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Abstract
The new THELMA code, including a thermal-hydraulic (TH) and an
electro-magnetic (EM) model of a cable-in-conduit conductor (CICC), has
been developed. The TH model is at this stage relatively conventional, with
two fluid components (He flowing in the annular cable region and He flowing
in the central channel) being particular to the CICC of the International
Thermonuclear Experimental Reactor (ITER), and two solid components
(superconducting strands and jacket/conduit). In contrast, the EM model is
novel and will be presented here in full detail. The results obtained from this
first version of the code are compared with experimental results from pulsed
tests of the ENEA stability experiment (ESE), showing good agreement
between computed and measured deposited energy and subsequent
temperature increase.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Code development is a crucial issue towards the possibility
of predicting superconducting magnet behaviour especially
in the case of their utilization in large scale fusion devices,
such as the International Thermonuclear Experimental Reactor
(ITER) project, for the optimization of cost and performances.
Testing of real magnets, even sub-size or sub-modules, may
be extremely expensive and time consuming, so that it is
necessary to proceed on a double track both on the side of
experiments and of developing, implementing and validating
computational tools.

Cable-in-conduit conductors (CICCs) have been designed
for the ITER magnets. The superconducting material will

5 Author to whom any correspondence should be addressed.

be Nb3Sn for the central solenoid and toroidal field coils,
and NbTi for the poloidal field coils. Recent results on
the major world wide experiments such as the ITER model
coils and short samples [1–7] show that the predictability
of the coil behaviour is still not completely achieved and
some phenomena, such as current distribution and (for Nb3Sn)
local strain, can play a very important role in the magnet
performances and should be introduced in the simulation
codes.

A large effort has been devoted in recent years to the
development of codes to analyse current distribution and AC
losses in superconducting multi-strand cables. The main
difference between the developed codes is the approach used to
describe the electromagnetic phenomena: a lumped parameter
circuit description [8–14] or a distributed parameter circuit
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Figure 1. Schematic view of a segment of the cable in the case each
cable element CE represents a strand.

description [15–17]. Each approach has advantages and
disadvantages, which will not be discussed in this paper. The
approach used here is the distributed parameters one, which
seems to have some advantages when long, real size cable
are analysed and coupling with thermal-hydraulic phenomena
needs to be included.

In the framework of the European Fusion Development
Agreement (EFDA) activity towards the comprehensive
modelling of the ITER CICC, the new code THELMA
(thermal-hydraulic-electro-magnetic), has been developed
in a collaboration among Italian universities, under the
coordination of ENEA Frascati. The thermal-hydraulic
description is coupled with an electro-magnetic one, including
both the cable and the joints. In this paper we present the model
implemented in THELMA and the results obtained by the code
are compared with a subset of the experimental results from the
ENEA stability experiment (ESE), based on a sub-size CICC.
While THELMA was already applied to the analysis of pulsed
tests in a short (∼3 m) ITER full-size CICC [18], this is the
first application of the code to a long (∼34 m) CICC.

2. Model description

The main items of the model, namely the distributed parameter
electromagnetic model of the cable, the thermal-hydraulic
model and their coupling are described in this section. The
lumped parameter joint model, implemented in the full version
of THELMA, is not needed since we will consider only cases
with zero transport current, and therefore it will not be used
here or discussed further.

2.1. Electromagnetic cable model

The electromagnetic model of the superconducting (SC) cable
in THELMA is based on a distributed parameter circuit
approach. The equations of the model are derived from the
magneto-quasi-static formulation of the Maxwell equations.
The unknowns of the problem are the values of the currents
(Iα , with α = 1, . . . , NCE) in each cable element (CE), where
NCE is the number of CEs which are utilized to model the SC
cable. A CE can be anything from a part of a strand to a strand
bundle (e.g., a petal in a full-size ITER CICC). The current in
each CE is assumed uniformly distributed in its cross section
and is a function of one spatial coordinate (ζ , see figure 1),
which is measured along the cable axis line, and of time (t).

The equations describing the current distribution in the
CEs are derived from the induction law and have the following
form, with index γ , which varies from 1 to (NCE − 1):

NCE∑

α=1

∫ L

0

∂iα
∂t

(
ζ ′, t

)
mγ,α

(
ζ, ζ ′) dζ ′ = −∂Vγ

∂ζ
(ζ, t)

− Eγ

(
ζ, Iγ (ζ, t) , Tγ (ζ, t) , Bγ (ζ, t)

)

−
NEXT∑

β=1

dIEXT,β

dt
(t)MEXT,β,γ (ζ ) − dI

dt
(t) MUN,γ (ζ ) . (1)

In (1), iα is the difference between Iα and the current in the
CE α if a uniform distribution (among the strands of the cable)
of the transport current (I ) was present6, L is the length of the
cable, mγ,α is the induction coefficient per unit length7 between
two infinitesimal portions of CE α and CE γ , respectively, Vγ

is the potential of CE γ , Eγ is the tangential component (with
respect to the CE axis line) of the electric field in the CE γ , Tγ

is the temperature of CE γ , NEXT is the number of external
coils, IEXT,β is the current in the external coil β , MEXT,β,γ

is the mutual induction coefficient (per unit length) between
the external coil β and the CE γ , and MUN,γ is the mutual
induction coefficient (per unit length) between the whole cable
and its CE γ , when the current I is uniformly distributed
among the strands8.

