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Importance of plasma-surface interaction

“The interaction of plasma with first wall surfaces 
will have a considerable impact on the 
performance of fusion plasmas, the lifetime of 
plasma-facing components and the retention of 
tritium in next step burning plasma experiments”

Progress in the ITER Physics Basis, Chap. 4: “Power and particle 

control”, Nucl. Fusion 47 (2007) S203-S263

CAVEAT: Edge plasma physics and PSI is a vast domain.  Can only scratch the 

surface in a single tutorial. Work referenced throughout the talk is listed at the end.

These slides in this tutorial are rather dense and are to be used more as reference 

material.  More important to listen to the speaker!
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Outline

• Part I: The scrape-off layer (SOL) and divertor

− SOL particle and power widths

− Divertor detachment

− Turbulent transport and SOL flows

• Part II: Plasma-surface interactions

− Material lifetime – erosion and migration

− Transients (ELMs and disruptions)

− Tritium retention

− Dust
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Divertor and SOL physics

Part I
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Terminology: limiters and divertors

Core 

plasma

Core 

plasma

Scrape-off layer (SOL) plasma: 

region of open field lines

Divertor targets

Limiter

Vessel 

walls

Private 
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LCFS
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Outer
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C
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JET #62218, H-mode, Ip = 3.0 MA, Bj = 3.0 T – notice the “ELM bursts” – more later

Part of the ITER ramp-up and ramp-down will be in limited phase – but quite short 

 ~10 s. Full burn divertor phase of ~400 s for the QDT = 10 inductive scenario

e.g. Limiter and divertor phases in many JET shots
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Basics – SOL density width, ln [1]
• Any solid surface inserted into 

a plasma constitutes a very 
strong particle sink

• In the high tokamak B-field:

G << G||

• Thin Debye sheath (lD few 
10’s mm thick ) forms at the 
surface  controls flow of 
particles and energy || B

e.g. L ~ 30 m (typical of JET): 

TLCFS ~ 100 eV, cs ~ 105 ms-1, 

D~ 1 m2s-1 (near SOL)

 ln~ 1.7 cm!!
cf. ITER minor radus = 2.0 m

Could be even worse for 

energy – see next ……

Quick and dirty estimate of ln with diffusive 
approx. for cross-field particle transport (all 
ionisation inside LCFS):
G  nv = -Ddn/dr ~ Dn/ ln 

v  D/ln ,  ln= tv

v||  cs ~ (kT/mi)
1/2
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SOL power width, lq

• SOL width for power, lq, is also small and is an important parameter of the edge 
plasma

• As for particle transport, the physics determining lq is an extremely active area of 
research and the experts still do not agree ….

• Scalings for lq can be derived from models and experiments, e.g.:

− “2-point” analytic modelling [1]: PSOL = power into SOL

− Scaling from H-mode experiments on JET [7,8]:

if parallel conduction dominates

if parallel convection dominates

− ITER modelling [9] yields lq = 5 mm, JET scaling gives lq = 3.5 – 4.5 mm 
mm (cf. a = 2.0 m for ITER)

− Fairly recent multi-machine scaling [10] gives lq/R ~ constant

− VERY recent high resolution measurements on several tokamaks are 
finding lq  1/Ip (like JET  lq  q95/Bj)

9/5 SOLq Pl

2

95

25.00.15.0 RqnBP uSOLq

 jl

5.15.0

95

25.00.15.0 RqnBP uSOLq

 jl
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lq still the subject of much attention

 

• Very new high precision near-SOL H-mode (inter-ELM) lq

measurements reported from NSTX, DIII-D, C-Mod and JET

− All machines find lq  Ip
a in H-mode with a ~ -1.0  -1.6 and little

dependence on PSOL, Bj, ne, ….

− Potentially serious implications for ITER target power handling (Ip = 15 MA!)

− What sets the value of lq? Parallel SOL transport? H-mode pedestal stability?

DIII-D, C. J. Lasnier et al. [12] NSTX, T. K. Gray et al. [13]
 

C-Mod, B. LaBombard et al. [11]
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Example power handling – ITER case

• Max. steady-state power 
flux density permitted at 
ITER divertor targets: 
q  10 MWm-2

• Magnetic and divertor 
geometry alone cannot 
reduce the power to 
tolerable levels

• Most of the parallel power 
flux must be prevented 
from reaching the plates
 divertor detachment 
and high radiative loss

CORE PLASMA

~100 MW

209.0~)/(2~ mBBRArea uqu l q||,u ~ 1 GWm-2 !!

