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From the Model to the Simulator

• Parsing of the code

• Type check.

• Class expansion (inheritance)

• Generation of the connection 
equations (connect).

“Flattened” system of:

 Equations.

 Constants.

 Variables.

 Functions.

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator
(Object-Oriented structure ⇒ Dot Notation)
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From the Model to the Simulator

• Equation ordering and structural 
analysis.

• BLT (Block Lower Triangular) 
transformation

Set of ordered equations

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator
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From the Model to the Simulator

• Elimination of trivial equations.

• Common subexpression 
elimination

• Index reduction.

• Analytical solution of simple 
equations

Minimal set of equations in 
efficient state-space form.

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator
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From the Model to the Simulator

• C code generation.

• Linking with a numerical solver 
code.

C code.

Often the result is more efficient 
than “hand-written” code, thanks 
to the symbolic optimization 
phase.

Modelica Code

Translator

Analyzer

Optimizer

C-code generator

C compiler

Simulator
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Flattening: a Representative Example

Translation rules

• For each instantiated class the 
translator adds a copy of the class 
equations to the system DAE.

• For each connection between 
instances, the translator adds the 
connection equations to the 
system DAE.

N1

N2

N3N4
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5

6

2

37

L C

R2 R1

AC

G

Modelica Code

Translator
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Flattening: Set of Flattened Equations

0 = AC.p.i+R1.p.i+R2.p.i     // N1
0 = C.n.i+G.p.i+AC.n.i+L.n.i // N2
0 = R1.n.i+C.p.i             // N3
0 = R2.n.i+L.p.i             // N4

connect
ions 
(flow)

0 = C.p.i+C.n.i
C.v = C.p.v-C.n.v
C.i = C.p.i
C.i = C.C*der(C.v)

C

R1.p.v. = AC.p.v // 1
C.p.v = R1.v.v   // 2
AC.n.v = C.n.v   // 3
R2.p.v = R1.p.v  // 4
L.p.v = R2.n.v   // 5
L.n.v = C.n.v    // 6
G.p.v = AC.n.v   // 7

connect
ions 
(effort)

0 = R2.p.i+R2.n.i
R2.v = R2.p.v-R2.n.v
R2.i = R2.p.i
R2.v = R2.R*R2.i

R2

G.p.v = 0G0 = R1.p.i+R1.n.i
R1.v = R1.p.v-R1.n.v
R1.i = R1.p.i
R1.v = R1.R*R1.i

R1

0 = L.p.i+L.n.i
L.v = L.p.v-L.n.v
L.i = L.p.i
L.v = L.L*der(L.i)

L0 = AC.p.i+AC.n.i
AC.v = AC.p.v-AC.n.v
AC.i = AC.p.i
AC.v = AC.VA*
       sin(2*AC.PI*
          AC.f*time)

AC

32 equations
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Flattening: Set of Variables

32 variables → 30 algebraic + 2 dynamic (state*) 

G

AC

L

C

R2

R1

G.p.vG.p.i
AC.iAC.vAC.n.vAC.p.vAC.n.iAC.p.i
L.iL.vL.n.vL.p.vL.n.iL.p.i
C.iC.vC.n.vC.p.vC.n.iC.p.i
R2.iR2.vR2.n.vR2.p.vR2.n.iR2.p.i
R1.iR1.vR1.n.vR1.p.vR1.n.iR1.p.i

* Dynamic variables become state variables, except in the 
case of higher-index DAE
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Flattening: Set of Parameters, Inputs, Variables

• Parameters → parameter                                                        
 p = {R1.R, R2.R, C.C, L.L, AC.VA, AC.f}

• Inputs → input                                                                  
this system is autonomous; we could substitute the sinusoidal 
voltage source with a signal-controlled source, whose voltage 
would then be determined by the input signal

• Dynamic variables → der()                             
    x = {C.v, L.i}

• Algebraic Variables                                                                    
  y = {R1.p.i, R1.n.i, R1.p.v, R1.n.v, R1.v, R1.i, 

