
Accessing external media data bases:Accessing external media data bases:
The ExternalMedia LibraryThe ExternalMedia Library

Francesco CasellaFrancesco Casella

Dipartimento di Elettronica e InformazioneDipartimento di Elettronica e Informazione
Politecnico di MilanoPolitecnico di Milano

2

The ExternalMedia Library

• The library comprises
– A Modelica package
– A C-code interface layer

(Modelica external functions are only defined for C and Fortan)
– A C++ engine, communicating with the external code

• End-user features:
– 100% Compatible with Modelica.Media
– Allows to re-use code that cannot be written in Modelica

because it must also be used in other contexts
– Easy access to thousands of fluids through, e.g., NIST's RefProp library

• Developer features
– Complete Modelica framework

(just add a modifier with the name of your external solver)
– 95% complete C++ framework, to add a new external solver:

• Add code to the SolverMap C++ class
• Develop a child of the BaseSolver C++ class, reimplementing the

setState_XX functions
• Default external solver already implemented: FluidProp from TUDelft

(COM-based, optionally include the full RefProp database from NIST)

3

The ExternalMedia library – Basic principles

• The Modelica model calls the medium's setState_XX() function

• The medium package setState_XX() functions call the exernal functions
of the C layer, passing the input data and some string medium identifiers

• Based on the strings, the interface layer dispatches the request to the
right solver (multiple solvers can be used simultaneously)

• A cache record is allocated on a (large enough) circular buffer, containing
all the medium properties

• The cache record is filled in with all (or part of) the medium properties

• The setState_XX() function returns a ThermodynamicState function with
p, T, h, d, and an integer uniqueID

• When any medium property function is called
(e.g. Medium.density(state)), the uniqueID is used to retrieve the results
from the cache

• It is possible not to compute all values at once, managing later
computations in the C++ solver class

• BaseProperties models set one uniqueID at initialization and always use
that (no need of a circular buffer)

4

FluidProp

• Software for the computation of thermophysical properties of fluids
• COM interface to Ms Excel, Visual Basic, Visual C++, Maple,

Matlab/Simulink & other programs supporting COM
• Beta version for Linux available
• Developed at TU Delft
• Available free of charge from http://fluidprop.tudelft.nl/

(100€ donation suggested if used for serious purposes)
• Databases

– GasMIx: ideal gas mixtures
– IF97: water/steam model
– StanMix: describes fluid mixtures with cubic EoS
– TPSI: accurate models of selected fluids
– RefProp: interface to the RefProp NIST database of organic fluids and

refrigerants (requires separate license)
• At the moment, only pure fluids or predefined mixtures (no composition

vector required) are accessible via the ExternalMedia interface
• Documentation available in the .hlp file (see installation directory)

5

ExternalMedia medium models via FluidProp

• Install FluidProp
• Copy

– ExternalMedia.dll to C:\Windows\system32 (WinXP),
or to any directory defined in the system PATH variable (Win7)

– ExternalMedia.lib to Dymola\bin\lib
– externalmedialib.h to Dymola\Source

• Load ExternalMedia library
• Extend ExternalMedia.Media.ExternalTwoPhaseMedium

– set library name to FluidProp.IF97 (or .StanMix, .TPSI, .RefProp)
– set substance names array with the FluidProp name of the medium
– the medium name is only used for documentation purposes (has no effect)

package WaterTPSI
 extends ExternalMedia.Media.ExternalTwoPhaseMedium(
 mediumName = "Water",
 libraryName = "FluidProp.TPSI",
 substanceNames = {"H2O"});
end WaterTPSI;
package CarbonDioxide
 extends ExternalMedia.Media.ExternalTwoPhaseMedium(
 mediumName = "Carbon Dioxide",
 libraryName = "FluidProp.RefProp",
 substanceNames = {"CO2"});
end CarbonDioxide;

6

Interfacing your own external solver

• Download Visual Studio projects and source code from SVN repo:
https://svn.modelica.org/projects/ExternalMediaLibrary/trunk

• Develop a child of the BaseSolver class, reimplementing the
setState_XX() functions so that they call your external solver
appropriately

• The existing TestMedium and FluidProp solvers can be used as a
template

• Modify the SolverMap::addSolver() function so that it recognizes the tag
of your solver (passed as libraryName from the Modelica package) and
instantiates it appropriately

• Set appropriate flags within include.h
• Recompile to static library or dll using MS Visual Studio 2005/2008

If you want to help extending ExternalMedia to fluid mixtures and/or porting it
to other environments (e.g. OpenModelica) and/or OS (Linux), contact
francesco.casella@polimi.it!

7

References

• Francesco Casella and Christoph C. Richter, “ExternalMedia: a Library
for Easy Re-Use of External Fluid Property Code in Modelica”. In
Proceedings 6th International Modelica Conference, Bielefeld, Germany,
Mar. 3-4, 2008, pp. 157-161.

• User manual and code documentation (contained in the package)

	Title page
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7

