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INTRODUCTION 

The IGNITOR [1] First Wall–Limiter (FWL) must 
withstand the power deposited by the plasma. The relatively 
small effective area of the solid surfaces available for this task 
causes the heat fluxe onto the wall to be large. IGNITOR will 
produce about 20 MW of fusion power, to be exhausted on a 
surface of ~ 34 m2, with a peak heat flux above 1 MW / m2. 
The combination of thermal and mechanical stresses onto the 
Plasma-Facing Components (PFC) can severely limit the 
expected lifetime of these components, with negative 
influences on the machine maintenance costs. For this reason, 
it is important to evaluate the power distribution on the FWL 
with great accuracy under different operating conditions, in 
order to help an effective wall design. 

A number of sophisticated numerical codes exist to study 
the PWI in a tokamak [2-4], but most of them are optimised 
for a divertor configuration, and their application to 
IGNITOR is difficult. In fact, the use of magnetic-fitted co-
ordinates in modelling an edge plasma tokamak allows 
important simplifications for a divertor machine, provided a 
very crude treatment of the outer wall, far from the target 
plates, is tolerated. This is compromise is often accepted in 
divertor tokamak modelling, based on the assumption that the 
critical region for PWI is the divertor itself. 

However, the IGNITOR design does not include a divertor, 
and the outer wall should be studied in detail in all its 
extension. Furthermore, the confined plasma is in direct 
contact with the solid walls along a line where the wall itself 
is tangent to the magnetic field, which would add 
considerable problems if magnetic fitted co-ordinates had to 
be adopted. 

In addition, even if it is true that in other machines a 
considerable part of the PWI is localized in the divertor 
region, the correct control of the outer wall interactions with 
the plasma can still play an important role. For example, at 
JET there is experimental evidence that a large fraction of the 

energy expelled from the plasma during the so-called Edge 
Localized Modes (ELMs) is deposited onto the outer wall [5]. 
In addition, the typical ITER shot will have a limiter during 
the start-up and shutdown phases [6].  

In this paper we present the code ASPOEL, under 
development at Politecnico di Torino with the aim of 
providing sufficient geometrical flexibility to model properly 
the IGNITOR edge plasma, including its FWL, and to allow 
for an accurate evaluation of the heat flux distribution. In the 
next section, we recall the equations constituting the most 
common edge plasma fluid models. Then we discuss in some 
detail the geometrical problems, which prevent from the 
successful application of the most popular codes available, 
and the additional flexibility introduced by the CVFE method 
implemented in ASPOEL. After that we discuss the 
application of the ASPOEL code to a reference case in a 
somewhat simplified geometry. Then we illustrate the first 
application to the IGNITOR experiment and, finally, we draw 
our conclusions. 
 

MODEL EQUATIONS 

The physical model usually adopted in modelling the 
macroscopic behaviour of edge tokamak plasmas is a 
hydrodynamic model describing a mixture of charged fluids 
in a strong magnetic field. Due to the magnetization, the 
transport coefficients are strongly anisotropic, transport being 
impeded normal to the field [7]. The electric current flowing 
in the plasma is not strong enough to perturb appreciably the 
field itself, which can be considered externally imposed, 
within a very good accuracy. Furthermore, fluid analysis is 
interested in macroscopic spatial scales (larger than the 
plasma Debye length), and the fluid motion does not reach 
relativistic velocities. Finally transport normal to the magnetic 
field lines is not treated on a first principle basis, but is 
included mostly via a diffusive ansatz. The above conditions 
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allow formulating a standard set of equations for edge 
tokamak plasma [8].  