Equation (1) considers the magnetic coupling between
each couple of segments of the cable elements. Usually it is
not necessary to consider all the magnetic coupling coefficients
but a maximum distance (dmax) can be defined and magnetic
coupling between CE segments, which are at a distance longer
than dmax apart, can be neglected (thereby reducing the CPU
time requirements). The value of dmax must be chosen case by
case (with a sensitivity analysis) depending on the geometry of
the system.

The tangential electric field in the CE (Eγ ) is a non-linear
function of the current, of the temperature (which is supposed
the same for the superconductor and the matrix material) and
of the magnetic flux density module (Bγ ) in the CE. Eγ is
calculated by solving the following equations:

Iγ = Jγ,sc Aγ,sc + Jγ,m Aγ,m;

Eγ = Ec

(
|Jγ,sc|

Jc
(
Tγ , Bγ

)
)n(Tγ ,Bγ )

× sgn
(
Jγ,sc

) = ρm
(
Tγ , Bγ

)
Jγ,m

(2)

where Aγ,sc and Aγ,m are the areas of superconductor and
matrix material, respectively, in the cross section of the CE
γ , Jγ,sc and Jγ,m are the current density in the superconductor

6 The model equations are derived for the current differences ‘i’ (instead of
the total currents in the cable elements ‘I ’). Among others, this helps avoiding
possible numerical problems that could arise when dealing with small current
imbalances.
7 In the rest of the paper, the induction coefficients, as well as the transverse
conductances, are always considered per unit length, unless otherwise
specified.
8 Thanks to the choice of dependent variable ‘i’, it is possible to split the
mutual induction effects into two contributions. The first one represents
the mutual induction between the CEs and the cable, if a uniform current
distribution among strands was present; this term is a known term because
the total transport current is a known quantity. The second one represents the
mutual induction between the CEs, which can be neglected when the distance
between CEs is large, as explained in the text below.
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and in the matrix material, Ec and Jc are the critical parameters
of the superconductor, n is the characteristic index of the
superconductor and ρm is the electrical resistivity of the matrix
material. Only NCE − 1 equations of type (1) are considered
in the model because the current in the last cable element is
derived by means of the following equation:

iNCE (ζ, t) = −
NCE−1∑

α=1

iα (ζ, t). (3)

The current balance on an infinitesimal length along
the generic CE γ gives the relation between the voltages
and the spatial derivative of the currents, connected by the
transverse conductance matrix (with generic element gλ,γ ) in
the following equations:

NCE∑

λ=1

gλ,γ (ζ, t)
[
Vλ (ζ, t) − Vγ (ζ, t)

] = ∂ iγ
∂ζ

(ζ, t)

+
NEXT∑

β=1

dIEXT,β

dt
(t)

{
NCE∑

λ=1

[
gλ,γ (ζ, t) MEXT,β,λ,γ (ζ )

]
}

+ dI

dt
(t)

{
NCE∑

λ=1

[
gλ,γ (ζ, t)MUN,λ,γ (ζ )

]
}

(4)

where the index γ varies from 1 to (NCE − 1). MEXT,β,λ,γ

and MUN,λ,γ take into account the magnetic coupling of the
external coil β and of the transport current, respectively, with
the currents flowing from CE λ to CE γ . The transverse
conductances, as well the parameters of the E–J characteristic
of the superconductor, must be derived from experimental data
on short cable samples. The mutual induction coefficients are
calculated numerically once the geometry of the axis line of all
cable elements is described.

Equations (4) are utilized to calculate the voltages when
the currents in the CEs are known. In matrix notation the
equation is the following:

V∗ (ζ, t) = (G∗ (ζ, t)
)−1
[
∂i∗

∂ζ
(ζ, t) + S∗ (ζ, t)

]
(5)

where V∗ is the vector of the voltages of the first (NCE − 1)
CEs with respect to the last one, i∗ is the vector of the first
(NCE − 1) current differences (see above), G∗ is the non-
singular reduced transverse conductance matrix with (NCE −1)
rows and (NCE − 1) columns:

G∗
λ,γ = gλ,γ if λ �= γ, G∗

λ,λ = −
NCE∑

γ =1
γ �=λ

gλ,γ (6)

S∗ is the vector accounting for the magnetic coupling through
MEXT,β,λ,γ and MUN,λ,γ .

In matrix notation the set of model equations, derived
from (1)–(6), is the following:
∫ L

0
m∗ (ζ, ζ ′) ∂ i∗

∂ t

(
ζ ′, t

)
dζ ′ = − ∂

∂ζ

{(
G∗ (ζ, t)

)−1

×
[
∂i∗

∂ζ
(ζ, t) + S∗ (ζ, t)

]}

− E∗ (ζ, i∗ (ζ, t) , Tsc (ζ, t)
)− Z∗(ζ, t) (7)

r 

q

Jγ,q

Jγ,r

Figure 2. Schematic view of current loops which produce
intra-strand losses.

where m∗ is the matrix of the mutual induction coefficient per
unit length, E∗ is the vector of the tangential components of the
electric field with respect to the CE axes and Z∗ is the vector of
the mutual inductances of the CEs with the external coils and
with uniformly distributed current.

