Initialization of Thermofluid models

I

Francesco Casella
(francesco.casella@polimi.it)

Dipartimento di Elettronica e Informazione
Politecnico di Milano

T
OpenOfficeorg



Introduction

|

Initialization is critical for models with dynamics

solution of ODE/DAE depends on initial conditions
if consistent initial conditions cannot be found, the model is useless

Thermofluid models often strongly nonlinear

Steady-state initialization involves solving large, strongly nonlinear
systems of equations

sensitivity to initial guess values
sensitivity to selection of iteration variables
tracing root of problem difficult

» guess values?
 errors in the model (e.g. wrong parameters)?

Troubleshooting is not user friendly

understanding of the symbolic/numeric methods

understanding the equations of the original model (not encrypted!)
equations are rearranged / symbolically solved

no avaliable Modelica tool currently gives user friendly GUI support
unpredictable time-to-go



Specifying initial conditions - defaults

s

« Each variable in Modelica has a start attribute

model SimpleSystem
parameter Time tau;

parameter Real x start = 2;
Real x(start = x start);
Real u;

equation
u = 1f time < 1 then 1 else 2;
tau * der(x) = - x"2 + u;

end SimpleSystem

« By default, Modelica tools use start values to assign initial values to state
variables

« ltis possible to log these additional initial equations
(Simulation | Setup | Translation | Log selected default initial conditions)



Specifying initial conditions — fixed attribute

I

« Setting the fixed attribute to true one indicates explicitly that the initial
value of the variable is the initial value

model SimpleSystem?2
parameter Time tau;

parameter Real x start = 2;
Real x(start = x start, fixed = true);
Real vy;
Real u;
equation
u = 1f time < 1 then 1 else 2;
tau * der(x) = - x"2 + u;
y = 3*x"2;

end SimpleSystem?2



Specifying initial conditions — initial equations

I

* In Modelica 1.x, initialiation was mainly thought as a tool issue

« Dymola had a run-time interface to specify initial conditions a define free

and fixed variables (using data from fixed and start attributes)

« Since Modelica 2.0 (2002): explict initial equations with arbitrary structure

(the old fixed = true mechanism is still available)

model SimpleSystem model SimpleSystem
parameter Time tau; parameter Time tau;
parameter Real x start = 2; parameter Real x start = 2;
Real x(start = x start); Real x(start = x start);
Real vy; B Real vy;
Real u; Real u;

equation equation
u = 1if time < 1 then 1 else 2; u = if time < 1 then 1 else
tau * der(x) = - x"2 + u; tau * der(x) = - x"2 + u;
y = 3*x"2; y = 3*x"2;

initial equation initial equation
X = X start; der (x) = 0;

end SimpleSystem end SimpleSystem

« Initial equations are combined with dynamic equations
* Nonlinear solvers use start attribute for guess values



Specifying initial conditions — Unknown parameters

s

« Parameters can be freed and determined by further initial equations
(beware of initial equation count...)

model SimpleSystem
parameter Time tau;
parameter Real x start = 2;
parameter Real y start = 10;
parameter Real u start(fixed = false, start = 2);
Real x(start = x start);
Real vy;
Real u;
equation
u = 1f time < 1 then u start else u start + 1;
tau * der(x) = - x*2 + u;
y = 3*x"2;
initial equation
der (x) = 0;
y = y start;
end SimpleSystem

« Fixed attributes can be changed at instantiation
(Show Component feature in the Dymola GUI)

System S (u start(start = 2, fixed = false),

y(start = 3, fixed = true));



Meaningful initial conditions for thermofluid systems

S

* In some cases, the initial state of a thermofluid system
conveniently expressed by giving the values of initial states

« Example: direct steam generation solar plant just before dawn
— temperature distribution in the collector pipes = ambient temperature

— given temperatures in the storage volumes,
depending on length of shutdown period
— zero (or negligible) flows (beware of singular conditions)

« In other contexts, starting from an “off-state” is problematic/not required

« Example: power plant model for load change or primary frequency
studies
— range of validity 30-100%
— piping and instrumentation for startup not included in the model
(turbine bypass systems, steam vents, etc.)
* In these cases, the typical transient is the response to a disturbance
starting from an equilibrium state (steady-state)

« Fixing approximated initial states can lead to unphysical transients
— out-of-range mass & heat flow values
— flow reversal
— trip conditions