We consider the case of only one, singly charged ion 
species present in the plasma, and assume the electron and 
ion temperatures to be the same. In this case, the equations to 
be solved are: 

 

( ) 0=⋅∇+
∂
∂

ii
i un

t
n

                    (1) 

ie nn =                             (2) 

( ) 0ˆˆ
//

//, =++Γ⋅∇⋅+
∂

Γ∂
iiii

i Ipue
t

π            (3) 

irriri nDun ∇−=,                  (4) 

ie uu =                        (5) 

0
2
5

2
3

=⎟
⎠
⎞

⎜
⎝
⎛ +⋅∇+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

eeeBeeBe quTknTkn
t

       (6) 

ei TT =                                    (7) 
 

Equation (1) is the continuity equation for ions. An 
analogous expression for electrons is substituted by equation 
(2), called quasi-neutrality. Equation (3) is the parallel 
component of the ion momentum equation. Perpendicularly to 
the magnetic field, equation (4) describes the ion particle flux 
by means of a diffusive ansatz, while equation (5) states that 
there is no net current in the plasma. Equation (6) describes 
the electron energy transport, and finally equation (7) states 
that the ion and electron temperatures are equal. We solve 
equations (1)-(7) in a poloidal cross-section of the machine, 
taking advantage from the assumption of toroidal symmetry. 

Parallel to the field, transport is mostly collisional, and is 
described satisfactorily by the classical theory [7]. No 
satisfactory theory for the transport perpendicular to the field 
exists, and here we assume the corresponding coefficients to 
be constant for the sake of simplicity. The ion pressure pi is 
related to the density and temperature by the ideal gas law. 
For the ease of the reader, in the following we will sometimes 
express the temperature in eV units, as is customarily done in 
the plasma literature. 

COMPUTATIONAL IMPLICATIONS 

To make a simple estimate, we can assume the electron 
thermal diffusivity parallel to the magnetic field in plasma to 
be given by [9]: 
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while, in the perpendicular direction, a value 

3.0~rχ  m2/s                                           (9) 
 

is common. The edge plasma temperature is usually at least a 
few 104 K, but increases rapidly moving towards the plasma 
centre. In the cold outer plasma regions the density can be a 
few 1019 m-3. With such numbers, the ratio of the parallel to 
the perpendicular heat diffusivities is of the order of 103. In 
reality, due to its strong temperature dependence, it will 

increase dramatically in the inner edge regions. The magnetic 
field lines in a tokamak lie on a set of nested magnetic 
surfaces, as shown in figure 1, where they are represented by 
lines in a poloidal cross section crossing the machine 
symmetry axis. Any reasonable edge plasma computational 
code must have a mesh aligned with the magnetic field, in 
order to deal with such a strong anisotropy with an acceptable 
number of nodes. 

All the most popular edge plasma codes in use today deal 
with the plasma anisotropy by solving the plasma equations 
with the Finite Volume (FV) technique in a curvilinear 
orthogonal co-ordinate system, where the magnetic field lines 
(or, equivalently, their projection on the machine cross-
section) provide one set of co-ordinate lines. We refer 
conventionally to such co-ordinate system as (θ, r), θ being 
the poloidal (i.e. curvilinear along the magnetic lines 
projection) co-ordinate, and r the radial one. While this 
solution has the advantage of accounting for the anisotropy in 
a very efficient way, serious problems arise at the walls, 
which do not, in general, coincide with a co-ordinate line. 
Divertor target plates can be represented as θ = const. lines, 
provided the requirement of an orthogonal system is relaxed 
(however, some very popular plasma codes assume explicitly 
an orthogonal system [2], so that relaxing this hypothesis can 
cause some concern [10]). On the other hand, the 
representation as a θ = const. line of the outer wall, usually 
built with the minimum possible incidence angle to the 
magnetic field in order to distribute the thermal load as 
uniformly as possible, is not practical. In most cases, the wall 
is then approximated as a field line, i.e. as an r = const. line. 
The drawback of this solution is that the geometrical details 
of the outer wall are lost. This has been considered an 
acceptable compromise for a long time, but today there is 
increasing experimental evidence of strong interactions 
between the plasma and the wall far from the target plates [5], 
and the wall will play an even more important role in the 
ITER reactor [6]. Furthermore, tokamaks like IGNITOR and 
TEXTOR [11] do not rely on the divertor concept, so that this 
approach is not suitable in that case. 

Some attempts at providing increased geometrical 
flexibility, while retaining the framework of the magnetic co-
ordinates exist [11], but have been applied so far only to 
limited wall portions. At the other extreme, triangular 
unstructured meshes can, in principle, provide the required 
flexibility. Triangular Finite Elements (FE) are a possible 
alternative, which was explored in [12] and [13], up to 
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Figure 1. The IGNITOR equilibrium with some of the most 
external magnetic surfaces in the plasma. The last line is the 
outer wall  
 



 

producing a comparison of code results with experimental 
data, however without including in the domain the complete 
outer wall.  