Once the currents in the first (NCE − 1) CEs are calculated
by solving the integral–differential set (7), the current in the
NCEth CE is calculated by means of (3) and the (NCE − 1)
voltages are calculated by means of (5).

The linear power loss of the cable (Ploss) is calculated as
split into three terms: the power loss in the SC strands (Pstrand),
the power loss due to coupling currents flowing between
different CEs (Pinter-CE) and the power loss due to coupling
currents flowing inside the CEs (Pintra-CE):

Ploss (ζ, t) = Pstrand (ζ, t) + Pinter-CE (ζ, t) + Pintra-CE (ζ, t) .

(8)
The expressions of Pstrand and Pinter-CE are the following:

Pstrand (ζ, t) =
NCE∑

λ=1

Eλ (ζ, t)Iλ (ζ, t)

∣∣∣∣
d xλ (ζ )

dζ

∣∣∣∣ (9)

Pinter-CE (ζ, t) =
NCE−1∑

λ=1

NCE∑

γ =λ+1

gλ,γ (ζ, t)

[
V ∗

λ
(ζ, t)

− V ∗
γ

(ζ, t) − dI

dt
(t) MUN,λ,γ (ζ )

−
NEXT∑

β=1

dIEXT,β

dt
(t)MEXT,β,λ,γ (ζ )

]2

. (10)

In (9), the hysteresis component of the losses is neglected.
The derivative on the right-hand side accounts for the angle
between the CE axis (xλ(ζ ) is the spatial coordinate of the λth
CE axis) and the conductor axis. In (10) the term in the square
brackets is related to the electric field component in the cross
section of the cable in the direction from the axis of CE λ to
the axis of CE γ .

The expression of Pintra-CE is derived by means of a
heuristic model. It is supposed that, in each strand of
the generic CE γ , the magnetic flux density field, which
varies with time, drives current loops circulating between the
filaments of the strand. The current loops, which circulate
in the cross section of the strand (due to the magnetic field
component parallel to the strand axis), are neglected; see
figure 2. The magnetic flux density components Br and Bq in
two orthogonal directions, in the cross section of the strand, are
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considered and it is supposed that these two components of the
field are responsible of two current loops (with currents Îr and
Îq ), flowing between the filaments of the strand, with a typical
dimension of half a twist pitch of the filaments; see figure 2. It
is also supposed that these current loops can be described by
means of R–L circuits whose parameters have to be obtained
from experimental data. With reference to the generic CE γ ,
the expression of the intra-CE losses is the following:

Pintra-CE,γ = Nstr,γ [b( Î 2
γ,r + Î 2

γ,q) + 	+,γ ( Îγ,r , Iγ )

+ 	−,γ ( Îγ,r , Iγ ) + 	+,γ ( Îγ,q , Iγ ) + 	−,γ ( Îγ,q , Iγ )]
(11)

where Nstr,γ is the number of strands in CE γ , the first term in
the square brackets is the linear power loss due current flowing
in the transversal direction, and 	+,γ and 	−,γ are the non-
linear power losses due to current flowing in the longitudinal
direction given by

	+,γ ( Î , I ) = Astr

4
E

(
4 Î

Astr
+ I

Nstr,γ Astr

)

×
[

4 Î

Astr
+ I

Nstr,γ Astr

]

	−,γ ( Î , I ) = Astr

4
E

(
4 Î

Astr
− I

Nstr,γ Astr

)

×
[

4 Î

Astr
− I

Nstr,γ Astr

]
.

(12)

The intra-strand coupling currents Îγ,r and Îγ,q are calculated
by solving the following R–L circuit equations, once the
magnetic flux density terms on the right are known:

a
∂ Îγ,r

∂t
(ζ, t) + 
γ

(
b, Îγ,r (ζ, t) , Iγ (ζ, t)

)
= c

∂ Br

∂t
(ζ, t)

a
∂ Îγ,q

∂t
(ζ, t) + 
γ

(
b, Îγ,q (ζ, t) , Iγ (ζ, t)

)
= c

∂ Bq

∂t
(ζ, t) .

(13)
The expression of the resistive terms is:


γ (b, Î , I ) =
[

E

(
4 Î

Astr
+ I

Astr Nstr,γ

)

+ E

(
4 Î

Astr
− I

Astr Nstr,γ

)
+ b Î

]
. (14)

The model given by equations (11)–(14) depends on three
parameters: a, which has the dimension of an inductance per
unit length; b, which has the dimension of a resistance per unit
length; and c, which has the dimension of a length. These
parameters must be obtained from the fit of experimental data
on AC losses on short cable samples; see below.

The electromagnetic model just defined still requires
initial and boundary conditions: concerning the former, the
value of the current in each CE, at any spatial position, must
be known at the initial time; concerning the latter, the value of
the current at the inlet and outlet sections of each CE shall be
imposed at any time.

