
Introduction to the Dynamic Modelling of Introduction to the Dynamic Modelling of
Thermo-Fluid Systems using ModelicaThermo-Fluid Systems using Modelica

Francesco CasellaFrancesco Casella

Dipartimento di Elettronica e InformazioneDipartimento di Elettronica e Informazione
Politecnico di MilanoPolitecnico di Milano

2

Course Programme

• Introduction to Equation-Based, Object-Oriented modelling

• Introduction to the Modelica language

• Properties of Differential-Algebraic Equations systems (DAE)

• Symbolic manipulation of DAEs obtained from Modelica models

• The Modelica.Media and ExternalMedia libraries for fluid property
computations

• The Modelica.Fluid library for thermo-fluid system modelling

• The ThermoPower library for power plant modelling

3

Basic concepts in
Object-Oriented Modelling

4

Different Approaches to Modular Modelling

It is convenient to build mathematical models of complex systems by aggregation of
the models of their constituent parts (modular modelling). From this point of view, two
complementary approaches can be followed:

Procedural or Causal Approach
– The model is described in a form which is close to the solution algorithm
– The interaction between the models is formalized in terms of input and output variables
– Pro: It is rather straightforward to simulate elementary and aggregate models
– Con: The code might be difficult to read a posteriori
– Con: The model of a given system can only be re-used in the same context

(i.e. with the same prescribed variables at the system boundary):
low re-usability of basic models

Declarative or A-Causal Approach
– The model is described by equations in a context-independent form, without caring

about the actual solution algorithm
– The interaction between the models is formalized in terms of connection equations

without any specification on causality
– Pro: High re-usability of basic models: (arbitrary connection between models)
– Pro: High readability of models
– Con: It is more difficult to go from the mathematical model to the numerical simulation

algorithm (the model is not oriented to the solution algorithm)

5

Causal / Procedural Modelling - I

Causal models ⇔ Procedural models
– The model of each system is given by identifying inputs and outputs

– It is quite straightforward to solve the equations of a single model

– It is quite straightforward to simulate aggregate systems (block diagrams), in particular if
the dynamic systems are strictly proper (y = g(x) ⇒ no algebraic loops)

ẋ= I
C

V =xRI
S u y

S2 S3

S1

u

v

S4

y

−
+ (SIMULINK)

(State-Space ODE)

xk1:=xk t⋅f xk , uk
yk :=g xk , uk

(Forward Euler's Algorithm)

6

Causal / Procedural Modelling - II

Causal models ⇔ Procedural models

– But: each sub-system model depends on the selection of input and output variables at
the system boundary (not re-usable).

– Example: RC network

– The same physical model (same equations) requires different models depending on its
connection to the outside world

V

I
x

R

C

ẋ=V −x
RC

I=V− x
R

ẋ= I
C

V =xRI

Prescribed Voltage Prescribed Current

S1 V I S2 I V

7

A-Causal / Declarative Modelling

A-Causal models ⇔ Declarative models
– The model of each system is given by the constituent equations
– The model formulation is independent of the actual boundary conditions, therefore it is

re-usable in different contexts ⇒ truly modular approach
– The physical connection between compontens is represented by connection equations
– The simulation of an aggregate system is a difficult task, because in general it could

require some form of symbolic manipulation of the system of equations, prior to the use
of some numerical integration algorithm.

– Example: RC network

– Causality is only determined at the aggregate system level.
V

I
x

R

C
xRI =V

C ẋ= I (DAE – declarative model)

V
0 V

x
C

R

II
0 xRI=V

C ẋ=I
V 0=u
V 0=V
I 0I=0

(RC network)

(voltage generator)
(Kirchoff's law - mesh)
(Kirchoff's law - node)

ẋ=
V 0−x

RC
V =V 0

I=
V 0−x

R

I 0=−
V 0− x

R

Symbolic
manipulation

(simulation tool)

8

Causal vs. A-Causal Modelling

CONCLUSIONS

An object-oriented approach to physical system modelling requires the adoption of
declarative models.

In this way, modularity is guaranteed:
– the model of an aggregate of sub-systems can always be obtained by composition

elementary models
– independently of their actual connections
– provided that standard interfaces are defined for the elementary models

Life gets simpler for the model developer!

