



# Fluid 1D ELM Modelling Status Report

F. Subba and R. Zanino Dipartimento di Energetica, Politecnico, Torino (ITALY)

In collaboration with D. Tskhakaya, Innsbruck Univertisy







#### Physical parameters

- Domain length: L<sub>//</sub> ~ 80m
- Pitch angle  $B_{\theta}/B = 6^{\circ}$
- Source temperature:
  - T<sub>e</sub> = 240 eV, T<sub>i</sub> = 260 eV, (steady)
  - T<sub>e</sub> = T<sub>i</sub> = 1.5 KeV (ELM)
- Electron free-flight time:  $\tau_e \sim 3 \ \mu s$
- Numerical parameters (fluid)
  - Spatial resolution:  $\Delta x \sim L/100$ , non uniform
    - Checked on pre-ELM steady state
    - Compared with PIC (BIT-1) results
  - Time step:  $\Delta t \le 10^{-9}$  s:  $\Delta t << \tau_e$













# Transient (ELM) Evolution

- Three cases running in parallel:
  - Same boundary conditions/flux limiters as for the pre-ELM phase
  - Parameters time averaged over the evolution
  - Time dependent parameters
- ELM intended duration: 200 μs







# Fluid Model Behaviour

- The fluid (B2) model develop unrealistic asymmetries
- No physical reason → they must be numerical
- Candidate solution strategy:
  - Reduce the time step
  - Increase the number of spatial nodes







### Conclusions



- Three different cases running in parallel (two reported in some detail here)
- All of them show similar un-correct behaviour
  - Not a time step problem
  - Not an internal iteration problem
- Other possible candidates:
  - A spatial resolution problem 
    → To be investigated
  - A numerical instability → To be investigated





## **ADDITIONAL SLIDES**









#### **Target Temperatures**







Table of time dependent boundary conditions and flux limiters coefficients, first half ELM (time in µs)

|              | 0 <t<1.125< th=""><th>t&lt;2.250</th><th>t&lt;3.0</th><th>t&lt;9.0</th><th>t&lt;26.25</th><th>t&lt;45.0</th><th>t&lt;63.75</th><th>t&lt;82.5</th></t<1.125<> | t<2.250 | t<3.0 | t<9.0 | t<26.25 | t<45.0 | t<63.75 | t<82.5 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-------|---------|--------|---------|--------|
| $\alpha_{e}$ | 0.12                                                                                                                                                         | 0.14    | 0.14  | 0.14  | 0.14    | 0.125  | 0.031   | 0.0185 |
| $\alpha_{i}$ | 0.1                                                                                                                                                          | 0.128   | 0.199 | 0.228 | 0.24    | 0.297  | 0.338   | 0.316  |
| β            | 0.46                                                                                                                                                         | 0.441   | 0.422 | 0.409 | 0.308   | 0.164  | 0.235   | 0.303  |
| $\gamma_{e}$ | 2.20                                                                                                                                                         | 11.9    | 51.5  | 51.4  | 16.9    | 4.74   | 3.33    | 2.38   |
| $\gamma_i$   | 3.80                                                                                                                                                         | 4.04    | 3.05  | 4.05  | 3.74    | 4.17   | 6.70    | 9.73   |