The discretization of the set of equations (7) is performed
by means of linear finite elements in the space coordinate.

Taking into account the boundary conditions, a set of first-order
ordinary differential equations in time is obtained in the form

A
dYem

dt
= F (t, Yem, Tem) (15)

where Yem is a vector whose components are the values of
the difference currents at each node of the mesh but the first
and the last one, A is a matrix which takes into account
the magnetic coupling between the currents at the nodes of
the mesh, F is a function (possibly non-linear, when near
critical conditions in the superconductor are present) taking
into account the external magnetic field, the Joule effect and
the transverse conductance effects and Tem is a vector whose
components are the temperatures of the conductor in the nodes
of the mesh. Equation (15) can be solved by means of a fifth-
order Runge–Kutta scheme, or by an implicit scheme based on
the trapezoidal rule [19].

2.2. Thermal-hydraulic model

An adequate thermal-hydraulic description of the cable is an
essential ingredient of the THELMA code. As seen above
in (15), some of the terms driving the evolution of the
current distribution of the cable depend on the CE temperature
distribution Tγ (ζ, t). Therefore, a model is needed, which is
able to predict the evolution of the temperature distribution
along the cable elements, consistently with the evolution and
distribution of the heat sources Ploss, computed in turn by the
electromagnetic part of the code; see (8) and following. In
this respect, the first issue concerns the level of detail that is
presumably required to describe the temperature distribution
on the cable cross section. For the sake of the present
comparison, we assume that the temperature distribution on
a given cross section is uniform inside each major cable
component, and namely represented on each cross section
by only three quantities: Tsc (strands), Tjk (jacket) and THe

(helium). This relatively rough level of detail on the cable
cross section is justified because the time scale for equipartition
of the temperature inside each cable component on a given
cross section is smaller (i.e., faster) than the time scales of
interest. For applications to cables where, for example, Ic/TCS

transients are studied and/or the use of wrappings naturally
identifies the petals as separate flow channels, an extension of
this model as discussed in [20] will be needed, including more
detail on the conductor cross section.

The thermodynamic state of the helium in the single
channel is described by its temperature THe(ζ, t) and pressure
p(ζ, t), while the compressible flow of the helium is assumed
to occur only in the axial direction, characterized by a
single flow speed v(ζ, t). The set of equations for the
five thermal-hydraulic unknowns (Tsc, Tjk, THe, p, v) is
given by the standard set of modified Euler equations for
1D compressible flow of the helium coolant, coupled to 1D
conduction equations for the heat transfer along the strands
and, separately, along the jacket, as used and validated, for
example, in the Mithrandir [21] and M&M [22] codes. Typical
boundary conditions for this set are: inlet THe, inlet and
outlet p, adiabatic strands and jacket at the cable ends. A
first-order finite element discretization in space and a fully
implicit scheme with frozen coefficient linearization are used
to advance the set in time, for a given value of Ploss.
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Figure 3. Set-up of the ESE. From the THELMA point of view, the background magnet and the pulsed coils are external (EXT) coils, while
the module consists of the different cable elements (CE).

Table 1. Specification of the 12-strand NbTi CICC from the ESE
experiment.

Strand manufacturer Vacuumschmelze
Strand diameter (mm) 0.60
Cu:non-Cu 5.75
Strand coating Bare
Filament twist pitch (mm) 20
Ic@6 T, 4.2 K (A) 80
Filament diameter (μm) 45
Cable layout 1 × 3 × 4
Twist pitch of 1st, 2nd stage (mm) 25, 40
Void fraction (%) 40
Conduit inner diameter (mm) 2.68
Conduit outer diameter (mm) 5.18
Conduit material CuNi
Conductor length (m) ∼35
Conductor winding Double layer

2.3. Coupling of electromagnetic and thermal-hydraulic
models

The electromagnetic and the thermal-hydraulic models need to
be solved simultaneously due to the temperature dependence
of the E–J characteristic of the strand. In order to solve
the electromagnetic step, the value of Tem should be known.
At the same time, in order to solve the thermal-hydraulic
step, the value of the power which is dissipated in the cable
elements (Ploss) should be known, but this can be calculated
only when the value of Yem is known. A simple coupling
scheme is utilized in the THELMA code: at each time step,
first the electromagnetic equations are solved with a constant
temperature and Ploss is calculated; then the thermal-hydraulic
equations are solved using the calculated Ploss as a driver,
averaged over the time step, and the update of the temperature
Tem is calculated.

3. The ENEA stability experiment (ESE)

A full description of this experiment has already been given
elsewhere [23–25]. The main characteristics are briefly
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Figure 4. Measured evolution of the current pulse in the pulsed coil
(left axis) and of the temperature at Tmod4 (right axis) for the shot
with �B ∼ 0.94 T and duration 10.8 ms.

summarized in table 1 and the apparatus is sketched in figure 3.
The test module is a double-layer solenoid, wound using a
sub-size (12 NbTi strands) cable-in-conduit conductor. The
simulations of pulsed tests of the ESE were performed with
the model described above.