On the other hand, life gets tougher for the designer of the simulation tool, which must
provide:

– sophisticated capabilities of symbolic analysis for large DAE systems (up to many
thousands of equations), to analyse and simplify the structure of the problem

– numerical and symbolic algorithms to reduce the DAE system to an ODE system and
then integrate it

During this short course, the basic mathematics and algorithms to carry out this task
will be discussed.

9

Connectors / Ports

In an Object-Oriented context, models are connected together by means of
Connectors (or Ports)

The Port concepts originates from the modelling of physical systems exchanging
power (or energy): the connection between models always involves two coupled
variables:

– Electrical systems:

– Mechanical systems:

– Hydraulic systems:

When N ports are connected together, the corresponding connection equations are:
– Effort variables

– Flow variables

Connectors can be generalised to cases with more than two variables on each port
(abandoning the idea that the product of the two must necessarily be a power)

Connectors are inherently a-causal: no variable is declared a-priori as input or output.

When needed, it is of course possible to declare causal connectors, to describe the
connection of input and output signals, such as in control systems.

W=s∗F
W=V∗I

Work/Energy = Effort variable * Flow variable

e1=e2=...=eN

∑ f j=0
(Same voltage / displacement / pressure)

(Currents / Forces / Flow rates sum to zero)

W=P∗q

10

Connectors - Example

Mechanical translational systems (1 d.o.f.)
– Standard connector: force (flow) and displacement (effort)

Mechanical rotational systems (1 d.o.f.)
– Standard connector: torque (flow) and angle (effort)

Electrical systems
– Standard connector: current (flow) and voltage (effort)

Thermal systems
– Standard connector: heat flow (flow) and temperature (effort)

Hydraulic systems (incompressible fluid)
– Standard connector: volume flow rate (flow) and pressure (effort)

Spring

TM

TM

Damp

TM

TM

Mass

TM

TM

Act.
susp.

TM

TM GroundTMGround

TM
Sensor

TM

Control
system

Example:
Active suspension system

11

O-O Principles I: Standard Interfaces (Encapsulation)

• To ensure the maximum re-usability of developed models, it is mandatory to define
Standard Connectors for the different domains (mechanical, electrical, hydraulic,
thermo-hydraulic, etc.), to be used consistently

• All the models using the same standard connectors are interchangeable
• It is advisable that the interface

– has a clearly defined physical meaning
– is as independent as possible from the implementation of the models (modelling

assumptions, degree of detail, etc.)

• Example: Resistor
– Basic model
– Model with thermal effects on resistance
– Model with stray capacitance
– Model with high-frequency electromagnetic radiation
– . . .

• The choice is not trivial in some cases, e.g. 3D multibody mechanical systems,
thermo-hydraulic systems

The user is shielded from the internal implementation details

All models share a common (current, voltage) type of connector

12

O-O Principles II: Hierarchical Modularity (Aggregation)

Complex models can be decomposed hierarchically:
any model can be recursively defined as an aggregate of sub-models

A

TM

TM

A.X

TM

TM

TM

TM

TM

TMA.YTM

TM

A

A.Z

13

O-O Principles III: Inheritance (Specialization)

• The relationship “is a” is defined between different classes
• The “child” class is a specialisation of the ancestor classes: it inherits all their

featurs (in our case, variables, parameters, sub-models, and equations), and
adds its own ones

• Multiple inheritance can be allowed:

• When definining classes through inheritance, care must be exercised, as the
complete definition of the child class is scattered among the ancestors

– Can be difficult to understand a posteriori
– Can be difficult to modify or extend

Is a

Mammal

Feline

Cat

Pet

Is a
Is a

14

Introduction to the Modelica Language

15

Introduction and Background

Between the end of the 70s and the first half of the 90s, many languages (and tools)
have been defined for object-oriented modelling and simulation: Dymola, OMOLA,
ASCEND, NMF, gPROMS, MOSES.
All of them are born in universities, where the first simulation tools are developed.
Some of them later become commercial products (Dymola, gPROMS).
At the end of the 90s, some players decide to unite their forces and define a new
language summarising all their past experiences.
The language is named Modelica, and its definition is property of a no-profit institution
(the Modelica Association), composed by tool vendors and users, contributing to the
development of the language and of a suite of standard model libraries.
Version 1.0 has been published in 1997. Other versions follow to improve and extend
the original one (the latest is 3.2, released in 2010). Despite that, the language is quite
stable, and most modifications are backwards-compatible.
Currently, there are several tools supporting Modelica to various degrees:
• Dymola (Dynasim, commercial)
• SimulationX (ITI, commercial)
• OpenModelica (PELAB, Univ. Linköping, open source)
• MathModelica (MathCore, commercial)
• MapleSim (MapleSoft, commercial)
• IDA (Equa Simulation, commercial)
• Amesim (Imagine, commercial)

16

Classes

The basic construct of Modelica is the class (class), which defines how an object is
made.