Magnetic flux expansion 
~(B/B)u/(B/B)t ~3 for ITER 
outer divertor  low field line 
angles at strike points (a ~ 2.5º)

+
Target tilting in poloidal plane (b 

~ 25º for ITER outer target)

lq = 5 mm, Ru = 8.2 m, 

(B/B)u ~0.33

22.1~
)/(sin

)/(2
~ m

BB

BBR
Area

t

uqt





b

l
q ~ 40 MWm-2 per target if no 
radiative (or other) dissipation 
cannot be tolerated for more than 
~2-3 s on actively cooled surfacesRt = 5.6 m, (B/B)t ~0.11

u  = upstream 

t = target
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n* rises as nu rises, finite electron heat 
conductivity:
(note: k0,e » k0,i)
allows parallel T gradients to develop  Tt

decreases, but pressure balance maintained 
(p|| ~ 0) so that nt rises strongly (          )
lion ( 1/nt) decreases so that target recycling 
increases strongly  flux amplification
As Tt , radiation loss increases  Tt  further 

2/5

0||||||||, ,/ TKdsdTKq cond k

2

ut nG

The route to detachment (1)

Mean free paths for particle collisions are 

long: 

SOL collisionality:  is   low 

Power flow to surface largely controlled by 

target sheath: 

g = sheath heat transmission coefficient

epot = potential energy per incident ion
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The route to detachment (2)
At sufficiently low Tt, (< 5 eV), neutral 
ionisation rate < ion-neutral friction processes 
(charge exchange, elastic scattering). 
Momentum transferred from ions to dense 
cloud of neutrals in front of the plate (recycle 
region)  begins to reduce nt, p||  0 and 
plasma pressure falls across recycle region.
Once Tt ~1-2 eV (and if nt high enough), 
volume recombination locally “extinguishes” 
plasma, reducing target power flux

Detachment seen experimentally in many 
devices, but complex “volumetric” process –
modelling still has problems to reproduce.
X-point geometry  long connection lengths 
 high residence times in low Te plasma 
efficient radiative loss favouring power 
reductions where q|| is highest (i.e. on flux 
surfaces near separatrix).
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C-Mod, B. Labombard, et al., [14]
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Full detachment is a problem
J

E
T
, A
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b
e

r, e
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l. [1
5

]

• Detachment which is too 
“strong” (particle flux reduced 
across the whole target) is often 
associated with zones of high 
radiation in the X-point region 
and confined plasma (MARFE)

• MARFE formation can drive a 
transition from H to L-mode (H-
mode density limit) or disruption

• MARFE physics still not well 
modelled

Limit detachment to regions of highest power flux (where it is needed most).

Maintain remainder of SOL in high recycling (attached)

A few ways to arrange that this happens more readily:

Divertor closure Target orientation Impurity seeding
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Divertor closure

• Increased closure significantly improves divertor neutral pressure 
increased neutral density (nn), promoting earlier detachment

• Closing “bypass” leaks important for increasing nn

• Divertor closure also promotes helium compression and exhaust – very 
important for ITER and reactors

J
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Target orientation

• Parallel heat fluxes 
significantly reduced for 
vertical cf. horizontal targets

• Underlying effect is 
preferential reflection of 
recycled deuterium neutrals 
towards the separatrix

Hotter plasma 
near separatrix

Increased ionisation near sep. 

Higher nt, lower Tt

Higher CX losses  

AUG, A. Kallenbach, et al. [17]

Cooler, less 
dense plasma

Pressure loss  q|| 

S
e
p
a

ra
trix
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Impurity seeding
DIII-D, C. J. Lasnier, et al. [18] J

E
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]

D2 puff
92 torrls-1 for 1.8 s

Ne puff
12 torrls-1 for 0.1 s

Unfuelled

Strong D2 puff

Strong D2+N2

puff
Strong impurity 

seeding also 

reduces ELM size 

but a price may 

have to be paid in 

confinement
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ITER divertor achieves partial detachment
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Deep V-shaped divertor, vertical, inclined targets

Dome separating inner and outer targets –

reduces neutral reflux to the core. 

