specific enthalpy of incoming fluid”;
end FluidPortA;
connector FluidPortB “Port for outgoing flow”
 flow MassFlowRate m_flow “Flow into connector”;
 AbsolutePressure p “Thermodynamic pressure at the connector”;
 output SpecificEnthalpy h “Specific enthalpy of outgoing fluid”;
end FluidPortB;

6

Stream variables – Second step

• ThermoPower connector design – flow reversal allowed

• Limitations:
– only one-to one connections allowed
– explicit mixing junctions and flow splitters required
– two complementary ports required with the same semantics

connector FluidPortA “Type-A port”
 flow MassFlowRate m_flow “Flow into connector”;
 AbsolutePressure p “Thermodynamic pressure at the connector”;
 output SpecificEnthalpy hAB “Specific enthalpy of outgoing fluid”;
 input SpecificEnthalpy hBA “Specific enthalpy of incoming fluid”;
end FluidPortA;
connector FluidPortB “Type-B port”
 flow MassFlowRate m_flow “Flow into connector”;
 AbsolutePressure p “Thermodynamic pressure at the connector”;
 input SpecificEnthalpy hAB “Specific enthalpy of incoming fluid”;
 output SpecificEnthalpy hBA “Specific enthalpy of outgoing fluid”;
end FluidPortB;

7

Stream variables – The final idea

• Stream variables: specific properties transported by the flow variable
via purely convective transport

• The stream variable describe the property of outgoing fluid,
irrespective of the actual direction of the flow (i.e. assuming m_flow < 0)

• Same role as the output variables in the previous designs
• No connection equations are generated

• Values of stream variables for incoming flow obtained via operators:
• inStream(v): value of v assuming entering flow (m_flow > 0)

irrespective of actual flow direction
• Same role as input variables in the previous designs
• actualStream(v): actual value of v inside the component close to the

interface, depending on flow directions

connector FluidPort “Generic fluid port”
 flow MassFlowRate m_flow “Flow into connector”;
 AbsolutePressure p “Thermodynamic pressure at the connector”;
 stream SpecificEnthalpy h_outgoing “Specific enthalpy of outgoing fluid”;
end FluidPort;

actualStream(port.h_outflow) = if port.m_flow > 0
 then inStream(port.h_outflow)
 else port.h_outflow;

8

Definition of inStream()

• Assume N fluid connectors mj.c are connected together
• Assume only inside connections for simplicity

(for the general case: see Modelica Specification)
• For each port, inStream(mj.c.h_outflow) is the mixing

quantity at the connection point assuming entering flow
• instream(mj.c.h_outflow) is different at each port j

• Declarative definition:

inStream(mi.c.h_outflow) = h_mix_ini;

0 = sum(mj.c.m_flow for j in 1:N);
0 = sum(mj.c.m_flow*
 (if mj.c.m_flow > 0 or j==i then h_mix_ini else mj.c.h_outflow
 for j in 1:N);

9

Definition of inStream() - cont'd

• Solution (might need regularization in 0/0 cases):

• Note: does not become singular when mi.c.m_flow = 0
• Note: terms corresponding to ports with m_flow.min = 0

(flow never goes out of port) can be removed a priori

inStream(mi.c.h_outflow) :=
 (sum(max(-mj.c.m_flow,0)*mj.c.h_outflow for j in cat(1,1:i-1, i+1:N))/
 (sum(max(-mj.c.m_flow,0) for j in cat(1,1:i-1, i+1:N));

10

Suggested implementation

• The basic one-to-one case corresponds to the ThermoPower design
• In simpler cases 0/0 indeterminacy can be removed symbolically
• When N>2 and all flows go towards zero, regularization introduced

to avoid 0/0
• Setting attribute min = 0 to the flow variable simplifies the computation

when flow reversal support is not required

N = 1 (unconnected port)
inStream(m1.c.h_outflow) = m1.c.h_outflow;

N = 2 (one-to-one connection):
inStream(m1.c.h_outflow) = m2.c.h_outflow;
inStream(m2.c.h_outflow) = m1.c.h_outflow;