As in most object-oriented language, in the code it is possible to:
– Define a class, giving an abstract definition of an object (a sort of blueprint)
– Instantiate one or more instances of the classes, which will then be used to simulate some

real objects

7 restrictions of class are defined to represent different kinds of objects:
– model: Describes the dynamic model of a object
– block: Describes a causal dynamic model (only input/output connectors)
– function: Describes a mathematical function (one algorithm defines the input/output

mapping, no memory, states or side effects)
– record: Describes an aggregate of objects (without any equation relating them)
– connector: Describes a port
– type: Describes a variable type starting from the predefined ones (Real, Boolean,

Integer)
– package: Describes a collection of re-usable models (a library)

17

Connectors & Types

connectors define ports to connect a model with the outside world.
Example: electrical connector:

When two or more connector are connected, equality equations are generated for all
the corresponding effort variables; an equation sum()=0 is generated for all the
corresponding flow variables.

flow variables are always assumed positive when entering the object.

Variable types can be either predefined (Real, Boolean, Integer), or derived from
predefined types, e.g.

connector Pin
 Voltage v;
 flow Current i;
end Pin

type Voltage = Real(unit=”V”);
type Current = Real(unit=”A”);
type Temperature = Real (unit=”K”, min=0);

18

Models

A model can contain variables, parameters, constants, other models, and equations
relating them.

Example: resistor and capacitor models

model Capacitor
 Pin p,n;
 Voltage v;
 Current i;
 parameter Capacitance C;
equation
 v = p.v-n.v;
 i = p.i;
 0= p.i + n.i;
 i = C*der(v);
end Capacitor;

Models in DECLARATIVE form!

v

i
p

n
CRv

i
p

n

model Resistor
 Pin p,n;
 Voltage v;
 Current i;
 parameter Resistance R;
equation
 v = p.v-n.v;
 i = p.i;
 0= p.i + n.i;
 v = R*i;
end Resistor;

19

Aggregate Models

It is possible to define models containing other models:

Rcnet can be used in turn to build a circuit model, and so on...

R1

C1

p

n

model RCNet
 parameter Resistance Rnet;
 parameter Capacitance Cnet;
 Resistor R1(R=Rnet);
 Capacitor C1(C=Cnet);
 Pin p,n;

equation
 connect(R1.n, C1.p);
 connect(R1.p, p);
 connect(C1.n, n);
end RCNet;

Equivalent to:
R1.n.v = C1.p.v;
R1.n.i + C1.p.i = 0;

RC1

GNDGND

model SimpleCircuit
 RCnet RC1(Rnet=100, Cnet=1e-6);
 Vsource V0;
 Ground GND;
equation
 connect(RC1.n, GND.p);
 connect(RC1.p, V0.p);
 connect(V0.n, GND.p);
end SimpleCircuit;

Modifiers
(parameter propagation)

20

Arrays and Iterators

One can define n-dimensional arrays (vectors, matrices, ...) of objects:

Multiplication of vector and matrices follow the usual rules of matrix algebra

It is possible to use for iterators to define equations with a repetitive structure:

Position p[3]; // 3D position vector
Real A[10,5]; // 10X5 matrix of real numbers
Real v[10]; // vector of 10 real numbers
Real w[5]; // vector of 5 real numbers
RCNet RC[4]; // array of four 4 RCnet networks

model SeriesNetwork
 parameter N=3;
 RCnet RC[N];
 Pin p,n;
equation
 for i in 1:N-1 loop
 connect(RC[i].n,RC[i+1].p);
 end for;
 connect(RC[1].p, p);
 connect(RC[N].n, n);
end Series Network;

equation
 w = A*v;