Also helpful for diagnostics, neutron shielding

Inner strike pt. Outer strike pt.
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Divertor helium exhaust
Apart from power handling, primary function 

of divertor is to deal with He from fusion 

reactions  compress D, T, and He exhaust 

as much as possible for efficient pumping 

(and therefore also good density control).

To cryopumps

Critical criterion for an ITER burning 

plasma is that He is removed fast enough 

such that: is satisfied. 

is the global helium particle 

residence time – a function of tp, the He 

neutral density in the divertor and the 

pumping speed (conductance) [21].

Helium 

enrichment:

is the ratio of He concentration in the 

divertor compared to the main plasma. 

105/*
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*

,Hept e.g. ITER: He prod. rate ~21020s-1

Max. divertor pumping speed 
~200 Pa m3s-1 ~ 11023 He atom s-1

 Cpump ~ 210-3 = 0.2%
Typical acceptable He conc. in the 
core: ~4%  He = 0.2/4 = 0.05 is 
minimum required. The values of 

and        required for ITER have 
been achieved experimentally

*

,Hept
He
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Perpendicular SOL transport

For many years in early tokamak research, measured density 

profiles in the SOL plasma often seem to obey an exponential fall off, 

implying that a Fick’s Law type diffusive ansatz is an appropriate 

description, e.g.: G = -Ddn/dr ~ Dn/ ln (see slide 7)

But in fact, the SOL 

density profile, when 

looked at more closely, 

often has more structure, 

itself dependent on 

discharge density/ SOL 

collisionality

Example from the 

TCV tokamak

O. E. Garcia, R. A. Pitts et al. [22]

 = 0 1

Note how broadening occurs mostly in the “far SOL”

Far SOL
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What causes the broad ne profiles?

The particle transport is 

intermittent, mostly convective, not 

diffusive. Particle flux time series 

are bursty. Most of the transport 

occurs during the bursts

TCV
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Far SOL

At high densities, bursts more frequent

• Relative amplitude of the bursts very 
high: nrms/<n>  1 at high density and in 
the far SOL at all densities

• These bursts take the form of magnetic 
field aligned “filaments” as they 
propagate through the SOL
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L-mode filaments on MAST

Probes provide quantitative 

data on the real particle flux, 

but only at fixed toroidal and 

poloidal locations.  Fast 

visible imaging allows the 3D 

picture to be seen but 

analysis more challenging.

These L-mode filaments are nothing more than small amplitude versions those seen during 

Edge Localised Mode (ELM) events

Courtesy MAST team, CCFE Culham
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Origin of the bursts?
• Thought now to be due to electrostatic interchange turbulence produced in the 

near SOL region

• Local relaxations in the edge pressure profile  ejection of bursts of excess 

particles and heat into SOL  radial motion due to electric drift (BB charge 

separation  EB drift), damping by parallel losses on open field lines

• All the basic physics captured by recent 2D interchange turbulence simulations

• ESEL code (Risø [23]) simulates 2D 
region centred on outboard midplane

• Exhaustively tested against TCV high 
density case [22, 24-25]

Particle density field



Page 23
Nuclear Fusion Engineering Masters, Torino, 11 January 2011 (ITER_D_42M7MW)

Bursty transport now in ITER baseline!

Stationary, inter-ELM power fluxes 
to ITER main wall now assumed to 
be dominated by convective, 
intermittent transport
Multi-machine study shows far SOL cross-field 
convective velocity weakly dependent on device 
size

lSOL = Lcs/vSOL = 4 – 17 cm, L~60 m for ITER

Power to ITER first wall <20 MW (20% PSOL)
Part. flux to ITER first wall < 11024s-1 (10% Gdiv)
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Region of connected SOL from 

inner to outer strike points
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Bj

BxB

ErxB, pxB

 transport 

driven

Pfirsch-

Schlüter

Divertor 

sink

ExB

FWD-Bj

Parallel SOL ion flows

Bj

BxB REV-Bj

Poloidal

Parallel

Determine transport of impurities from source to destination in a 
tokamak – material migration – T-retention (Slides 41-46)  

Field direction 
dependent
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wall

Flows can be very strong 
Have been measured on 
several tokamaks – TCV is a 
good example [27,28]

Main parallel flows are field direction 
dependent, density dependent and in the 
same direction as the plasma current

 Consistent with Pfirsch-Schlüter 
(neoclassical) flow

Mach probe

M|| = 0.5  v|| ~ 30 kms-1 !
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Plasma-surface interactions

Part II
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The plasma-wall interaction challenge

