
1

Symbolic Manipulation for the Simulation of
Object-Oriented Models

Francesco Casella (francesco.casella@polimi.it)

2

From the Model to the Simulator

• Parsing of the code

• Type check.

• Class expansion (inheritance)

• Generation of the connection
equations (connect).

“Flattened” system of:

 Equations.

 Constants.

 Variables.

 Functions.

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator
(Object-Oriented structure ⇒ Dot Notation)

3

From the Model to the Simulator

• Equation ordering and structural
analysis.

• BLT (Block Lower Triangular)
transformation

Set of ordered equations

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator

4

From the Model to the Simulator

• Elimination of trivial equations.

• Common subexpression
elimination

• Index reduction.

• Analytical solution of simple
equations

Minimal set of equations in
efficient state-space form.

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator

5

From the Model to the Simulator

• C code generation.

• Linking with a numerical solver
code.

C code.

Often the result is more efficient
than “hand-written” code, thanks
to the symbolic optimization
phase.

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator

6

Flattening: a Representative Example

Translation rules

• For each instantiated class the
translator adds a copy of the class
equations to the system DAE.

• For each connection between
instances, the translator adds the
connection equations to the
system DAE.

N1

N2

N3N4

14

5

6

2

37

L C

R2 R1

AC

G

Modelica Code

Translator

7

Flattening: Set of Flattened Equations

0 = AC.p.i+R1.p.i+R2.p.i // N1
0 = C.n.i+G.p.i+AC.n.i+L.n.i // N2
0 = R1.n.i+C.p.i // N3
0 = R2.n.i+L.p.i // N4

connect
ions
(flow)

0 = C.p.i+C.n.i
C.v = C.p.v-C.n.v
C.i = C.p.i
C.i = C.C*der(C.v)

C

R1.p.v. = AC.p.v // 1
C.p.v = R1.v.v // 2
AC.n.v = C.n.v // 3
R2.p.v = R1.p.v // 4
L.p.v = R2.n.v // 5
L.n.v = C.n.v // 6
G.p.v = AC.n.v // 7

connect
ions
(effort)

0 = R2.p.i+R2.n.i
R2.v = R2.p.v-R2.n.v
R2.i = R2.p.i
R2.v = R2.R*R2.i

R2

G.p.v = 0G0 = R1.p.i+R1.n.i
R1.v = R1.p.v-R1.n.v
R1.i = R1.p.i
R1.v = R1.R*R1.i

R1

0 = L.p.i+L.n.i
L.v = L.p.v-L.n.v
L.i = L.p.i
L.v = L.L*der(L.i)

L0 = AC.p.i+AC.n.i
AC.v = AC.p.v-AC.n.v
AC.i = AC.p.i
AC.v = AC.VA*
 sin(2*AC.PI*
 AC.f*time)

AC

32 equations

8

Flattening: Set of Variables

32 variables → 30 algebraic + 2 dynamic (state*)

G

AC

L

C

R2

R1

G.p.vG.p.i
AC.iAC.vAC.n.vAC.p.vAC.n.iAC.p.i
L.iL.vL.n.vL.p.vL.n.iL.p.i
C.iC.vC.n.vC.p.vC.n.iC.p.i
R2.iR2.vR2.n.vR2.p.vR2.n.iR2.p.i
R1.iR1.vR1.n.vR1.p.vR1.n.iR1.p.i

* Dynamic variables become state variables, except in the
case of higher-index DAE

9

Flattening: Set of Parameters, Inputs, Variables

• Parameters → parameter
 p = {R1.R, R2.R, C.C, L.L, AC.VA, AC.f}

• Inputs → input
this system is autonomous; we could substitute the sinusoidal
voltage source with a signal-controlled source, whose voltage
would then be determined by the input signal

• Dynamic variables → der()
 x = {C.v, L.i}

• Algebraic Variables
 y = {R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.v, R1.i,

R2.p.i, R2.n.i, R2.p.v, R2.n.v, R2.v, R2.i,
C.p.i, C.n.i, C.p.v, C.n.v, C.i, L.p.i,
L.n.i, L.p.v, L.n.v, L.v, AC.p.i, AC.n.i,
AC.p.v, AC.n.v, AC.v, AC.i, G.p.i, G.p.v}