All other cases:
if mj.c.m_flow.min >= 0 for all j = 1:N with j <> i then
 inStream(mi.c.h_outflow) = mi.c.h_outflow;
else
 si = sum(max(-mj.c.m_flow,0) for j in cat(1,1:i-1, i+1:N);
inStream(mi.c.h_outflow) =
 sum(positiveMax(-mj.c.m_flow,si)*mj.c.h_outflow)/
 sum(positiveMax(-mj.c.m_flow,si))
 for j in 1:N and i <> j and mj.c.m_flow.min < 0

11

Representative models

model CV “Control volume with mass and energy storage”
 FluidPort pa, pb;
 ...
equation
 dM_dP*der(p) + dM_dh*der(h) = pa.m_flow + pb.m_flow;
 dE_dP*der(p) + dE_dh*der(h) = pa.m_flow*actualStream(pa.h_outflow)+
 pb.m_flow*actualStream(pb.h_outflow);
 pa.p = p;
 pb.p = p;
 pa.h_outflow = h;
 pb.h_outflow = h;
end CV;

model FM
 FluidPort pa, pb;
 ...
equation
 pa.m_flow = f(pa.p - pb.p, rho);
 rho = f_r(pa.p, pb.p, ha, hb, dp_small);
 ha = inStream(pa.h_outflow);
 hb = inStream(pb.h_outflow);
 pa.m_flow + pb.m_flow = 0;
 pb.h_outflow = inStream(pa.h_outflow);
 pa.h_outflow = inStream(pb.h_outflow);
end FM;

12

Physical meaning of FluidPorts

• FluidPorts corresponds to an infinitesimally short pipe protruding from the
component

• Allows hierarchical and device-oriented modelling without ambiguities
• Beyond mandatory CV-FM-CV structure
• CV-CV connections are allowed

– same pressure (index reduction)
– different enthalpy/temperature (infinitesimal pipe in-between)

• CV with two FMs connected to same port
– additional algebraic equations created to

describe flow pattern like this
– desired semantics might be different

• Solution in Modelica.Fluid + Dymola
– vector of ports
– the GUI automatically connects to first free element and increases nPorts

parameter Integer nPorts=0 "Number of ports"
 annotation(Evaluate=true, Dialog(__Dymola_connectorSizing=true);

VesselFluidPorts_b ports[nPorts](redeclare each package Medium = Medium)
 "Fluid inlets and outlets";

13

The System Object

All models require an outer system model (like the MultiBody World)
containing system defaults (can be overridden locally)

14

Mathematical structure of typical cases

• dynCV-dynFM-dynCV
– no problems at initialization if initial states fixed

– wave dynamics, might trigger fast and persistent oscillations

• dynCV-FM-dynCV
– no problems at initialization if initial states fixed

• FM-FM
– nonlinear algebraic equations, possible problems at initialization

• CV-CV
– index reduction (same pressure)

– possibly nonlinear algebraic equations as a result

• Three-way connections
– nonlinear algebraic equations (enthalpy changes @ flow reversal)

– can be removed by setting min attribute on connector flow variables
(allowFlowReversal parameter w/ global default)

15

Components with replaceable Media

• Generic components: defined for a class of medium models, specified by
interface (add Modelica code)

• Need to redeclare medium on all elements of a circuit (can be done
through GUI)

• Components with default concrete medium:

• Medium is used to define type of connector variables
→ automatic check of inconsistencies.

• Automatic medium propagation requires type inference (Modelica 4?)

 replaceable package Medium =
 Modelica.Media.Interfaces.PartialMedium "Medium in the component";

 replaceable package Medium =
 Modelica.Media.Interfaces.PartialTwoPhaseMedium
 "Medium in the component";

Modelica.Fluid.Valves.ValveIncompressible valveIncompressible(
 redeclare package Medium = Modelica.Media.Water.StandardWater);

 replaceable package Medium = Modelica.Media.Water.StandardWater
 constrainedby Modelica.Media.Interfaces.PartialMedium
 "Medium in the component";

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15