A limited subset of experimental data was selected here.
These data were obtained by pulsing with different discharge
voltages the capacitor bank supply in order to obtain a fast,
homogeneous magnetic field change over the whole conductor
length, in the absence of transport current. This change
causes a temperature rise in the conductor that could be
measured by means of a thermometer (Tmod4) positioned along
the jacket at a distance of 17.5 m from the conductor inlet.
A typical temperature rise as measured by this sensor is
shown in figure 4. The deposited energy was evaluated from
magnetization measurements [26, 27]. Although it cannot
be claimed that this exercise will bring a direct validation of
the code capabilities to predict the current distribution, since
that was not measured in the ESE, it is still giving some
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indirect indication, as the computed current distribution will
be used below, together with measured conductances, to assess
the AC losses in the conductor and compare them with the
measurements.

A subset of the same ESE tests was already analysed using
the Gandalf code but this was done from a purely thermal-
hydraulic point of view [24]. In that case, due to the lack of
an electromagnetic model, the following procedure was used:
a uniform power was given as a volumetric heat generation
input to the code and parametrically changed in order to
match the measured temperature increase. In this way the
energy released for each voltage pulse was established. Since,
however, the mass flow rate was not accurately measured, an
assumption on its value had to be made for the calorimetric
assessment of the losses. With the THELMA code a self-
consistent procedure can be applied, in which the external
magnetic field pulse, calculated from the measured current in
the pulsed coil, becomes the major input needed for the code,
together with the transverse conductances and the parameters
for the Pintra-CE computation from (11), both deduced from
tests on short cable samples. An intense characterization
activity of short samples of the ESE conductor was indeed done
at University of Twente by means of (total) contact resistance
measurements and of AC loss measurements. In particular,
the transverse conductance between CEs will be obtained from
the measured values of the set of contact resistances, see
below, and the parameters of the intra-strand loss model will
be obtained from the AC loss measurements performed on the
short samples.

4. THELMA simulation setup

In order to simulate the experimental results by means of the
THELMA code, two different discretizations of the cable cross
section have been considered:

(1) Model A, with 12 CEs;
(2) Model B, with 4 CEs.

In the first case, each CE represents a strand of the cable;
in the second case each CE represents a triplet of strands.
In both models the transverse conductance matrix has the
form (16), but the expression of the matrices G1, G2 and G3 is
different:

G =
⎡
⎢⎣

G1 G2 G3 G2

G2 G1 G2 G3

G3 G2 G1 G2

G2 G3 G2 G1

⎤
⎥⎦ . (16)

In model A the following expression is utilized:

G1 =
[ 0 g1 g1

g1 0 g1

g1 g1 0

]
; G2 =

[ g2 g2 g2

g2 g2 g2

g2 g2 g2

]
;

G3 =
[ g3 g3 g3

g3 g3 g3

g3 g3 g3

] (17)

where g1, g2 and g3 are the transverse conductances between
two strands in the same triplet, two strands in adjacent triplets
and two strands in non-adjacent triplets, respectively.

The inter-strand and inter-bundle (i.e., between two
triplets) contact resistance (Rc) has been measured at the

Table 2. Contact resistance per unit length (Rc) measured on three
different ESE conductor short samples: inter-strand (IS) between
selected single strands from the first triplet (strand #1, 2, 3) and from
the second triplet (strand #5, 6); inter-bundle (IB) between the other
two triplets (#7, 8).

Sample #1 Sample #2 Sample #3
Strand combination Rc (n	 m) Rc (n	 m) Rc (n	 m)

1 and 2, IS 171 67 119
1 and 3, IS 191 78
2 and 3, IS 191 75
5 and 6, IS 440 58

1 and 5, IS 1290 55
1 and 6, IS 1010 121
2 and 5, IS 1260 121

7 and 8, IB 1780 124 1500

University of Twente on three conductor samples, having a
length of 160 mm each. The measurements are performed
at 4.2 K with a four-point-method. The resistance between
the selected cable elements is measured at one end of the
cable and the other end is cut by electric erosion. Further
details of the experimental method can be found in [28] and
the results are presented in table 2. Strands numbered from 1
to 3 belong to the same triplet; strands numbered 5 and 6 are
from the neighbouring triplet. The other two triplets are used
for inter-bundle measurements and are numbered as 7 and 8. It
appears that there is an extreme variation in the Rc, in particular
between the last-stage bundles. As by experience we know that
the spread from sample to sample is typically less than several
tens of per cents, while a variation of an order of magnitude
is extremely unlikely, we have no clue as to the reasons for
the spread of data in table 2. However, based on the database
for contact resistance measurements available in Twente, we
believe that the values of sample #2 must be considered as
being most representative for our conductor.

The values of g1 (6.00 × 106 S m−1), g2 (1.78 ×
106 S m−1), and g3 (0 S m−1), have been obtained by fitting
the experimental contact resistance measurements reported in
table 2 (the calculated value of Rc is ∼68 n	 m between
strands of the same triplet, ∼93 n	 m between strands of
adjacent triplets and ∼109 n	 m between strands of non-
adjacent triplets).