Perhaps the most critical area for 
ITER and for the long term 
feasibility of fusion energy 
production

Must guarantee: 

− Management of stationary heat flux 
densities at the limit of cooling 
technology 

− High throughput fuel cycle (low burn-
up fractions) with low Tritium retention

− Material erosion rates compatible with 
adequate lifetime and burning plasma 
purity
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Upscale to ITER is a very big step

Parameter
JET MkIIGB
(1999-2001) ITER

Integral time in diverted phase 14 hours 0.1 hours
Number of pulses 5748 1
Energy Input 220 GJ 60 GJ
Average power 4.5 MW 150 MW
Divertor ion fluence 1.8x1027 *6x1027

1 ITER pulse ~ 6 JET years divertor fluence

1 ITER pulse ~ 0.5 JET years energy input

*Code calculation 

• Stored energy ~  R5
 ~35 higher on ITER than JET [30]

• But deposition area for power in the divertor  Rlp

lp,ITER ~ lp,JET ~2.5 m2 ITER cf. ~1.0 m2 JET  ITER will 
project ~35x the energy into  only ~3x the area

Comparison with JET (World’s largest operating tokamak) for illustration

E
x

tra
c

te
d

 fro
m

 M
a

tth
e
w

s
 e

t a
l. [2

9
]



Page 29
Nuclear Fusion Engineering Masters, Torino, 11 January 2011 (ITER_D_42M7MW)

ITER materials choices
• Be for the first wall

−Low T-retention

−Low Z

−Good oxygen getter

Driven by the need for 

operational flexibility

• For low-active phase:

C for the targets
−Low Z

−Does not melt

−Excellent radiator

• W for the dome/baffles
−High Yphys threshold

• For D and DT phases:
−Be wall, all-W divertor

To avoid problem of T-retention

W

CFC

Surface areas: 

Be: ~700 m2, W: ~120 m2

CFC: ~35m2
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Critical PWI issues

Steady state erosion

Long term tritium 
retention

Material lifetime

Transient erosion

(ELMs, disruptions)

Material mixing

Short and long range 

material migration

Redeposition

All strongly 

interlinked

Dust production

T-retention and dust production are safety critical items and form 
part of the ITER Nuclear Licensing process
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Impurity migration

TransportErosion Deposition
Re-erosion

=Migration
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Impurity migration

Transport Deposition
Re-erosion

=Migration Erosion
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Chemical (carbon)

• Energy threshold  higher for 
higher Z substrate

• Much higher yields for high Z 
projectiles – important if using 
impurity seed gases

• No threshold  dependent on bombarding 
energy, flux and surface temperature

ITER divertor flux

D impact

Steady state erosion: sputtering
Physical

Adapted from Eckstein et al. [30] Roth et al. [31]

Steady state divertor target erosion rates 
(ERO modelling) due to Yphys and Ychem
estimated at ~0.4 - 2 nms-1 for ITER [32]
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Transient erosion
Transients are the biggest threat for large scale erosion in ITER. Burning 
plasma stored energy (~350 MJ) >> in the largest operating devices but 
surface areas for energy deposition only factor ~3x larger (slide 29)

ELMs Disruptions/VDEs

“Natural” ELMs expected to 
expel ~6% of Wplasma at 1-2 Hz 
[18]  peak energy densities on 
ITER divertor of 5-10 MJm-2 on 
timescales of 250-500 ms

Worst case full energy 
disruptions  peak energy 
densities on the divertor of 5.0-
20 MJm-2 on timescales of 1.5-
3 ms (thermal quench) 

Current quench: runaway electron currents up to 12 MA
with 10-20 MeV in localised areas on timescales of a few 
tens or hundreds of ms energy densities of 35-70 MJm-2
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Runaway electrons on Tore Supra

Deliberate creation of runaway 

electron plateau by injection of 

Neon impurity during Ip ramp 

up.