RC[1] RC[3]RC[2]p n

21

Blocks

A block is a model having only causal connectors.
Blocks usually represent signal-processing objects, rather than physical devices.
Example: state-space representation of a generic linear dynamical system:

block StateSpace
 parameter Real A[:, :],
 B[size(A,1), :],
 C[:, size(A,2)],
 D[size(C,1), size(B,2)]=zeros(size(C,1),size(B,2)];
 input Real u[size(B,2)];
 output Real y[size(C,1)];
 protected
 Real x[size(A,2)];
 equation
 assert(size(A,1)==size(A,2), “Matrix A must be square.”);
 der(x) = A*x + B*u;
 y = C*x + D*u;
end StateSpace

block TestSS
 StateSpace S(A=[1,2; 3,4], B=[0,1], C=[1,1]);
equation
 S.u = sin(time);
end TestSS;

22

Functions

functions are particular models without state (memory), thus representing
functions in a strict mathematical sense (no side-effects). The input/output relationship
is described in a causal way (algorithm)
Examples: factorial function and Bessel function

function fact
 input Integer n;
 output Real y ;
algorithm
 y := 1;
 for k in 2:n loop
 y := y*k;
 end loop;
end fact;

Note: Functions ≠ Equations!

J mx =∑
k=0

∞ −1k

22km k ! mk !
x2km

function Bessel
 input Integer m;
 input Real x;
 input N = 20 “Defaults to 20”;
 output Real y ;
algorithm
 y := 0;
 for k in 0:N loop
 y := y + (-1)^k * x^(2*k+m)/
 (2^(2*k+m)*fact(k)*fact(m+k));
 end loop
end Bessel;

n!=∏
k=1

n

k

a = Bessel(2,x);
b = Bessel(1,x,5);

23

Inheritance: Factoring Out Common Features

It is possible to define “child” objects by extending the definition of the “parent” objects:
the child object inherits all the parents' attributes

(variables, parameters, objects, equations)

In this way it is possible to “factor out” common parts in sets of similar models
It is also possible to extend models that are already fully functional by themselves
Modelica allows multiple inheritance: a given model can extend more than one parent
object.

partial model OnePort
 Pin p,n;
 Voltage v;
 Current i;
equation
 v = p.v – n-v;
 i = p.i;
 p.i = -n.i;
end OnePort;

model Resistor
 extends OnePort;
 parameter Resistance R;
equation
 v = R*i;
end Resistor;

model Capacitor
 extends OnePort;
 parameter Capacitance C;
equation
 C*der(v) = i;
end Capacitor;

24

Inheritance: Replaceable Objects I

A child object can replace some of the parents' attributes with their specializations
Example: an electronic circuit with DC/DC converters

– Depending on the specific needs of the simulation, you might need converter models
having different degrees of accuracy, from the ideal transformer down to a detailed
representation of the switched capacitor circuit

– All the models have something in common: the interface (four pins) and a parameter (the
nominal output voltage)

We can define an abstract (partial) model BaseDCDC with the common features and
the actual model implementations as derived objects:

model IdealDCDC
 extends BaseDCDC
equation
 pb.v – nb.v = vout;
 pa.i*(pa.v – na.v) + pb.i*(pb.v-nb.v) = 0;
 pb.i + nb.i = 0;
 pa.i + pb.i = 0;
end SimpleDCDC

model DetailedDCDC
 extends BaseDCDC
 // detailed implementation
 ...
end DetailedDCDC;

partial model BaseDCDC
 Pin pa, na;
 Pin pb, nb;
 parameter Voltage vout;
end BaseDCDC;

25

Inheritance: Replaceable Objects II

Now we can define the template model of a circuit containing two converters, whose
actual implementation will be decided later:

Finally, it is possible to generate models of the circuit with different degrees of detail,
by replacing the base converter models with the desired implementations. Conv1 and
Conv2 can be described by any model inheriting from BaseDCDC, e.g:

This very powerful feature of the Modelica language allows to deal with model variants
in a clean, concise and consistent way, avoiding unnecessary code duplication.

partial model BaseCircuit
 replaceable BaseDCDC Conv1, Conv2;
 // other components here
equation
 // connection equations here
end BaseCircuit;

model MixedCircuit
 extends BaseCircuit(
 redeclare IdealDCDC Conv1,
 redeclare DetailedDCDC Conv2);
end MixedCircuit;

model SimpleCircuit
 extends BaseCircuit(
 redeclare IdealDCDC Conv1,
 redeclare IdealDCDC Conv2);
end MixedCircuit;

26

Inheritance: Caveat Emptor!

