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Abstract

We test the standard edge plasma code B2-solps5.0 on a model First-Wall Limiter (FWL) geometry. The presence of a
tangency point between the solid wall and the magnetic separatrix introduces a singular point in the geometry. A quadrilateral
computational mesh can fit the given configuration only if it is highly distorted, constituting a severe test for any numerical
scheme. The original 5-point molecule adopted by B2-solps5.0 fails to solve the plasma transport equations near the singular
point. A correction scheme is proposed, which is equivalent to adopting a 9-point stencil.
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1. Introduction construction of a suitable mesh becomes a major chal-
lenge.

First-Wall Limiters (FWL) have been proposed to ~ We test a popular edge plasma code, B2-solps5.0
handle the power loads on the Plasma Facing Com- [6]. on a model problem in FWL geometry. The code
ponents (PFC) of fusion devices, e.g., in the IGNI- adopts a 5-point computational stencil, which may
TOR design[1]. Although the concept is not new cause problems for a very distorted grid, as is needed
[2], most present Tokamaks are diver{8, so that to fit the FWL configuration. Then, we discuss a sim-
comparatively little experience exists on the advanced ple method to effectively switch to a 9-point scheme
modeling of limited plasma§,5]. A FWL presents  without changing dramatically the structure of the lin-
severe modeling problems, due to the presence of aear solver implemented. The main idea of the proce-
tangency point between the magnetic separatrix and dure goes back to the sevent[&$ but, to the best of
the physical wall. The most advanced edge simula- our knowledge, it was never applied to edge Tokamak
tion codes employ quadrilateral grids, and the strong modeling. It can provide an efficient way to improve
plasma anisotropy demands to align the grid cells with the commonly adopted schemesSection 2we illus-
the magnetic surfaces. Under these conditions, thetrate our model geometry and discuss a method to fit

a quadrilateral mesh. I8ection 3we analyze the 5-
Er— _ point stencil of B2-solps5.0, and determine its proper-
E_Orglsgggrg g;tiglosrhbba@po”to.it (F. Subba). ties on distorted grids. ISection 4we illustrate some

1 Supported by the Associazionerge Sviluppo Scientifico e curvilinear test cases, outlining issues resulting from

Tecnologico del Piemonte, Torino, Italy. numerical experiments. I8ection S5wve propose a cor-
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rection to the computational molecule, including the magnetic surfaces are circles concentric with arcs AD

grid skewness, and discuss some examples. Finally, inand FE. A similar, somewhat simpler, case was studied

Section Bve summarize our results and draw our con- in [10].

clusions. To generate a quadrilateral grid in the SOL region
(FBCEF) is possible, but it is intuitively clear the
cells must be extremely distorted near the tangency

2. Geometry and mesh point B. Leaving apart the technical details of the grid
generation algorithm, we show iRig. 2 the mesh

B2-solps5.0 is a 2D multi-fluid code based on the structure near the tangency point. We measure the grid

Braginskii model[8]. Its 5-point stencil is optimized  distortion with the skewnesK, which we define for

if the following hypothesis are satisfied: (i) the do- cell (i, j) as:

main is parameterizedith 2 curvilinear orthogonal

coordinates, one of which (poloidal) lies on the mag- Ki;j=1- (Zsin(am))/4. (1)

netic surfaces and the other, (radial) labels the surfaces

themselves, and (ii) the domain boundaries are coordi-

nate lines. Then the domain can be mapped onto a rec-

tangle, whose sides correspond to the poloigdabhd

radial (y) coordinates.

5-point stencils are attractive in many respdeéis

but may be inaccurate if (i) or (ii) are violated. In As discussed irSection 1 B2-solps5.0 adopts a

the applications, it is often difficult to meet both 5-point stencil. The performances of such a scheme

() and (ii). In diverted machines, target plates are degrade for extremely distorted grids such as that

tilted with respect to the magnetic field, to reduce shown inFig. 2 Here we analyze the scheme used,

the heat load, and the mesh must be deformed to fit aiming at assessing how it interacts with the grid

the actual PFC shape. For a FWL, the same problem distortion.

appears at the tangency point, but is much more We consider, for the sake of simplicity, a region

severe because the transfmtion to a co-ordinate  of space with a uniform magnetic field aligned to the

system aligned with the magnetic field and following x-direction, and neglect any curvilinear effects. With

the wall is singular. As an example, iRig. 1 we this setup, the magnetic field defines the direction of

illustrate the logical mapping of an edge plasma strong transport, but does not appear explicitly in the

onto a rectangle in the standard divertor case (left) equations.