R2.p.i, R2.n.i, R2.p.v, R2.n.v, R2.v, R2.i, 
C.p.i, C.n.i, C.p.v, C.n.v, C.i, L.p.i, 
L.n.i, L.p.v, L.n.v, L.v, AC.p.i, AC.n.i, 
AC.p.v, AC.n.v, AC.v, AC.i, G.p.i, G.p.v}
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Structural Analysis

• A structural representation of the system is built, indicating which 
variables show up in which equations
 x(t): dynamic variables
 y(t): algebraic variables
 u(t): exogenous inputs
 p    : parameters (remain fixed during the simulation) 
 z(t): unknowns of the DAE problem (to be computed as a 

function of the states x, the inputs u and the parameters p)
• The minimum requirement is to have the same dimension for

f and z (equal number of equations and variables)

F  t , x ' t  , x t  , y t  , u t  , p=0

f t , z t  , x t  ,u t  , p=0 z t =[ x ' t 
y t  ]
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Alias Variables Elimination

• If the DAE system was obtained by aggregation of object-oriented 
models, a high percentage of its equations (usually more than 
50%) are trivial equations involving algebraic variables, such as:

• The first simplification of the DAE system is obtained by eliminating 
those equations, and symbolically substituting the alias variables in 
the remaining equations

y j=± yk

y j± yk
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Incidence Matrix / E-V Graph

• The structural information is represented by an incidence matrix, 
equivalent to a bipartite Equations – Variables graph
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Matching Problem

• The matching algorithm is executed: a 
graph transversal is sought, i.e. a set of 
arcs which makes up a bipartite graph. 
This graph represents the equations-
variables matching

• This is equivalent to finding a 
permutations of rows and columns of the 
incidence matrix, in order to get all ones 
on the main diagonal

• If the algorithm terminates successfully, 
the system has structural index 1. 
Otherwise there are two alternatives:
 structurally inconsistent problem
 higher-index problem (constraints 

between dynamic variables)
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Matching Problem: Examples of Failure

• Example 1:

• Example 2:

y1 y2 y3=0
y1=u1

p1 y1=u2

Nobody assigns the variable y
2
!

(Structurally inconsistent problem)

x1 '=x2 y1

x2 '=x1 y1

x1 x2=0
Nobody assigns the variable y

1
!

(Index-2 problem) 
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Index Reduction

• If the matching algorithm fails, Pantelides' algorithm is run – this 
creates new E-nodes and new arcs by suitably deriving some of the 
system equations

• If the problem is not structurally singular, Pantelides' algorithm 
terminates returning a redundant system of index-1 DAE's. The 
Dummy Derivative algorithm is then run to eliminate the redundant 
state variables in order to get a balanced system of equations

• When the DD algorithm terminates, the survived dynamic variables 
are the true state variables of the system, whose initial values can 
be assigned arbitrarily

• Otherwise, the problem is structurally singular (ill-posed). The 
structure of the graph can be used to derive diagnostic information 
in order to facilitate the model troubleshooting
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Parameter-Dependent Variables

• By adding to the E-V graph the nodes and arcs corresponding to 
the parameters (and to their occurrences in the equations), it is 
possible to determine which variables are structurally dependent on 
parameters only, and thus become parameters themselves

• The corresponding equations can be solved once and for all during 
the initialization phase, and eliminated (together with the 
corresponding variables) from the subsequent analysis, which will 
only involve time-varying variables.
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BLT Transformation (1/2)

• The order of the equation in the function f(t, z, y, u, p) is completely 
arbitrary, as it depends on the order of the equations in the 
Modelica code

• The equations must be re-arranged in order to make their solution 
as simple as possible. This means re-ordering them so that the 
incidence matrix becomes  Block-Lower-Triangular
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BLT Transformation (2/2)

• The solution of the complete system is then reduced to the 
sequenced solution of many smaller systems, whose dimension 
corresponds to that of the blocks on the main diagonal

• In this example, instead of solving a system of 5 equation at once, 
it is possible to sequentially solve 4 systems of 1, 1, 2, 1 equations.