In theory, inheritance is a very powerful mechanism, allowing to minimise unnecessary
repetions of code in highly structured sets of objects.

In practice, (as it happens with all O-O languages), overusing inheritance can lead to

– Unreadable code: the description of the functionality of a given object is
scattered in a dozen or more partial models

– Code which is difficult to modify/adapt: child objects have a structure which
is strongly constrained by the architecture of the ancestors, so that they might
need to be rewritten from scratch if one wants to relax or modify any modelling
assumption given for granted in the ancestors

Do not abuse inheritance!

27

Conditional Equations

Inside equations, it is possible to define expressions whose value depend on a
boolean expression (typically some inequality):

As an alternative, one can state which equation holds, depending on a boolean
expression:

This is expecially useful to define:
– Models with discontinuous behaviour (e.g. ideal diode, check valve)
– Models with different modelling options (depending on boolean parameters)

q_out = if level > 0 then K*sqrt(level) else 0 end if;
y = if u < ymin then ymin
 else if u > ymax then ymax
 else u end if;

if level > 0 then q_out = K*sqrt(level)
 else q_out = 0;
if u < ymin then y = ymin
else if u > ymax then y = ymax
else y = u
end if;

28

Hybrid Models: Discrete-Time Dynamical System

It is possible to represent objects, whose variables do not vary continuously, but rather
change only at certain events, i.e. when a certain boolean expression becomes true;
for the rest of the time they remain constant.

These variables are identified by the discrete keyword in its declaration. Integer
and Boolean variables (as well as their sub-types) are discrete by definition.

Discrete and continuous variables can co-exist in the same model (hybrid models).

Modelica supports time-events (known a-priori) and state-events (depending on the
system state)

Example 1 (time-events): discrete-time linear dynamical system:

block DiscreteStateSpace
 parameter Real a, b, c, d;
 parameter Time Period;
 input Real u;
 discrete output Real y;
 discrete Real x;
equation
 when sample(0,Period) then
 x = a*pre(x) + b*u;
 y = c*pre(x) + d*u;
 end when;
end DiscreteStateSpace;

29

Hybrid models: Event-Driven Models

Example 2: Flip-Flop (state-event)

Example 3: Relais

block FlipFlop
 parameter Real Thr;
 input Real Set;
 input Real Reset;
 discrete output Real y;
equation
 when (Set>Thr or Reset>Thr)
 y = if Set>Thr then 1
 else 0
 end if;
 end when;
end FlipFlop;

block Relais
 parameter Real Thr;
 input Real Switch;
 output Boolean y;
equation
 when (Switch > Thr)
 if pre(y)==true then y = false
 else y = true
 end if;
 end when;
end Relais;

30

Physical Field Models

In some cases it happens to model objects interacting with a physical field, defined in
their environment (thermal field, electrical field, gravitational field, etc.)
In these cases it is annoying to define explicitly the connection between each of the
objects and the field model; it is posible to use the inner and outer constructs
instead:

Sophisticated fields can be modelled by declaring models or functions (instead of simple
variables) as inner/outer.

model Component
 outer Temperature T0; // defined outside the model
 Temperature T;
 parameter HeatCapacity C;
 parameter HeatTransferCoefficient h;
equation
 C*der(T)=h*(T0-T);
end Component
model Environment
 inner Temperature T0; // T0 is defined here
 Component c1, c2, c3;
equation
 T0=293+10*sin(time/(24*3600))
end Environment

31

Graphical annotations

The Modelica language is a textual language (each Modelica model is a plain-text
ASCII file); this favours the portability of models and the interoperability of the
modelling tools (no binary files in obscure, proprietary formats!).
To allow using GUIs, Modelica allows to define a graphical layer (icons) for models,
connectors, and connections.
The graphical appearence of each object is defined by an annotation() construct,
in terms of graphical primitives (lines, circles, rectangles, text, bitmaps).
It is then possible to build composite models by drag&drop, and to connect the models
by drawing lines between the corresponding connectors.

Example: electrical circuit:

Most tools (e.g. Dymola) allow to work on the same model both in text and graphics
modes, which represent two different views on the same underlying object; the two
views are always kept consistent with each other

32

Libraries

To ease the re-use of previously developed models, it is possible to build
hierarchically-structured libraries, using the package construct.