Thermal quench occurs 

between  -9.552 < t < 0.948 ms 

in the video

Subsequent attempts to control 

the runaway beam using 

tokamak PF control circuits 

one possible solution being 

sought for ITER

Courtesy J. Bucalossi, CEA Cadarache
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Disruption induced erosion
G. Federici, RACLETTE code [34]

Vapour shielding reduces 
CFC erosion

Loss of melt layer on W 
occurs if layer deep 
enough and force 
(evaporated layer plasma 
pressure, eddy currents) 
sufficient to trigger liquid 
instabilities (Kelvin-
Helmholtz, Rayleigh-
Taylor)  droplet ejection

Assuming 10% melt-layer loss, W divertor lifetime (0.3 cm PFC end 
of life thickness) exceeded in ~300 disruptions  efficient disruption 
avoidance or mitigation techniques required in ITER  major 
research priority for the ITER team

A. Loarte et al. [33] 
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e.g. W exposed to 100 pulses of 1.5 MJm-2

• Significant melting, bridging of castellation gaps, lifetime reduction

• Issues of operability on damaged targets, dust production
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ELM induced erosion

Real material limits are much lower 
 Results from Russian plasma 
simulators [36]:

Erosion limit for CFC reached due to PAN 
fibre erosion (fibres parallel to surface)

Erosion limit for W reached due to melting 

of tile edges

Crack formation on W observed at energy 

densities ≥ 0.7 MJm-2

Recommended damage threshold 
~0.5 MJm-2 now adopted by ITER
Will require ELM mitigation 
strategies to keep EELM < 1 MJ
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Could even be worse for W ….

Previous observations of surface crack saturation 
might be optimistic

Repetitive edge melting and crack propagation a 
worry for power handling and dust formation

Monoblock design issues  insufficient confidence 
yet to build all-W divertor for ITER

+500 plasma 

pulses + 2000 

cycles @ 

10MWm-2+300 

cycles @ 

20MWm-2

+500 plasma 

pulses

Pre-exposure 500 plasma pulses 

+2000 cycles @ 

10MWm-2+300 

cycles @ 20MWm-2+

500 plasma pulses
10 mm

Crack formation and 
melting under ITER-
like pulsed and steady 
loads on water cooled, 
W monoblock targets
Pulsed loads 
0.5 MJm-2



controlled ITER ELMs

B. Riccardi et al. [37]

Edge melting, 
bridge formation

Transversal 
cracks

Longitudinal 
cracks

Transversal 
cracks 

widening

Melted areas 
peeled off

Edge 
melting, 
restarts
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Impurity migration

Transport Deposition
Re-erosion

=Migration Erosion
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Ions:
Cross-field transport – turbulent driven 
far SOL ion fluxes (slides 19-23)
 recycled neutrals
 direct impurity release
ELMs can also reach first walls

Eroded Impurity ions “leak” out of 
the divertor (Ti forces)

SOL and divertor ion fluid flows can 
entrain impurities (slides 24-25)

Neutrals:
• From divertor plasma leakage, gas 

puffs, bypass leaks  low energy CX 
fluxes  wall sputtering

• Lower fluxes of energetic D0 from 
deeper in the core plasma

Transport creates and moves impurities

EDGE2D/NIMBUS

Bypass 
leaks

Escape via 
divertor 
plasma

Ionisation

D0 from wall ion 
flux or gas puff

CX event
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Impurity migration

Transport
Re-erosion

=Migration Erosion Deposition
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20g Be (BeII) 

450g C (CIII) 

~250 kg/year if JET 
operated full time!
C migrates to remote 
areas forming D-rich soft 
layers (high T-retention) 

Migration balance – example from JET
• Make balance for period 1999-2001 with 

MarkIIGB divertor: 14 hours plasma in 

diverted phase (50400 s, 5748 shots)

• Use spectroscopy and modelling to estimate 

main chamber sources

~400g C

22g Be
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Main 
chamber: 
source of 

net erosion 

• Post mortem surface analysis
− Deposition almost all at inner divertor

− Surface layers are Be rich  C chemically 
eroded and migrates, Be doesn’t move

− Outer divertor – region of net erosion or 
balanced erosion/redeposition – BUT 
mostly attached conditions (not like ITER)
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Tritium retention (1)

• A 400 s QDT = 10 ITER discharge will require ~50 g of T fuelling

(cf. 0.01-0.2 g in today’s tokamaks)

• Maximum in-vessel mobilisable T in ITER limited to 1kg [41]

− This is a safety issue

• In practice, administrative limit of ~700 g

− 120 g in cryopumps

− 180 g uncertainty

• Predicting the expected retention in ITER is fraught with 

uncertainty but progress is being made
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Tritium retention (2)