We are moving further on using triangular meshes, by 
developing the ASPOEL code, based on the Control-Volume 
Finite Elements (CVFE) approach [14]. The method works on 
triangular meshes, dividing the computational domain in a set 
of control volumes (CV) obtained by joining the centres of 
the elements, as exemplified in figure 3. As in the standard 
FV method, the CVFE approach is based on the local 
application of the fluid conservation laws for each CV. To 
this aim, a prescription is needed on how to reconstruct the 
fluxes crossing the CV boundaries. We obtain this by 
interpolating the primary variables (velocity, pressure and 
temperature) on each element using properly chosen shape 
functions, as in the FE approach. This produces an expression 
for the primary variables on the whole domain, with values at 
the mesh nodes as degrees of freedom. Such expression can 
be used to compute the fluxes at the CV boundaries. The 
method derives its flexibility from the FE approach, retaining 
the conservativeness proper of the FV technique. 

In order to build the mesh, we select first a set of magnetic 
surfaces. Then we place a number of computational nodes on 
each surface and, finally we connect the nodes into a 
triangular mesh, with the additional requirement that no 

element edge can cross any of the selected magnetic surfaces. 
This procedure generates a triangular mesh, each element of 
which has an edge lying on a magnetic surface. 

To select the interpolating functions, we adopt for each 
element a local orthogonal (lθ, r) co-ordinate system. Then we 
write the interpolating function on each element as: 
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where the (directional) mesh Peclet numbers Peθ and Per 

are defined as: 
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with Vθ(r) the flow speed in the poloidal (radial) direction, δ//(r) 
the parallel (radial) diffusivity (of momentum, when solving 
equation (3) or of energy in equation (6)), and Lθ(r) the 
element extension. The constants a, b, and c are chosen to 
match the value of the interpolating function at the element 
vertices with the value of the primary variable to be 
represented. This choice, together with the particular 
construction of the mesh elements, reflects the natural 
separation between poloidal and radial directions in the 
plasma, and accounts for the possibly varying relative 
strength of convection and diffusion processes in different 
domain regions [14]. 

The system of algebraic equations resulting from the 
discretization procedure is linearized with a segregated 
approach. During the iterations, the momentum and 
continuity equations are coupled with the SIMPLE algorithm 
[15], in the formulation proposed in [2] for the particular form 
of the plasma fluid equations. 

APPLICATION TO A TEST CASE 

We describe here the application of the ASPOEL code to a 
reference case in order to illustrate, in a somewhat simplified 
case, the geometrical problems discussed above and the 
solution obtained with the CVFE approach.  
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Figure 2 Model cross section adopted to create the test case 
discussed in the text. Solid lines: the outer wall and the inner 
plasma boundary. Dashed line: the LCFS. Dotted line, the up-
down symmetry axis. The inner plasma boundary has been 
moved inwards to allow distinguishing it from the LCFS. 
 

 

 
Figure 3. A mesh of triangular elements (dashed lines) is 
used to generate a set of control volumes (solid lines) 
surrounding each node. Control volumes are built by 
joining the centres of each triangle with the mid-points of 
the surrounding sides.  
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Figure 4. Computational domain and mesh for the model 
problem described, represented in the (θ, ψ) space 



 

We consider a model tokamak, whose magnetic surfaces 
are perfectly circular coaxial tori, with major axis R0 = 1.5 m. 
The outer wall is a further circular torus, with the same up-
down symmetry plane as the magnetic configuration (we label 
it as the Z = 0 plane) but with major and minor radii Rw = 
1.51 m and rw = 0.51 m, respectively. Inside the plasma, we 
extend our domain up to the value 

 
495.0=inr  m                                 (13) 

 
With the mentioned data, the poloidal cross section of the 

Last Closed Flux Surface (LCFS) is a circle internally tangent 
to the outer wall at the Z = 0 location, as illustrated in figure 
2. The magnetic field runs on the magnetic surfaces with a 
constant pitch angle: 