• The BLT transformation problem is solved by a famous graph-
theoretical algorithm, known as Tarjan's algorithm (1972). Note 
that the algorithm complexity is only O(N)
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Tarjan's Algorithm

• Starting from the previously found graph transversal, the algorithm 
searches for the strongly connected components of the graph, that 
correspond to the blocks on the main diagonal of the BLT matrix
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• In the most favourable cases, the BLT matrix can be strictly lower 
triangular; if the variables on the main diagonal appear explicitly (i.e. 
at most, multiplied by a coefficient) in the corresponding equations, 
its possible to solve the system by a sequence of assignments.

• Example: RLC circuit equations

1) C.i = R1.v/R1.R   // f(R1.v)
2) R1.v = R1.p.v – C.v   // f(R1.v,R1.p.v)-C.v
3) der(L.i) = L.v/L.L   // f(L.v,der(L.i))
4) R1.p.v = AC.VA*sin(2*AC.f*AC.PI*time)  // f(R1.p.v)
5) L.v = R1.p.v – R2.v   // f(L.v,R1.p.v,R2.v) 
6) der(C.v) = C.i/C.C   // f(der(C.v),C.i) 
7) R2.v = R2.R*L.i   // f(R2.v) - L.i

00000017)
10100006)
00001115)
00000104)
01001003)
00010102)
00110001)

der(C.v)der(L.i)C.iR1.vL.vR1.p.vR2.v

Remarks on the BLT Transformation (1/2)
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Remarks on the BLT Transformation (2/2)

• After the BLT Transformation

• The process which is usually carried out manually when building 
dynamic simulators with block-diagram languages (such as 
Simulink) is carried out automatically in this context

7) R2.v := R2.R*L.i 
4) R1.p.v := AC.VA*sin(2*AC.f*AC.PI*time)
5) L.v := R1.p.v – R2.v
2) R1.v := R1.p.v – C.v
1) C.i := R1.v/R1.R
3) der(L.i) := L.v/L.L
6) der(C.v) := C.i/C.C

10100006)
01001003)
00110001)
00010102)
00001115)
00000104)
00000017)

der(C.v)der(L.i)C.iR1.vL.vR1.p.vR2.v
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Structurally Regular but Locally Singular Problems

• The successfu termination of the transversal, Pantelides', Dummy 
Derivatives and BLT algorithm guarantee that the DAE system is 
structurally regular, i.e. generally solvable given the initial values of 
the state variables.

• It might happen that specific values of the parameters, the state 
variables or the inputs make the problem singular (or higher-index). 
This situation is not dealt with by the simbolic manipulation 
algorithm (except the state variable pivoting of the DD algorithm), 
and leads to numerical run-time errors.
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Optimization of the BLT blocks

• After the BLT transformation, the solution of the DAE system is 
decomposed into a sequenc of smaller problems, corresponding to 
the main diagonal blocks

• Further symbolic manipulation can be applied to these blocks, to 
make the solution faster and more numerically robust:

 Linear equations: for specific structures of the equations (0/1 
coefficients) it is possible to solve the equation efficiently 
through symbolic manipulation

 Non-linear equations: the solution of the systems can be made 
easier by the tearing method
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Tearing

• The variables that can be solved explicitly in each nonlinear 
equation are marked as coloured elements in the incidence matrix.

• A row and column permutation is sought, such that the incidence 
matrix is bordered-lower-triangular, with coloured elements on the 
main diagonal, and such that the border width is minimized.:

x
t

x
a

m

p

0

• A guess value is first assigned to xt : this 
allows to compute xa by simple assignments 
(the numerical results are a function of xt). 
The last equations thus form a system of 
only p variables in the unknowns xt 

• This smaller system can be solved by a 
Newton-Raphson type an iterative method; 
finally, the xa are computed by substitution.
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Example

• Let's assume that the equations have been rearranged in this 
bordered-lower-triangular form:

•  z
3
 is the tearing variable. Given an initial guess value, it is possible 

to go through the assignments:

• The solution of the system has been reduced to the solution of 
 f(z

3
) = 0, for which we have an algorithm to compute the residual. 