• For C, complex interplay between erosion 

 hydrocarbons dissociation/ionisation 

 transport  re-deposition  migration 

to remote areas with high sticking 

coefficients and retention in co-deposits

− Carbon traps D, T very efficiently

− D/C ratio can be in the range 

~0.4  > 1

• For Be, co-deposition of T also possible -

large potential source of Be from first wall

• For W, most of retention will be from 

implantation  not thought to constitute a 

large reservoir

• BUT effects of increased trapping due to 

neutron irradiation of metals – does not 

look like an issue from recent results
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J. Roth et al., [41] 

Co-deposition with C and Be depends 
sensitively on deposition rate, incoming 
particle energy, surface temperature [42]
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Tritium retention (3)

J. Roth et al. [41]

• EU-PWI Task Force and 

ITPA DIVSOL group have 

recently tried to estimate 

ITER T-retention

• Assume erosion 

determines co-deposition:

− T-retention = 

erosion rate x total co-

deposition concentration

• Add T implantation in W

• Compare materials options

Main driver of current ITER baseline strategy to begin D-T operations with 
full W divertor – only ~few 100 full performance DT shots predicted before T-
inventory limit exceeded if CFC divertor used in tritium phase

700 g
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Tritium retention (4)

K. Sugiyama et al., [43]
• Even though Be can readily 

trap tritium, fuel is released 
from Be co-deposits at 
much lower temperature 
than for C

− The main ITER fuel 
recovery strategy 
divertor bakeout capability 
to 350ºC is part of the 
Baseline design  most of 
the Be co-deposits 
expected in the divertor

− NB: main wall bakeable 
only to 240ºC
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• Expectation is that increase in duty cycle and erosion in ITER will 
lead to large scale-up in quantity of dust particles produced

• Like T-retention, dust is a safety issue [44,45] 
− dust particles radioactive (tritium + activated metals)

− potentially toxic (Be)

− potentially responsible for a large fraction of in-VV mobilisable tritium

− chemically reactive with steam or air

• Radiological or toxic hazard depends on how well dust is 
contained in accident scenarios and whether it is small enough to 
remain airborne and be respirable

− size needs to be <~ 100 mm

− depends on how dust is produced, e.g. crumbling of co-deposited layers or 
destruction (thermal overload) of tritiated layers during off-normal events

− tritiated dust can levitate in electric fields as a result of self-charging due to 
emission of beta electrons 

Dust – why worry?
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Dust – seen in all tokamaks

TCV: floor viewing IR camera during 
disruption, #33448 (J. Marki, R. A. Pitts)

DIII-D: floor viewing DiMES TV with near IR filter. 
2nd shot in 2007 after “dirty vent”, #127331. 
Courtesy of D. L. Rudakov [47]

• Dust is seen in all tokamaks, especially with C walls, but most often in first 
plasmas after long vent, or after disruptions when plasma touches surfaces not 
normally in contact with high heat/particle flux – not usually an operational issue

• First papers to recognize the potential importance more than 10 years ago [46]
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Significant quantities collected in JET 

7

90.3 g

11.7 g 81.5 g 27.1 g

0.35 g

60 mm

• Very recent dust collection 
from JET after ~6 years 
dominated by C but Be rich 
due to Be wall evaporation

− NB: 1 ITER pulse ~ 6 years 
JET operation in terms of 
divertor fluence (based on 
1999-2001 campaigns)

− We need to better understand 
dust formation, transport, fuel 
retention and decide how to 
measure it 

Total:
221g

− In a Be/W environment, is dust 
formation all due to disintegration of 
deposited layers?

− When does a layer of given thickness 
detach? What drives this process?

J. P. Coad, 
A. Widdowson, JET

J
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• Global quantity in the vacuum vessel (VV) – 1 tonne during D-D 

and D-T operation

• On hot surfaces (corresponds to amount of dust that could 

produce up to 2.5 kg of H2 during accident in case of full reaction 

with steam – requires air ingress):

− Be + H2O  BeO + H2, C + H2O  CO + H2, W + 3H2O WO3 + 3H2

− Complete reaction: Tsurf > 400C

− 6 kg of C, 6 kg of W and 6 kg of Be (for CFC/W/Be mix)

− up to 11 kg of Be (for Be alone) and up to 77 kg W (for W alone)

• When this dust inventory limit is reached (or if T-inventory reaches 
1 kg) ITER operation must be stopped and dust removed

• The real dust inventory will be reduced by measurement 
uncertainties (estimated to be about 30%)

ITER Dust – safety inventory limits
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