1.0=
B
Bϑ                                    (14) 

 
We conventionally label the magnetic surfaces with the co-

ordinate 
225.0 r−=Ψ                             (15) 

 
Equation (15) assigns the value Ψ = 0 to the LCFS, and 

characterizes the Scrape-off Layer (SOL) with the condition 
Ψ < 0, as is often done in tokamak studies. The particular 
geometry chosen allows building an orthogonal mesh with 
reduced efforts: we simply adopt a cylindrical mesh in the 
cross-section plane with origin in the magnetic axis. The 
resulting mesh is best viewed in the (θ,Ψ) plane, as shown in 
figure 4. 

We solved equations (1) – (7) in the upper half of the 
model domain, taking advantage of the problem up-down 

symmetry. We list in table 1 the boundary conditions chosen. 
Both the geometrical dimensions and the boundary conditions 
of the model problem were chosen to reproduce roughly the 
operative conditions expected for IGNITOR. Conditions at 
the inner plasma boundary were set to be compatible with the 
edge parameters estimated in [16]. At the outer wall, the 
condition on the parallel momentum is almost standard in the 
literature [9], as opposed to the condition on the radial 
velocity component, for which the available analysis is very 
limited. We adopted the prescription proposed in [17], based 
on a kinetic model. At the inboard/outboard mid-planes, we 
choose the conditions in order to preserve the problem 
symmetry. 

The radial transport coefficients also were selected to be 
compatible with the expected IGNITOR values. We used: 

 
3.0=rD  m2 / s                             (16) 

5.4=rχ  m2 / s                              (17) 

3.0=rη  m2 / s                              (18) 
 
for the particle, energy and momentum radial diffusivities, 
respectively.  
We studied the spatial convergence of the code by monitoring 
the rate of particles and the power entering SOL from the 
inner plasma. Figures 5 and 7 show the observed reduction in 
the relative error estimate as a function of the number of 
nodes. The error estimate was obtained by comparing the 
result computed on the different meshes with an estimate of 

 Continuity Parallel 
momentum 

Electron 
energy 

Inner 
plasma 

ni = 2×1020 
m-3 

V// = 0 m/s Te = 55 eV 

Outer wall Vr = 0.01 
Vth,i 

V// = cs qe,// = 5ncsTe 

Inboard 
mid-plane - V// = 0 m/s adiabatic 

Outboard 
mid-plane - V// = 0 m/s adiabatic 

Table 1 Boundary conditions adopted for the model 
problem. 
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Figure 5 Estimated relative error in the particles entering 
the SOL as a function of the number of nodes. 
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Figure 6. Radial temperature (in eV) profiles at the 
outboard mid-plane on different meshes. The vertical line 
marks the LCFS 
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Figure 7. Estimated relative error in the power entering the 
SOL as a function of the number of nodes. 



 

the mesh-independent value obtained by Richardson 
extrapolation [18]. Both particles and power are stabilizing 
towards a final value, even if with different velocities. In 
figures 6 and 8 we also show the temperature and density 
radial profiles at the outboard mid-plane on different meshes. 
In addition to the total number of nodes, in each figure the 
meshes are classified by the number of radial nodes in the 
SOL (counted at the outboard mid-plane), as an alternative 
measure of the mesh resolution. 
 

APPLICATION TO IGNITOR 

We briefly discuss now the first application to IGNITOR 
of the ASPOEL code. Figure 9 shows the IGNITOR wall in 
the (θ, ψ) space, with ψ the poloidal magnetic flux. Besides 
the tangency point between the wall and the LCFS (marked 
by ψ = 0) there is, at the inboard mid-plane, a second location 
where the LCFS runs very close to the wall, at about 110o. 
This results in an almost complete division of the SOL in two 
secondary SOLs, each of which was meshed independently. 

We studied a case with the same boundary conditions and 
transport coefficients discussed in the previous section. In 
figures 10 and 11 we show the radial density and temperature 
profiles computed at the outboard IGNITOR mid-plane. Both 
curves are compared with an exponential profile with 
characteristic length 8 mm, which is often assumed to be 
comparable with the SOL width in IGNITOR. Both profiles 
show a substantial decrease across the SOL, but it is clear that 
the existence of a truly exponential profile is questionable. 