In model B, the only element of the transverse
conductance matrix which is different from zero (g =
G2, G1 = G3 = 0) refers to adjacent triplets. Its value could
be deduced in two different ways. Coherently with the values
utilized in model A, one should have g = 9g2, since each
strand of a triplet has the same conductance g2 with each strand
of an adjacent triplet, thus g ∼ 1.602 × 107 S m−1 is obtained.

Alternatively, the value of g can be calculated in order to
fit the data on inter-bundle Rc given in table 2. This can be
performed, under the assumptions of:

(a) constant transverse conductance between CEs along the
cable length,

(b) the same value of transverse conductance between
adjacent CEs,

(c) transverse conductance between non-adjacent CEs equal
to zero.
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Figure 5. Equivalent electric network used to compute the transverse
conductances between CEs when model B is adopted.

From the circuit in figure 5, the set of equations (18) can be
deduced:

R∗
c = V

I
= 3RL

4

RL = 1

gL

⎫
⎪⎬

⎪⎭
⇒ g = 3

4L R∗
c

(18)

where L is the length of the cable sample, R∗
c is the

measured value of the contact resistance and g is the transverse
conductance between CEs, resulting in a maximum value of
g ∼ 0.605 × 107 S m−1. The two approaches give somewhat
different results and neither is fully reliable in view of the
above-mentioned issues related to the spread of values in
table 2. Thus a weighted average g = 0.8 × 107 S m−1 was
used in the following computations, more weight being given
to the latter estimate of g, 0.605 × 107 S m−1, in view of
its direct experimental origin. With this value, the calculated
value of the contact resistance between two adjacent triplets, is
∼93.8 n	 m.

In order to simulate the intra-strand coupling losses with
THELMA, the heuristic model, which was described above,
has been used9, freezing the free parameters of the model based
on the analysis of the AC loss results on short samples10; see
appendix A.

With reference to model A, the values of the parameters
a (1 × 10−7 H m−1), b (3.77 × 10−6 	 m−1) and c (1.68 ×
10−4 m) were obtained (see figure 6), while for model B,
a = 2.39 × 10−7 H m−1, b = 9.00 × 10−6 	 m−1 and
c = 2.64 × 10−4 m were obtained. Both models are able to
correctly simulate the AC loss results on short samples, thus it
is more convenient for the simulations to adopt model B, which
is much less CPU-time consuming.

A first assessment of the THELMA code for the
simulation of the ESE was performed against the CUDI-CICC
code with reference to short conductor samples. Selected
results of this exercise are reported in appendix B.

9 Another possibility is to model the filaments in the strands by considering
a certain number of CEs to represent a single strand. The linear power loss
computed with this model was compared to that computed with model B,
showing a reasonable agreement.
10 In practice, only two ratios (a/c, b/a) between the three free parameters
could be fixed by the analysis of AC losses, since they are in the linear regime;
the third parameter could be fixed by a calibration on a single shot of the ESE
simulations.
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squares) deposited energy as a function of the pulsed field. For the
point at highest �B, the experimental evaluation of the energy is
missing.

The ESE runs, which were used for the THELMA
simulations, refer to different field rates, in the range 1–
130 T s−1; thus, both inter- and intra-strand loss mechanisms
must be well modelled in order to reproduce the experimental
results (see also appendix B). The simulation of ESE runs
with peak external voltage variable from 700 to 1500 V was
performed. In order to guarantee spatial convergence, a mesh
with 5 nodes per twist pitch length was utilized (uniform
grid with 4274 elements)11. The scaling given in [23] for
the filament Jc was used with the following values of the
parameters: Tc0 = 9.2 K, Bc20 = 14.5 T, α = 0.8, β = 0.8,
γ = 2.45, δ = 1.7, C0 = 7.45 × 1010 A m−2 T. Simulations
started from stationary thermal-hydraulic conditions with inlet
pressure and temperature respectively of 9.6 bar and 6.5 K
respectively, assuming a mass flow rate dm/dt ∼ 0.3 g s−1.

5. Results and discussion

Figure 7 shows the calculated energy dissipated in the
conductor versus the magnetic field pulse amplitude, which

11 A more refined mesh, with ∼7000 nodes, should be used to guarantee
convergence with model A.
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is compared to the measured one [26, 27]. The experimental
values of �Tmod4, i.e., the maximum increase of Tmod4, are
reported in figure 8, together with the experimental error bars
coming from the disturbance of the measured signal; see also
figure 4. With respect to the experimental evolution, see
figure 4, the calculated time evolution of the jacket temperature
is faster (see below); the maximum is reached in the calculation
about 100 ms after the start of the pulsed field, while in
the experimental data the maximum is reached after about
400 ms. This discrepancy may be explained observing that
the data acquisition system gives, during fast transients, a
delay between the actual jacket temperature and the measured
temperature [29], so that only the maximum temperature
increase �Tmod4 at the sensor is considered for the comparison
with the computations.