10

Structural Analysis

• A structural representation of the system is built, indicating which
variables show up in which equations
 x(t): dynamic variables
 y(t): algebraic variables
 u(t): exogenous inputs
 p : parameters (remain fixed during the simulation)
 z(t): unknowns of the DAE problem (to be computed as a

function of the states x, the inputs u and the parameters p)
• The minimum requirement is to have the same dimension for

f and z (equal number of equations and variables)

F t , x ' t , x t , y t , u t , p=0

f t , z t , x t ,u t , p=0 z t =[x ' t
y t]

11

Alias Variables Elimination

• If the DAE system was obtained by aggregation of object-oriented
models, a high percentage of its equations (usually more than
50%) are trivial equations involving algebraic variables, such as:

• The first simplification of the DAE system is obtained by eliminating
those equations, and symbolically substituting the alias variables in
the remaining equations

y j=± yk

y j± yk

12

Incidence Matrix / E-V Graph

• The structural information is represented by an incidence matrix,
equivalent to a bipartite Equations – Variables graph

13

Matching Problem

• The matching algorithm is executed: a
graph transversal is sought, i.e. a set of
arcs which makes up a bipartite graph.
This graph represents the equations-
variables matching

• This is equivalent to finding a
permutations of rows and columns of the
incidence matrix, in order to get all ones
on the main diagonal

• If the algorithm terminates successfully,
the system has structural index 1.
Otherwise there are two alternatives:
 structurally inconsistent problem
 higher-index problem (constraints

between dynamic variables)

14

Matching Problem: Examples of Failure

• Example 1:

• Example 2:

y1 y2 y3=0
y1=u1

p1 y1=u2

Nobody assigns the variable y
2
!

(Structurally inconsistent problem)

x1 '=x2 y1

x2 '=x1 y1

x1 x2=0
Nobody assigns the variable y

1
!

(Index-2 problem)

15

Index Reduction

• If the matching algorithm fails, Pantelides' algorithm is run – this
creates new E-nodes and new arcs by suitably deriving some of the
system equations

• If the problem is not structurally singular, Pantelides' algorithm
terminates returning a redundant system of index-1 DAE's. The
Dummy Derivative algorithm is then run to eliminate the redundant
state variables in order to get a balanced system of equations

• When the DD algorithm terminates, the survived dynamic variables
are the true state variables of the system, whose initial values can
be assigned arbitrarily

• Otherwise, the problem is structurally singular (ill-posed). The
structure of the graph can be used to derive diagnostic information
in order to facilitate the model troubleshooting

16

Parameter-Dependent Variables

• By adding to the E-V graph the nodes and arcs corresponding to
the parameters (and to their occurrences in the equations), it is
possible to determine which variables are structurally dependent on
parameters only, and thus become parameters themselves

• The corresponding equations can be solved once and for all during
the initialization phase, and eliminated (together with the
corresponding variables) from the subsequent analysis, which will
only involve time-varying variables.

17

BLT Transformation (1/2)

• The order of the equation in the function f(t, z, y, u, p) is completely
arbitrary, as it depends on the order of the equations in the
Modelica code

• The equations must be re-arranged in order to make their solution
as simple as possible. This means re-ordering them so that the
incidence matrix becomes Block-Lower-Triangular

18

BLT Transformation (2/2)

• The solution of the complete system is then reduced to the
sequenced solution of many smaller systems, whose dimension
corresponds to that of the blocks on the main diagonal

• In this example, instead of solving a system of 5 equation at once,
it is possible to sequentially solve 4 systems of 1, 1, 2, 1 equations.

• The BLT transformation problem is solved by a famous graph-
theoretical algorithm, known as Tarjan's algorithm (1972). Note
that the algorithm complexity is only O(N)

19

Tarjan's Algorithm

• Starting from the previously found graph transversal, the algorithm
searches for the strongly connected components of the graph, that
correspond to the blocks on the main diagonal of the BLT matrix

20

• In the most favourable cases, the BLT matrix can be strictly lower
triangular; if the variables on the main diagonal appear explicitly (i.e.
at most, multiplied by a coefficient) in the corresponding equations,
its possible to solve the system by a sequence of assignments.