This is not completely surprising, because exponential 
profiles are usually derived based on simplified geometrical 
hypothesis, which are not satisfied in a real machine. 
Furthermore, even in the simpler case discussed in the 
previous section, the existence of exponential profiles was not 
guaranteed, especially for the temperature. Finally, in figure 
12 we show the heat flux distribution onto the IGNITOR 
outer wall, distinguishing the parallel and the radial 
contributions. The latter is often neglected in tokamak 
modelling, on the basis of the strong anisotropy of the plasma 
transport coefficients. However, a relevant contribution, 
similar to the one we found, in the regions where parallel 
transport is deleted by geometrical effects (i.e. at the tangency 
between the wall and the magnetic surfaces) is experimentally 
observed [19]. 

CONCLUSIONS 

We have discussed the implementation of the CVFE 
method in the ASPOEL code, for modelling the IGNITOR 
edge plasma with acceptable geometrical accuracy. We adopt 
triangular FE meshes, as some previous attempts, but retain 
the conservativeness of the classical FV method, on which 
most edge plasma codes are based. While developed 
purposely for IGNITOR, the code is in principle suitable to 
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Figure 8. Radial density profiles at the outboard mid-plane 
on different meshes. The vertical line marks the LCFS 
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Figure 9. The IGNITOR wall represented in the (θ, ψ) space. 
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Figure 10 Radial density profiles for IGNITOR at the 
outboard mid-plane. An exponential with characteristic 
length 8 mm is also shown for comparison (dashed). The 
vertical line marks the LCFS position. 
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Figure 11 Radial temperature profiles for IGNITOR at the 
outboard mid-plane. An exponential with characteristic 
length 8 mm is also shown for comparison (dashed). The 
vertical line marks the LCFS position. 



 

study also divertor plasma, including a complete 
representation of the First Wall. 

The physics included in the model is a simplification of the 
most developed models implemented in more sophisticated 
edge codes (e.g. drifts and diamagnetic transport are not 
considered), but it contains enough physics to allow a critical 
assessment of the method. We discussed in some length the 
application to a benchmark case, to study the convergence of 
the method. On this case, the method proved to be sufficiently 
robust. A preliminary application of the code to an IGNITOR 
case has also been reported, demonstrating the possibility to 
extend the domain of a fluid edge plasma model up to the first 
wall/limiter. 

NOMENCLATURE 

Symbol Quantity SI Unit 
ni ion density m-3 

ui ion velocity m / s 
ne electron density m-3 

Γ ion momentum kg m / s 
e// magnetic field unit vector - 
p ion pressure Pa 
π ion stress tensor Pa 
D// (r) parallel (radial) particle 

diffusivity 
m2 / s 

ue electron velocity m / s 
kB Boltzmann constant J / K 
qe electron heat flux W / m2 

Te electron temperature K 
Ti ion temperature K 
χ//(r) parallel (radial) heat 

diffusivity 
m2 / s 

ηr radial momentum diffusivity m2 / s 
δ// (r) parallel (radial) diffusivity m2 / s 

REFERENCES 

[1] G. Cenacchi, and A. Airoldi, Equilibrium 
Configurations for the IGNITOR Experiment, Rapporto 
ENEA FP01/1, (2001). 

[2] B.J. Braams, A Multi-Fluid Code for Simulation of the 
Edga Plasma in Tokamaks, NET Report EUR-FU/XII-
80/87/68, (1987). 

[3] R. Simonini, G. Corrigan, G. Radford, J. Spence, and A. 
Taroni, Models and Numerics in the Multi-Fluid 2-D 
Edge Plasma Code EDGE2D/U, Contributions to 
Plasma Physics, 34, (2/3), 368-373, (1994). 

[4] T.D. Rognlien, A Fully Implicit, Time Dependent 2-D 
Fluid Code for Modeling Tokamak Edge Plasmas, 
Journal of Nuclear Materials, 196-198, 347-451, (1992). 