The measured deposited energy scales ∼ linearly with
�B, which was explained in [25] as being related to saturation
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Figure 9. Shot with �B ∼ 0.94 T and duration 10.8 ms. (a) Evolution of the computed power deposited in the strands. (b) Computed
temperature evolution of the strands (solid), helium (dashed) and jacket (dash–dotted) at the location of Tmod4 during and after the pulse
(the AC pulse begins at t = 0 s).

effects occurring in the cable, with the coupling currents
reaching the critical current Ic in some of the filaments. This
induces a similar dependence of the measured temperature
increase �Tmod4 on �B. The experimental behaviour is
well reproduced by THELMA, see figures 7 and 8, with
an agreement typically close to the experimental error bars.
Indeed, the simulations presented here confirm that the Joule
dissipation in the SC filaments (equation (9) and non-linear
terms in equation (11)) is typically larger (about twice) than
the total coupling losses (equation (10) and linear terms in
equation (11)).

The computed evolution of the thermal-hydraulic driver,
i.e., the power deposited in the strands due to the AC losses,
for the pulse with �B ∼ 0.94 T and duration 10.8 ms, is
reported in figure 9(a), together with the temperature evolution
of the different conductor components at the location of Tmod4

(figure 9(b)). The shape of the deposited power follows the
shape of the computed pulsed current derivative (not shown),
obtained from the experimental current evolution, and this
explains the irregular evolution. The current ramp-up is faster
than the ramp-down (see figure 4), leading to a far more intense
heat deposition during the first part of the transient (up to
10.8 ms). The peak value of the deposited power corresponds
to the phase of the ramp-up with the maximum slope, at ∼1–
2 ms from the beginning of the pulse. Since in the simulation
the power is deposited directly into the strands, the strand
temperature is the first to react, followed by the helium, which
cools the strands, and by the jacket, which is heated by the
helium and, for a certain fraction, directly by the contact with
the strands.

The power loss, as well as the temperature increase, has
been calculated above from the current distribution. The latter,
computed for example 4 ms after the pulse start-up in the
same simulation to which figure 9 refers, is shown for the
sake of completeness in figure 10, with reference to the sector
of the cable with axial coordinate between 2.0 and 2.2 m.
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Figure 10. Current distribution along a small portion of the cable,
4 ms after the pulse start—in the shot with �B ∼ 0.94 T and
duration 10.8 ms.

The picture shows that current loops (at zero total transport
current) develop between the CEs over half a twist pitch length
(0.04 m). This current distribution is representative of the
behaviour over most of the cable, except in the end and in
the middle sections, which correspond to the coil boundaries.
This is connected to the distribution of the magnetic flux
density along the cable, which is the only electro-motive force
present in the experiment. The total field (not shown) is
the superposition of the external pulsed coil field, which is
practically uniform along the cable elements, and of the self-
field, which has significant variations only in correspondence
of the upper and lower ends of the coil.

6. Conclusions

The electro-magnetic cable model included in the THELMA
code has been presented in detail for the first time, together
with the thermal-hydraulic model and their coupling. The code
has then been used to simulate the pulsed runs of the ESE
database.

Different discretizations of the cable cross section have
been utilized, based on either 4 or 12 CEs, each CE
representing either a triplet of strands or a single strand,
respectively. As it is crucial to include the generation of
intra-strand coupling loss in the overall computation, these
have been simulated with an approximate but not too CPU-
time consuming model. The input data for the THELMA
code (transverse conductance between CEs and intra-strand
coupling loss parameters) have been obtained by best fitting
contact resistance Rc and AC loss experimental data, which
were measured on short samples of the cable at the University
of Twente.

Some experimental runs of the ESE, with pulsed magnetic
field of different amplitudes and durations, were simulated.

The results show that it is possible to adopt an approximate
model (4 CEs) for AC losses in the cable, with parameters
based on the experimental short-sample data, when real-size
systems are considered, leading to a significant improvement
in the CPU time requirements.

Although it cannot be claimed that this work gives a direct
validation of the THELMA code capabilities to predict the
current distribution, since the latter was not measured in the
ESE, it does so indirectly, as the computed current distribution
is used to assess the AC losses in the conductor. These show
good agreement with the measurements, with reference to
both the deposited energy and the maximum increase of jacket
temperature.
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Appendix A. AC loss measurements on ESE
conductor short samples

The AC loss of ESE conductor short samples was determined
in a calorimetric way on a bundle of 15 sections, each 220 mm
long. The conductors were subjected to sinusoidal field
changes in a broad frequency range from 0.01 to 20 Hz. The
experimental results are reported in figures 6 and A.1, and
they show that the AC loss versus the frequency of the applied
field from the ESE conductor can apparently be described with
the commonly used single time constant model and that the
coupling current loss per unit volume goes with the square of
the applied AC field amplitude, B2

a . The coupling loss time
constants found for both amplitudes of Ba = 200 and 400 mT,
with Bdc = 0 T, both amount to nτ = 42 ms. The penetration
field is determined by means of the field dependent critical
current density Jc(B) relation combined with the filament
diameter (45 μm) and from the hysteresis loss extrapolations in
the AC loss curves at 200 and 400 mT amplitudes, giving good
agreement. The penetration field amounts to Bp = 240 mT.
This means that for Ba < Bp, no full penetration occurs
and this may lead to some underestimation of the AC loss
at the lower amplitudes (and higher frequencies) for the data
in figure 6. The experimental conditions did not allow for a
combination of higher frequencies and high Ba.