and in our model FWL geometry (right), where up—

down symmetry was assumed. For the latter case, the

3. Influence of the 5-points stencil
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Fig. 2. Structure of a mesh neaettangency point. Note the all the
Fig. 1. Logical mapping of a physicdbmain onto a rectangle. Left: elements are quadrilateral, even if some of them look triangular on
a standard divertor case. Right: an FWL geometry. the scale of the picture.
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B2-solps5.0 solves a set of coupled fluid equations,

each of which can be written in the general form:

a9 3¢\ 9 )
ar ax (d’“x”x_DxE)Jr@(d’“y”y Dy3y >
9
=8—(f+L(¢)=S(¢), (2)

where the symbolp stands for the charged species
density, velocity, temperature or plasma potential. In
the homogeneous stationary cake,. (2) reduces to
L(¢) =0. At each nodéi, j) the previous equation is
substituted with the discrete approximation:

p=Llk=1

2

p=—1Lk=—1

Lij(¢)= a;{k¢i+p,j+k =0, (3)
whereL; ; and¢ are the discrete representationd.of
ande¢, respectively.
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which shows clearly the effect of the grid distortion,
amounting to the artificial introduction of terms pro-
portional to tari®) and tag(d). Under typical edge
plasma transport conditions we hawve, < nv, and
Xy < Xx [11], which evidently lessens the problem
of the additional spurious terms untildoes not be-
come too large. For the test case shown in the pre-
vious section we pushed the distortion up to values
tan(#) < 10%, in order to fit the tangency point. In or-
der to assess more quantitatively the relevance of the
spurious terms, we concentrate on the one growing
fastest inEq. (4) « x,tarf(). It is natural to eval-
uate its importance using the dimensionless parameter

We take as an example now the electron energy o = x, tan(@)?/x.. In evaluating what: can be for
equation, and make the additional simplification of a real modeling case, we should identjfy with the
constant coefficients. Although this is a major depar- poloidal conductivity, andy, with the radial one. In
ture from the properties of real plasmas, the qual- Fig. 3we show the variation of as the grid distor-

itative conclusions that will follow are independent
from the variation of the electron heat conductiv-
ity x with the plasma conditions. Having said this,
we identify ¢ with the electron temperaturé, D
with x, and write o, yy = 1.51, n being the elec-

tron density. The coefficients” fk are collected in
Table 1 where we seG,(y) = I 5nvy(yy/ hx(y) and

Hx(y) = \/(Gx(y)/z) + (Xx(y)/(hx(y))z)z- The geo-
metrical factorsh,(,) are the grid spacing along the
co-ordinatex- andy-directions.

Developing the temperaturg . , ;1. using Tay-
lor's formula, and taking into account the grid dis-
tortion, we obtain that the numerical scheme imple-
mented is actually consistent with:

a
L(T) = ((1 5nv, + 1.5nv, tan(9)) T
ax
oT
— (xx + x, tarf(®)) —
(Xx Xy ( )) 3x>
Table 1
Structure of the 5-point stencil employed by B2-solps5.0
i=-1 i=0 i=1
j=-1 0 —0.5Gy, — Hy 0
j=0 —0.5Gx — Hy 2(Hx + Hy) 0.5Gyx —
j=1 0 05Gy — Hy 0

tion increases towards extreme values. Two lines are
reported. The lower one assumes a valug,o$imilar

to the poloidal conductivity of a plasma &t~ 10 eV

and a ratioB, /B ~ 0.1 for the poloidal to total mag-
netic field, while the upper one considers the case
T ~ 1 eV[11]. As expected from the previous analy-
sis, we can see that the lower temperature case is more
sensitive to the grid distortion. The spurious terms in

—T=1 [eV]
== T=10[eV]

Xy tan”2@) / Xx

865 87 875 8 885 89

Grid distortion [deg]