[5] T. Eich, A. Herrmann, G. Pautasso, P. Andrew, N. 
Asakura, J.A. Boedo, Y. Corre, M.E. Fenstermacher, 
J.C. Fuchs, W. Fundamenski, G. Federici, E. Gauthier, 
B. Goncalves, O. Gruber, A. Kirk, A.W. Leonard, A. 
Loarte, G.F. Matthews, J. Neuhauser, R.A. Pitts, V. 
Riccardo, C. Silva, Power deposition onto plasma facing 
components in poloidal divertor tokamaks during type-I 
ELMs and disruptions, Journal of Nuclear Materials, 
(337-339), 669-676, (2005). 

[6] ITER Physics Expert Group on Divertor, ITER Physics 
Expert Group on Divertor Modelling and Database, Iter 
Physics Basis Editors, ITER EDA, ITER Physics basis. 
Chapter 4: power and particle control, Nuclear Fusion 
39, (12), 2391-2469, (1999). 

 [7] S.I. Braginskii, Transport Processes in a Plasma, 
Reviews of Plasma Physics, ed. M.A. Leontovich, 
Consultants Bureau, New York, (1965). 

[8] R. Schneider, X. Bonnin, K. Borrass, D.P. Coster, H. 
Kastelewicz, D. Reiter, V.A. Rozhansky, and B.J. 
Braams, Plasma Edge Physics with B2-Eirene, 
Contributions to Plasma Physics, 46, (1-2), 3-191, 
(2006). 

[9] P.C. Stangeby, The Plasma Boundary of Magnetic 
Fusion Devices, Institute of Physics Publishing, (1999). 

[10] F. Subba, and R. Zanino, Modeling plasma-wall 
interactions in First Wall-Limiter geometry, Computer 
Physics Communications, 164, 377-382, (2004). 

[11] M. Baelmans, D. Reiter, B. Kueppers, P. Boerner, 
Plasma edge fluid models for recycling at near 
tangential surfaces, Journal of Nuclear Materials, 290-
293, 537-541, (2001). 

[12] R. Zanino, Advanced Finite Element Modeling of the 
Tokamak Plasma Edge, Journal of Computational 
Physics, 138, 881-906, (1997). 

[13] R. Marchand, F. Meo, M. Simard, B. Stansfield, E. 
Haddad, G. Abel, J.L. Lachambre, D. Pinsonneault, N. 
Richard, TdeV team, Finite element modelling Da 
radiation and impurity transport in tdev, Journal of 
Nuclear Materials, 266-269, 1129 - 1133, (1999). 

[14] B.R. Baliga, Control-Volume Finite Element Methods 
for Fluid Flow and Heat Transfer, Advances in 
Numerical Heat Transfer, 1, 97-135, (1996). 

[15] S.V. Patankar, A Calculation Procedure for Heat, Mass 
and Momentum Transfer in Three-Dimensional 
Parabolic Flows, International Journal of Heat and Mass 
Transfer, 15, 1787-1806, (1972). 

[16] R. Zanino, Effects of High-Z Limiter/First Wall on the 
IGNITOR Plasma, DENER Report PT DE 501/IN, 
(1999). 

[17] K. Teilhaber, and C. Birdsall, Kelvin-Helmoltz Vortex 
Formation and Particle Transport in a Cross-field 
Plasma Sheath. II. Steady state, Physics of Fluids B, 1, 
(11), 2260-2272, (1989). 

[18] P.J. Roache, Quantification of Uncertainty in 
Computational Fluid Dynamics, Annual Review of 
Fluid Mechanics, 29, 123-160, (1997). 

[19] C.S. Pitcher, P.C. Stangeby, M.G. Bell, J.D. Elder, S.J. 
Kilpatrick, D.M. Manos, S.S. Medley, D.K. Owens, 
A.T. Ramsey and M. Ulrickson, Plasma fluxes to 
surfaces for an oblique magnetic field, Journal of 
Nuclear Materials, 196-198, 241-247, (1992). 

 

 
H

ea
t f

lu
x 

[W
 / 

m
2 ]

Poloidal angle [Deg]  
Figure 12. Computed heat flux distribution along the 
IGNITOR first wall 
 