• Example: RLC circuit equations

1) C.i = R1.v/R1.R // f(R1.v)
2) R1.v = R1.p.v – C.v // f(R1.v,R1.p.v)-C.v
3) der(L.i) = L.v/L.L // f(L.v,der(L.i))
4) R1.p.v = AC.VA*sin(2*AC.f*AC.PI*time) // f(R1.p.v)
5) L.v = R1.p.v – R2.v // f(L.v,R1.p.v,R2.v)
6) der(C.v) = C.i/C.C // f(der(C.v),C.i)
7) R2.v = R2.R*L.i // f(R2.v) - L.i

00000017)
10100006)
00001115)
00000104)
01001003)
00010102)
00110001)

der(C.v)der(L.i)C.iR1.vL.vR1.p.vR2.v

Remarks on the BLT Transformation (1/2)

21

Remarks on the BLT Transformation (2/2)

• After the BLT Transformation

• The process which is usually carried out manually when building
dynamic simulators with block-diagram languages (such as
Simulink) is carried out automatically in this context

7) R2.v := R2.R*L.i
4) R1.p.v := AC.VA*sin(2*AC.f*AC.PI*time)
5) L.v := R1.p.v – R2.v
2) R1.v := R1.p.v – C.v
1) C.i := R1.v/R1.R
3) der(L.i) := L.v/L.L
6) der(C.v) := C.i/C.C

10100006)
01001003)
00110001)
00010102)
00001115)
00000104)
00000017)

der(C.v)der(L.i)C.iR1.vL.vR1.p.vR2.v

22

Structurally Regular but Locally Singular Problems

• The successfu termination of the transversal, Pantelides', Dummy
Derivatives and BLT algorithm guarantee that the DAE system is
structurally regular, i.e. generally solvable given the initial values of
the state variables.

• It might happen that specific values of the parameters, the state
variables or the inputs make the problem singular (or higher-index).
This situation is not dealt with by the simbolic manipulation
algorithm (except the state variable pivoting of the DD algorithm),
and leads to numerical run-time errors.

23

Optimization of the BLT blocks

• After the BLT transformation, the solution of the DAE system is
decomposed into a sequenc of smaller problems, corresponding to
the main diagonal blocks

• Further symbolic manipulation can be applied to these blocks, to
make the solution faster and more numerically robust:

 Linear equations: for specific structures of the equations (0/1
coefficients) it is possible to solve the equation efficiently
through symbolic manipulation

 Non-linear equations: the solution of the systems can be made
easier by the tearing method

24

Tearing

• The variables that can be solved explicitly in each nonlinear
equation are marked as coloured elements in the incidence matrix.

• A row and column permutation is sought, such that the incidence
matrix is bordered-lower-triangular, with coloured elements on the
main diagonal, and such that the border width is minimized.:

x
t

x
a

m

p

0

• A guess value is first assigned to xt : this
allows to compute xa by simple assignments
(the numerical results are a function of xt).
The last equations thus form a system of
only p variables in the unknowns xt

• This smaller system can be solved by a
Newton-Raphson type an iterative method;
finally, the xa are computed by substitution.

25

Example

• Let's assume that the equations have been rearranged in this
bordered-lower-triangular form:

• z
3
 is the tearing variable. Given an initial guess value, it is possible

to go through the assignments:

• The solution of the system has been reduced to the solution of
 f(z

3
) = 0, for which we have an algorithm to compute the residual.

The Jacobian df(z
3
)/dz

3
 can be computed numerically, or possibly by

symbolically differentiating the assignments.

• Once z
3
has been found, the first two assignments return z

1
, z

2

z1log z3=0
z1

2−5z2
3=0

z1
2z2

2−z3
2=0

z1 z2 z3
f1 1 0 1
f2 1 1 0
f3 1 1 1

z1 := -log(z3)
z2 := (z1^2 / 5)^1/3
fz3 := z1^2 + z2^2 +z3^2

26

Remarks

• Contrary to the previous algorithm (whose complexity is polynomial
or even linear in the number of equations), the search of the
optimal tearing (minimizing p) is an NP-complete problem.

• Since an exhaustive search would take too much time, even for
small systems, it is necessary to formulate good heuristic
algorithms for structures deriving from typical physical problems.

• The result is a very efficient way of solving large non-linear systems
of equations, since the non-linear equation to be solved iteratively
has a reduced dimension:

 easier convergence

 Jacobian computation and inversion is less expensive

• The initialization of the iterative algorithm is simpler as well, since
initial guesses are needed for the tearing variables only. However,
note that the set of tearing variables can easily change when the
structure of the model is modified (e.g. by connecting a new
component to an existing object-oriented model).