The experimentally determined coupling loss time
constant (nτ ) is an overall nτ , which contains the intra-strand
coupling loss (filament coupling and matrix eddy currents),
the inter-strand coupling loss, the eddy current loss generated
in the CuNi conduit and the coupling between conduit and
cable. The contribution to time constant of eddy currents was
calculated as described in [30] and resulted in being negligible
with respect to the experimental value. The level of inter-strand
(IS) Rc, in combination with the number of strands, gives a
rather effective indication of the inter-strand coupling loss time
constant of a CICC [28, 31, 32].

By using the results of a database available in Twente,
obtained on various CICCs, it becomes clear that, with the
present relatively high level of IS Rc (100 n	 m), the inter-
strand nτ is expected to be in the range of only a few ms, which
is far below the measured value of ∼42 ms for the conductor.
From the value of the twist pitch of the SC filaments in the
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strand a first estimate of the coupling loss time constant for a
strand can be calculated [28]. The twist pitch of the strand
has been determined as ∼20 mm (±10%) on two different
strand sections taken from different cabling stages of the same
piece of conductor. The outer copper shell was removed with a
solution of HNO3 and the filament twist was checked under a
microscope. Scaling the nτ for the ESE strand as with the data
from [28], for a twist pitch of 20 mm an nτ of ∼39 ms was
obtained. It can then be concluded that, due to the combination
of relatively long filament twist pitch and high inter-strand Rc,
the main loss mechanism at low frequency should be the intra-
strand coupling currents.

Appendix B. Comparisons with CUDI-CICC

As a complete description of CUDI-CICC can be found
in [10, 14], only the characteristics of the code which
are relevant for the comparison with THELMA are briefly
reviewed in this paper. CUDI-CICC is a dynamic code
that solves the Kirchhoff lumped parameters circuit equations
using an implicit time stepping method. The network mesh
handles one cable stage and so the cable is divided into Ns

subunits each representing one sub-cable. In the case of
the ESE simulation, four sub-cables (triplets) are considered
and represented by lines with infinitely small diameter and
twist pitch Lp,s = 40 mm, which equals the pitch of the
last stage. The sub-cables are represented by resistances Rs

and inductances Ls, connected in series, with interconnection
resistances Ra. Transverse resistances Ra between the cable
bundles are derived from directly measured values. The series
resistance Rs simulates current sharing from superconducting
filaments to normal conducting stabilizer due to current
saturation. After a length Lb = Lp,s/Ns the geometrical
configuration is repeated periodically and such a cable section
with length Lb is called a band. For comparison with
THELMA a short 200 mm section of the cable was considered,
corresponding to Nb = 20 bands in the CUDI-CICC model.

The comparison between THELMA and CUDI-CICC was
done with reference to current saturation of the coupling loss
in a cable and in a strand. At very high field rates, inter-
strand coupling currents can locally reach the critical current of
single strands in the cable, and intra-strand coupling currents

Figure B.1. The coupling loss per metre length simulated with
CUDI-CICC and THELMA as produced by a 200 mm cable versus
the applied dB/dt with T = 6.5 K and Bdc = 2.7 T.

can locally reach the critical current of single filaments in the
strands. A different behaviour is expected in the two cases and
it was studied by both codes. The pure inter-strand loss was
calculated by CUDI-CICC with a four-element model of the
cable but with two different values of the transverse resistance
Ra: (1) Ra = 12.7 μ	 leading to nτ ∼ 0.44 ms and (2)
Ra = 0.127 μ	 leading to nτ ∼ 42 ms. The same case was
analysed by THELMA with model B, neglecting intra-strand
losses, with two different values of the transverse conductivity:
(1) g = 8 × 106 S m−1, leading to nτ ∼ 0.44 ms and (2)
g = 8.2 × 108 S m−1, leading to nτ ∼ 42 ms.

The real case, with high intra-strand losses, was
calculated: by CUDI-CICC, with a four-filament model of a
strand with an outer diameter of 0.5 mm and a pitch of 20 mm;
by THELMA, with model B with g = 8×106 S m−1 and intra-
strand coupling losses (a = 2.39 × 10−7 H m−1, b = 9.00 ×
10−6 	 m−1, c = 2.64 × 10−4 m). A short 200 mm sample
of the cable, as previously described, subject to a uniform
magnetic field rate dB/dt was considered for the calculations;
the temperature was 6.5 K and the critical current density of
the superconductor was assumed to be 1.23 × 109 A m−2,
independent of the magnetic field amplitude, corresponding to
a magnetic field of 2.7 T.

The calculated power losses versus the field rate are
reported in figure B.1. A good agreement between the results
of the two codes was obtained. The figure shows that below
dB/dt ∼ 1 T s−1 the intra-strand loss is dominant, while at
increasing dB/dt the inter-strand component becomes more
and more important. The reason for this is the saturation of
the intra-strand loss when exceeding ∼1 T s−1.
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