Quick review of Modelica model transformations

A

« Steps of model transformation

flattening

index reduction

elimination of trivial equations / alias variables
BLT transformation

» dynamic problem equations (initial values and parameters)
+ initialization problem (derivatives, algebraic variables)

Tearing applied to implicit systems of equations to reduce the number
of iteration variables

Equations solved as explicit assignments — no problem
Implicit linear equations — solved without problem if non-singular
Implicit nonlinear equations — iterative methods — reasonable guesses

required for the iteration variables

Guess values provided in Modelica by start attributes

defined by types
defined by modifiers in library models, possibly through parameters
defined by direct modifiers on the simulation model



Quick review of Modelica model transformations (cont'd)

s

» (Guess values provided in Modelica by start attributes
» Defined by types

type Temperature = Real (unit = 'K', start = 300);
« Defined by modifiers in library models, possibly through parameters

SI.Pressure p start;
SI.Pressure p(start = p start);

« Defined by direct modifiers on the simulation model

model PlantWithStartAttributes
extends Plant (
turbine (p in(start = 1.27e8)),
drumHP (p (start = 1.32e8)));
end PlantWithStartAttributes;



Tearing / Alias variables

I

» A small fraction of model variables require a guess value to ensure solver
convergence

« ~60% alias variables (x =t vy)
« ~30% assigned in assignment section of torn systems

« Selection of alias and iteration variables in torn systems not unique!

» Alias variable selection in Dymola:
— highest priority to direct modifiers,
— intermediate priority to modifiers in libraries
— lowest priority to type-defined start values
« Tearing variable selection
— optimal selection: NP-complete problem
— proprietary heuristics
— changes w/ small modifications of model
— changes w/ tool version

j> Not really object oriented!

10



Understanding initialization failures in Dymola

|

 |nteractive demo

* dsmodel.mof: how to generate, how to read
e dslog.txt: how to generate, how to read

11



Strategies for steady-state initialization

I

« Divide and conquer
— break plant in smaller modules
— initialize each model w/ suitable boundaries

— make sure each model is correctly parameterized
» Check dsmodel.mof/dslog.txt and improve start values

« Fix initial states, run transient until equilibrium

— requires asymptotically stable equilibrium
(if not, use simple feedback controllers to stabilize)

— transient might go wrong because of abnormal mass and energy
flows due to unphisical values of initial states

— example: evaporator with high heat transfer coefficient

» small error in delta-T fluid-wall — large error in heat flow —
condensation/evaporation — bad flow rates (possibly flow reversal)

« Important remark: if the parametrization of the model is incorrect,
a steady-state solution might not exist!

12



An example of model without steady-state solution

» Natural circulation steam generator —>—|_:-
« Nominal operating data:

« Steam flow rate roughly proportional to
steam valve Cv and drum pressure

« Assume now Cv is just 10% smaller than

I

drum pressure 127 bar

feedwater pressure 137 bar

steam valve outlet pressure 50 bar
power from flue gas: 100 MW
steam flow: 80 kg/s

the correct value

in order to evacuate 80 kg/s
drum pressure should be 140 bar

feedwater cannot flow from source at lower pressure!

j> Solution does not exist!

13



Troubleshooting

|

Set initial values of pressures and

enthalpies close enough to nominal el |

operating point

The system has an asymptotically stable
equilibrium thanks to level controller

Start the simulation

Drum pressure increases steadily
Steam flow << feedwater flow
Too small steam valve

Increase steam valve Cv

To find the correct Cv:
— set Cv(fixed = false)
— set steam_flow(start = 80, fixed = true)

14



Homotopy-based initialization: Motivations

|

» Setting start values

tedious

selection of iteration variables can change
how to determine good enough values?

not object oriented

not robust

requires high-end skills to troubleshoot models

* A more robust method required

guarantee convergence

use only well-known design data
reasonable defaults for iteration variables
no need of directly setting start values
object-oriented

j> Homotopy-based initialization

15



Homotopy-based initialization: basic ideas

|

« Simplified problem solved first

same variables, slightly modified equations

close enough to the actual one

steady-state (otherwise structure can change too much!)

simpler to solve (“less nonlinar’ — less sensistive to guess values)
guess values possibly provided by default

« Solve convex combination of simplified and actual problem

« Caveat: the problem changes continuously, the solution might not

« Specification in Modelica 3.2:
homotopy operator

turning points (can be handled by Solution of
specialized solvers) unknown x

asymptotes (failure)

bifurcations (requires interaction
with expert user)