A plant model can be built by instantiating models from the installed libraries, either by
referencing to the full name, or using the import statement (or just by drag&drop, in
which case the tools takes care of the naming)

model Circuit
 Modelica.Electrical.Analog.Basic.Resistor R1, R2;
 Modelica.Electrical.Analog.Basic.Capacitor C1, C2;
...
end Circuit;
model Circuit2
 import Modelica.Electrical.Analog.Basic.*;
 Resistor R1, R2;
 Capacitor C1, C2;
...
end Circuit2;

package Modelica
 package Electrical
 ...
 end Electrical;
 package Mechanics
 ...
 end Mechanics;
...
end Modelica;

33

Standard Libraries

The Modelica language is accompanied by the Modelica library, a large collection of
standard libraries containing basic elements for the different fields of engineering:
Modelica

– Blocks
– Constants
– Electrical
– Icons
– Math
– Mechanics
– Media
– Fluid
– SIunits
– Thermal
– ...

Other libraries have been developed for specific application fields. Some of them are
open source, other are commercial.

The ThermoPower library is an open source library, developed at Politecnico di
Milano, aimed at power plant and energy conversion systems.

34

Modelica Tools – A short history

1997-2006
• Dymola (Dynasim AB) is de-facto the only tool supporting the whole standard in

an industrial-strenght way.
• MathModelica (Mathcore Engineering AB) supports parts of the standard, for

some years using code sub-licensed from Dynasim. MathCore lives mostly off
consultancy rather than by selling tools

• OpenModelica (Linköping Universitet), open source compiler, developed as an
academic tool for compiler theory research, not usable for any serious project

2006
• MathCore starts developing MathModelica on a branch of the OpenModelica

source code base
• Dynasim is bought by Dassault Systèmes, which sees potential in Modelica

technology to complement the CATIA PLM tool with a dynamic simulation module.
Dymola still lives as a standalone product.

35

Modelica Tools – A short history

2007-2008
• Versiopn 3.0 del linguaggio is developed with active contributions from Dynasim,

MathCore, Linköping Universitet, plus two new players: ITI GmbH (SimulationX)
and MapleSoft (MapleSim). The goal is full support of the language, including
advanced features for multibody and thermofluid systems.

• The Open Source Modelica Consortium (OSMC) is established, supporting the
development of OpenModelica, with financial support from many companies and
universities

• INRIA e LMS-Imagine fund the development of a french Modelica compiler, which
covering only parts of the language

2009
• Dassault Systèmes releases CATIA V6 with a dynamic module based on Modelica

and Dynasim technology. Dymola will keep being sold as a stand-alone product
“until the user community will require that”

• MathCore joins OSMC e contributes to the front end. At the end of the year, a
version of OMC whose front-end fully supports Modelica 3.1. This front end is now
used by MathModelica.

• A total of 9 tools including a parser and a Modelica compiler is presented at the
2009 Modelica Conference in Como.

36

Modelica Tools – State of the art

Dymola is still the reference Modelica tool available

SimulationX is the closest competitor. Full support of multibody and thermofluid
models (including Modelica.Media, Modelica.Fluid and ThermoPower) is planned for
2011.

OpenModelica has now a full-fledged and efficient front-end (Modelica code → flat
equations). The back-end (the numerical solution of the equations) is still very
primitive. Funded research work on the back-end is gradually improving the situation.
Industrial users expect to use the tool for serious projects within one-two years.

MathModelica uses the OMC front end and a much better numerical back-end.

37

References

• Home page Modelica Association: http://www.modelica.org/

• Modelica 3.2 Definition: http://www.modelica.org/documents/ModelicaSpec32.pdf

• Modelica Tutorial: http://www.modelica.org/documents/ModelicaTutorial14.pdf

• Proceedings Modelica Conferences
http://www.modelica.org/publications

• Mattson, S.E., Elmqvist, H., Otter, M.: “Physical system modeling with Modelica”,
Control Engineering Practice, v. 6, pp. 501-510, 1998.

• Tiller, M.: Introduction to Physical Modeling with Modelica. Kluwer, 2001.

• Fritzson, P: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley 2003.

	Title page
	Lib 1
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37