The Jacobian df(z
3
)/dz

3
  can be computed numerically, or possibly by 

symbolically differentiating the assignments.

• Once z
3 
has been found, the first two assignments return z

1 
, z

2

z1log  z3=0
z1

2−5z2
3=0

z1
2z2

2−z3
2=0

z1 z2 z3
f1 1 0 1
f2 1 1 0
f3 1 1 1

z1 := -log(z3) 
z2 := (z1^2 / 5 )^1/3
fz3 := z1^2 + z2^2 +z3^2
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Remarks

• Contrary to the previous algorithm (whose complexity is polynomial 
or even linear in the number of equations), the search of the 
optimal tearing (minimizing p) is an NP-complete problem.

• Since an exhaustive search would take too much time, even for 
small systems, it is necessary to formulate good heuristic 
algorithms for structures deriving from typical physical problems.

• The result is a very efficient way of solving large non-linear systems 
of equations, since the non-linear equation to be solved iteratively 
has a reduced dimension:

 easier convergence

 Jacobian computation and inversion is less expensive

• The initialization of the iterative algorithm is simpler as well, since 
initial guesses are needed for the tearing variables only. However, 
note that the set of tearing variables can easily change when the 
structure of the model is modified (e.g. by connecting a new 
component to an existing object-oriented model).
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Common Subexpression Elimination

• During the symbolic manipulation, the same expression may appear 
in different places
 example: connection of two thermo-hydraulic components, computing 

the outlet and the inlet temperature: both are a function of the same 
pressure and enthalpy

• The symbolic manipulation can apply CSE (Common Subexpression 
Elimination) algorithms, defining temporary variables where the 
result of the expression is stored, and then use them wherever 
necessary

• This is extremely useful in the symbolic computation of derivatives, 
where parts of expressions appear multiple times

z := f(g(t))*h(t);
zd := fd(g(t))*gd(t)*h(t)+f(g(t))*hd(t);
t1 := g(t);
t2 := f(t1);
t3 := h(t);
z  := t2*t3;
zd := fd(t1)*gd(t)*t3 + t2*hd(t);
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State Selection (1/2)

• In some cases (e.g. thermo-hydraulic models that use fluid 
property computation models), it is convenient to use state 
variables that are not differentiated in the original model 

• In the following model, the first equation is explicit only if p,h are 
state variables; otherwise it has to be solved iteratively, which is 
not a good idea, since the computation of rho(p,h) can be very 
time-consuming

model ControlVolume
  parameter Volume V;
  Pressure p(
    stateSelect = StateSelect.prefer);
  SpecificEnthalpy h(
    stateSelect = StateSelect.prefer);
  Density d;
  Mass M;
  Energy E;
  FluidPort in, out;

equation
  d = rho(p,h);
  M = V*d;
  E = M*h – p*V;
  der(M) = in.w + out.w;
  der(E) = in.w * in.h + 
           out.w * h;
  in.p = p;
  out.p = p;
  out.h = h;
end ControlVolume;
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State Selection (2/2)

• The index reduction algorithm will try to differentiate the algebraic 
equations so that the derivatives of the requested state variables 
(p,h) show up, while E', M' will become dummy derivatives

• The functions for the computation of the partial derivatives of 
density can be computed symbolically (if possible), or can be 
manually specified through annotation(Derivative)

  d = rho(p,h);
  M = V*d;
  E = M*h – p*V;
  der(M) = in.w + out.w;
  der(E) = in.w * in.h + out.w * h;

  d = rho(p,h);
  M = V*d;
  E = M*h – p*V;
  V*(drho_dp(p,h)*der(p)+drho_dh(p,h)*der(h)) = in.w + out.w;
  V*(drho_dp(p,h)*der(p)+drho_dh(p,h)*der(h))*h + 
    M * der(h) – V*der(p) = in.w * in.h + out.w * h;
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Result of the Symbolic Manipulation