Track divergesto § 1

Bifurcation

Regular path with turning points

d
homotopy (actual, simplified)

during solution of initialization returns
A*actual + (1 — A) *simplified

Horﬁotopy parameter | 1

16



Simplified models for thermofluid systems

i

« Linear momentum balance equations with constant coefficients based on
nominal operating point
— pressure loss components W = Wiominar/ AProminat - AP
— static head term  Apssaric = Promina -SH
— steam turbine W = Wiominai /| Prominal - Dinier
— pump: linearized characteristic around nominal operating point

// Pressure loss component
pin - pout = homotopy (smooth (1, Kf*squareReg (w,wnom*wnf))/rho,
dpnom/wnom*w) "Flow characteristics";

// Valve for incompressible fluid
w = homotopy (FlowChar (theta) *Av*sqgrt (rho) *sgrtR (dp) ,
theta/thetanom*wnom/dpnom*dp) ;

// Pump
function df dg = der (flowCharacteristic, g flow);

head = homotopy (
(n/n0) ~2*flowChar (g*n0/ (n+n_eps)),
df dg(g0) * (gq-g0) + (2/n0*flowChar(q0) - g0/n0*df dg(g0))* (n-n0) + headO);

// Turbine
w = homotopy (Kt*partialArc*sqgrt(p in*rho in)) *sqgrtReg(1l-(1/PR)"2),
wnom/pnom*p in) ;

17



Simplified models for thermofluid systems (cont'd)

I

« Energy balance equation: nonlinear wh terms

— use nominal flow rate for energy balance in 1D models for heat
exchangers

— gets rid of most wh terms in a typical model

« Upstream specific enthalpy depending on flow direction
— assume design direction of flow

hi = homotopy (if not allowFlowReversal then inStream(inlet.h outflow)
else actualStream(inlet.h outflow),
inStream(inlet.h outflow));

* Flow-dependent heat transfer coefficients
— assume nominal h.t.c. value

wall.gamma[]j] = homotopy(gamma nom*noEvent (abs (infl.m flow/wnom) “kw),
gamma nom) ;

« Temperature-specific enthalpy relationship
— Not too nonlinear in most cases (save phase changes)
— Do not change (difficult to make it consistent across models)

— Set rough start values

 liquid / two-phase / vapour for water
« within 100-200 K for ideal gases

18



Simplified models for thermofluid systems (cont'd)

A

« Controllers acting on flows and controlling energy-related quantities

— may introduce strong nonlinear coupling between hydraulic and
thermal equations

— simplified model: keep control variable fixed at nominal value
(opened feedback loop)

« Controllers with saturations and anti-windup
— Saturations are strong nonlinearities

— If known to be in linear regime: remove saturations
— Else: fix at 0% or 100%

« Control valves

— Assume flow is nominal flow * opening
(regardless of density and pressure drop)

» Initialization not at nominal operating point
— Simplified model has all setpoints at nominal values
— Homotopy brings the setpoints to the desired value

— Different from relaxation transient: quasi-static transformation
(less problems if initial guess not accurate — no weird transients)

19



Performing the homotopy transformation

i

« Suitable continuation solvers can be used

* Ideally

can track turning points

efficient interpolation-extrapolation

no turning points

no other singularities

« Singularities might arise if wrong parametrization

— split system into subsystems

— divide and conquer

20



Homotopy-based initialization: tool support

|

« Successful experiments at Politecnico and EDF

— experimental solver linked to Dymola
— by M.Sielemann, based on NOX/LOCA solver

— definitely not user-friendly

« Small-size use cases
— multibody systems with multiple steady-state configurations
— analog electronic circuits
— hydrauliccircuits
— air conditioning systems
« Large-sized use cases
— complete combined-cycle power plant models
— up to 670 iteration variables (!)
— no need of manual setting of start values

« Preliminary implementation in Dymola 7.5 (not good enough yet)

» Hopefully available soon as standard feature in all Modelica tools



I

DISCUSSION



References

I

M. Sielemann, F. Casella, M. Otter, C. Clauss, J. Eborn, S.E. Mattsson,
H. Olsson: Robust Initialization of Differential-Algebraic Equations Using

Homotopy. Proceedings of 8" International Modelica Conference,
Dresden, Germany, 20-22 March 2011.

F. Casella, M. Sielemann, L. Savoldelli: Steady-state Initialization of
Object-Oriented Thermo-Fluid Models by Homotopy Methods,
Proceedings of 8" International Modelica Conference, Dresden,
Germany, 20-22 March 2011.

23



	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23