27

Common Subexpression Elimination

• During the symbolic manipulation, the same expression may appear
in different places
 example: connection of two thermo-hydraulic components, computing

the outlet and the inlet temperature: both are a function of the same
pressure and enthalpy

• The symbolic manipulation can apply CSE (Common Subexpression
Elimination) algorithms, defining temporary variables where the
result of the expression is stored, and then use them wherever
necessary

• This is extremely useful in the symbolic computation of derivatives,
where parts of expressions appear multiple times

z := f(g(t))*h(t);
zd := fd(g(t))*gd(t)*h(t)+f(g(t))*hd(t);
t1 := g(t);
t2 := f(t1);
t3 := h(t);
z := t2*t3;
zd := fd(t1)*gd(t)*t3 + t2*hd(t);

28

State Selection (1/2)

• In some cases (e.g. thermo-hydraulic models that use fluid
property computation models), it is convenient to use state
variables that are not differentiated in the original model

• In the following model, the first equation is explicit only if p,h are
state variables; otherwise it has to be solved iteratively, which is
not a good idea, since the computation of rho(p,h) can be very
time-consuming

model ControlVolume
 parameter Volume V;
 Pressure p(
 stateSelect = StateSelect.prefer);
 SpecificEnthalpy h(
 stateSelect = StateSelect.prefer);
 Density d;
 Mass M;
 Energy E;
 FluidPort in, out;

equation
 d = rho(p,h);
 M = V*d;
 E = M*h – p*V;
 der(M) = in.w + out.w;
 der(E) = in.w * in.h +
 out.w * h;
 in.p = p;
 out.p = p;
 out.h = h;
end ControlVolume;

29

State Selection (2/2)

• The index reduction algorithm will try to differentiate the algebraic
equations so that the derivatives of the requested state variables
(p,h) show up, while E', M' will become dummy derivatives

• The functions for the computation of the partial derivatives of
density can be computed symbolically (if possible), or can be
manually specified through annotation(Derivative)

 d = rho(p,h);
 M = V*d;
 E = M*h – p*V;
 der(M) = in.w + out.w;
 der(E) = in.w * in.h + out.w * h;

 d = rho(p,h);
 M = V*d;
 E = M*h – p*V;
 V*(drho_dp(p,h)*der(p)+drho_dh(p,h)*der(h)) = in.w + out.w;
 V*(drho_dp(p,h)*der(p)+drho_dh(p,h)*der(h))*h +
 M * der(h) – V*der(p) = in.w * in.h + out.w * h;

30

Result of the Symbolic Manipulation

• The result of the process described so far is a system of linear and
non-linear equations that represent the original DAE system in ODE
form:
 given the values of the state, the parameters and the time
 by solving the systems obtained from the symbolic manipulation
 the algebraic variables and the derivatives of the state variables

of the system (reduced to index-1 form) are computed
• In fact, this consitutes an efficient procedure to compute the

 f and g functions of the system, reduced to state-space form:

• The first of these two function can be linked with any code for
numerical integration of ODE (or DAE) systems

• If the algorithm is implicit, the Jacobian ∂f / ∂x will be computed as
well, usually by numerical differentiation.

x ' t = f x t , ut , t , p
y t =g x t ,u t , t , p

31

Alternative Strategies

• This strategy is adopted by the tools Dymola and OpenModelica
• Since the final result is in the form of ODE + output equations, the

model of a system which has only a causal interface (inputs and
outputs) can be translated into an S-function, and exported in
block-oriented simulation environments such as Simulink or Scicos,
which will take care of integrating them.

• The corresponding code is very efficient, thanks to all the
previously described optimizations.

• Other simulation environments (e.g. PSEnterprise's gPROMS, which
does not use Modelica) just remove the trivial equations, possibly
apply the BLT, and then make use of specific DAE solvers for highly
sparse problems

• Other Modelica tools (e.g. Equa Simulation's IDA) pre-compile the
single models, which are connected at run-time. Since a global
index reduction phase is missing, it is mandatory to use solvers
which can integrate (at least) index 2 problems.