• The result of the process described so far is a system of linear and 
non-linear equations that represent the original DAE system in ODE 
form:
 given the values of the state, the parameters and the time
 by solving the systems obtained from the symbolic manipulation
 the algebraic variables and the derivatives of the state variables 

of the system (reduced to index-1 form) are computed
• In fact, this consitutes an efficient procedure to compute the

 f and g functions of the system, reduced to state-space form:

• The first of these two function can be linked with any code for 
numerical integration of ODE (or DAE) systems

• If the algorithm is implicit, the Jacobian ∂f / ∂x will be computed as 
well, usually by numerical differentiation.

x ' t = f x t  , ut  , t , p
y t =g x t  ,u t  , t , p
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Alternative Strategies

• This strategy is adopted by the tools Dymola and OpenModelica
• Since the final result is in the form of ODE + output equations, the 

model of a system which has only a causal interface (inputs and 
outputs) can be translated into an S-function, and exported in 
block-oriented simulation environments such as Simulink or Scicos, 
which will take care of integrating them.

• The corresponding code is very efficient, thanks to all the 
previously described optimizations.

• Other simulation environments (e.g. PSEnterprise's gPROMS, which 
does not use Modelica) just remove the trivial equations, possibly 
apply the BLT, and then make use of specific DAE solvers for highly 
sparse problems

• Other Modelica tools (e.g. Equa Simulation's IDA) pre-compile the 
single models, which are connected at run-time. Since a global 
index reduction phase is missing, it is mandatory to use solvers 
which can integrate (at least) index 2 problems.
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Initialization (1/3)

• In order to completely determine the initial conditions of the index-
1 DAE problem, a number of conditions n is needed, equal to the 
number of state variables that survived the index reduction phase.:

A Default initialization: the state variables get their initial value 
from their start attribute

B Explicit initialization: n initial equation are adde to the 
Modelica model.

• In case A, the initial values x(0), u(0), p, are known, therfore it is 
possible to compute consistent values of y(0) by using the result of 
the symbolic manipulation of the DAE system; 
the value of x(0) is then used for the first call to the ODE 
integration routine
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Initialization (2/3)

• In the case B, an initialization problem, different from the dynamic 
problem, is formulated. This problem contains::

 all the equations of the DAE system, reduced to index 1 

 all the initial equations

• This problem has the initial values x(0), x'(0), y(0)  as unknowns, 
and a corresponding number of equations

• To solve trimming problems (= compute the constant value of the 
inputs to get certain constant values at the outputs) it is possible to 
connect the inputs of the system to constant signal generators, 
whose values are parameters with a fixed = false attribute, 
and then add further initial equations to specify the desired output 
values

• In this case the unknowns of the problems are x(0), x'(0), y(0), p
trim



34

Initialization (3/3)

• All the previously discussed methods (structural analysis, BLT, 
tearing) can be applied to this system; however, note that the fact 
that the state variables are now unknown makes the incidence 
matrix bigger and less sparse, and thus significantly reduces the 
advantages obtained by applying such techniques.

• The numerical solution of case B is therefore much harder in 
general, at least for strongly non-linear problems. On the other 
hand, it is only performed once at the beginning of the simulation.

• To attain convergence, it is very important that all the iteration 
(tearing) variables of the initialization problem have a start value 
not too far from the sought solution. 

• Note that it is not sufficient to set start values for the states, 
because some algebraic variables can be tearing variables as well.
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Modelling vs. Simulation

• These methods allow to decouple two distinct tasks:

• The modeller should care of writing models which are
 Readable (thus self-documenting)
 Re-usable
 Without worring too much about how they will be solved

• The simulation tool takes care of all the issues needed to produce an 
efficient simulation code, e.g.:
 Scaling of the variables
 Rearrangement of the equations
 Index reduction
 Tearing and symbolic solution of implicit equations
 Jacobian computations
 Efficient computation of common subexpressions

MODELLING SIMULATION
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