32

Initialization (1/3)

• In order to completely determine the initial conditions of the index-
1 DAE problem, a number of conditions n is needed, equal to the
number of state variables that survived the index reduction phase.:

A Default initialization: the state variables get their initial value
from their start attribute

B Explicit initialization: n initial equation are adde to the
Modelica model.

• In case A, the initial values x(0), u(0), p, are known, therfore it is
possible to compute consistent values of y(0) by using the result of
the symbolic manipulation of the DAE system;
the value of x(0) is then used for the first call to the ODE
integration routine

33

Initialization (2/3)

• In the case B, an initialization problem, different from the dynamic
problem, is formulated. This problem contains::

 all the equations of the DAE system, reduced to index 1

 all the initial equations

• This problem has the initial values x(0), x'(0), y(0) as unknowns,
and a corresponding number of equations

• To solve trimming problems (= compute the constant value of the
inputs to get certain constant values at the outputs) it is possible to
connect the inputs of the system to constant signal generators,
whose values are parameters with a fixed = false attribute,
and then add further initial equations to specify the desired output
values

• In this case the unknowns of the problems are x(0), x'(0), y(0), p
trim

34

Initialization (3/3)

• All the previously discussed methods (structural analysis, BLT,
tearing) can be applied to this system; however, note that the fact
that the state variables are now unknown makes the incidence
matrix bigger and less sparse, and thus significantly reduces the
advantages obtained by applying such techniques.

• The numerical solution of case B is therefore much harder in
general, at least for strongly non-linear problems. On the other
hand, it is only performed once at the beginning of the simulation.

• To attain convergence, it is very important that all the iteration
(tearing) variables of the initialization problem have a start value
not too far from the sought solution.

• Note that it is not sufficient to set start values for the states,
because some algebraic variables can be tearing variables as well.

35

Modelling vs. Simulation

• These methods allow to decouple two distinct tasks:

• The modeller should care of writing models which are
 Readable (thus self-documenting)
 Re-usable
 Without worring too much about how they will be solved

• The simulation tool takes care of all the issues needed to produce an
efficient simulation code, e.g.:
 Scaling of the variables
 Rearrangement of the equations
 Index reduction
 Tearing and symbolic solution of implicit equations
 Jacobian computations
 Efficient computation of common subexpressions

MODELLING SIMULATION

36

References

Cellier, F.E. and Elmqvist, H.: Automated Formula Manipulation Supports Object Oriented Continuous
System Modelling. IEEE Control System, April 1993, pp. 28-38.

S.E. Mattsson, G. Söderlind (1993), “Index reduction in differential-algebraic equations using dummy
derivatives”, Siam J. Sci. Comput., pp. 213-231.

E. Carpanzano, F. Formenti (1994), “Manipolazione simbolica di sistemi DAE: algoritmi, sviluppo del
software ed applicazioni, Tesi di Laurea, Politecnico di Milano.

Maffezzoni, C., Girelli, R. and Lluka, P.: Generating Efficient Computational Procedures from Declarative
Models. Simulation Practice and Theory 4, 1996, pp. 303-317.

Maffezzoni, C., Girelli, R.: MOSES: modular modelling of physical systems in an object-oriented
database, Mathematical and Computer Modelling of Dynamical Systems, v 4, n 2, June 1998, p 121-47

E. Carpanzano, C. Maffezzoni, “Symbolic manipulation techniques for model simplification in object-
oriented modelling of large scale continuous systems”, Mathematics and Computers in Simulation,
Transactions of IMACS, N° 48,1998, pp. 133-150.

Carpanzano, E. Order Reduction of General Nonlinear DAE Systems by Automatic Tearing.
Mathematical And Computer Modelling of Dynamical Systems, Vol. 6, N° 2, 2000, pp. 145-168.

S.E. Mattson, H. Olsson, H. Elmqvist, “Dynamic Selection of States in Dymola”, Proc. Modelica
Workshop 2000, Lund, Sweden, pp. 61-67. http://www.modelica.org/modelica2000/proceedings.html

Fritzson, P: Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley 2003.

B. Bachmann (2005), Mathematical Aspects of Object-Oriented Modeling and Simulation, Modelica
Conference Tutorial. http://www.modelica.org/events/Conference2005/online_proceedings/Modelica2005-Tutorials.zipB.

Cellier, F.E., Kofman, E: Continuous system simulation. Springer, 2006.

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36