4 L
85 855 86 895 90

Fig. 3. Relative importance ofhé largest spurious terms in-
troduced by the grid distortion, measured by the parameter
o =Xy tanz(e)/XX for two values of the parallel conductivity, as-
suming7, = 1 eV (solid line) andZ, = 10 eV (dashed line). The
horizontal lines marks the level where the unphysical terms intro-
duced by the mesh distortion becomes dominant.
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the transport equation start being comparable with the symmetry conditions. Both the heat and particle radial
physical ones for a distortion of aboutg@nd later diffusivities, are 1 is™1, the parallel transport is
on become quickly dominant. At the higher tempera- classical8].
ture, the scheme can tolerate a much larger distortion  Fig. 4 shows the effect of a poloidal grid refine-
without severe effects. ment on the computed heat flux along the FWL. The
Inthe general case of edge Tokamak plasma model- solution converges towards a mesh-independent pro-
ing, the extreme conditions required to seriously dete- file, except in a narrow regiom{5 cm), near the tan-
riorate the scheme properties may be sometimes mar-gency point at zero abscissa. The inset is a zoom on the
ginally found. In diverted Tokamaks it is common to  critical tangency region, to better appreciate the differ-
build the divertor targets nearly parallel to the mag- ences. For a completely converged solution we should
netic field, in order to reduce the peak power load on expect the heat flux to vanish at the tangency point, be-
the solid components. It could then be possible that cayse the sheath condition impogesi « ¢, T cos(8)
some not negligible effecippeared near the plates, \hereg is the angle between the magnetic field and
especially when modelingevy low temperature (de-  the normal to the wall. The convergence study should
tached) plasmas; this is probably an issue to be consid-pe completed by refining the mesh also radially. How-
ered on a case-by-case basis. As far as the FWL geom-gyer, from the previous section we see that this very
etry is concerned, the problem is much more dramatic. process would be ambiguous. An excessive grid re-
We already mentioned that in order to fit the tangency finement near the tangency point would increase the
point we pushed the grid distortion up to tan< 103'_ grid distortion (the quadrilateral cells would tend to
Under such conditions we expect that our simulations degenerate). Froiq. (4) after a threshold, the terms
should definitely show some distortion effects. In the depending on ta@) becomes dominant, leading to
next section we will describe the results of a few nu- the solution ofdifferent equations on different grids.
merical experiments performed in the full curvilinear By numerical experiment, it was found that attempt-
FWL geometry. ing further radial refinements drives the code unsta-
ble. The heat flux profile further on along the limiter
is much more regular and grid-independent. This is a
strong suggestion, even if not a proof, that the per-
turbation near the tangency point does not propagate
to pollute the solution globally. The approximate for-

4. B2test on FWL geometry

We describe the results of numerical experiments
on an FWL geometry. As a reference case, we studied
a pure D plasma in a domain with minor radius=
0.9 m, and extending in the inner plasma fob tm.

The magnetic field poloidal and toroidal components
are Br =13 T andB, = 2.5 T, respectively. We set

at the inner plasma boundary (tract AD Big. 1)
n=10%" m=3, and 7T, = 7, = 50 eV. In order to
impose the boundary conditions to the FWL (tract
FB in Fig. 1), we treat it as a standard target, and
apply the sheath theory, ignoring the singularity of the
tangency point for the sake of simplicity (the difficult
and possibly open issue of an adequate boundary
condition for the transition region between finite angle
of incidence and tangency point is beyond the scope of % 0z o4 06 08 192 14 t6 18 2

the present paper, sgE8] for a treatment of the sheath Distance along the limiter [m]

problem in the degenerate case ‘?f field parallel to the Fig. 4. Heat flux profiles along the FWL from a series of grids
wall). Far from the tangency point, along tract BC, \jth increasing poloidal refineme The results of a semi-analytic
we set zero radial particliux and temperature decay simplified model is also reported for comparison. (Inset: zoom of
length (1 m). Along tracts FA and DC we impose the different profiles near the tangency point.)

Heat load [W/m”2]




F. Subba, R. Zanino / Computer Physics Communications 164 (2004) 377-382 381

mula[12] a single flux tube ending to a solid surface along the
(—1/7p) boundary AD. Along BC we fixed the temperature,
q(s) = qo€ cosp) (5) while at the opposite extreme, AD, we $gB7/dx o

is commonly adopted to estimate the heat load on 71°. Along AB and CD we set the simplest possible
the Plasma-Facing Components in FWL geometry for conditions:d7/9é = 0, whereé is the skewed direc-
engineering purposes. Eg. (5)qgo is a normalization tion. For an orthogonal grid, this corresponds to zero
factor,! is the distance between the separatrix and the perpendicular flux. For a skewed grid we kept it be-
wall, Ag is the radial energy decay length. The heat cause of its simplicityFig. 6 shows correction for a
flux profile obtained withEq. (5)is also shown in distortion of 89 for two different maximum tempera-
Fig. 4for a qualitative comparison. tures:Tmax= 10 eV andlmax = 15 eV. The difference
between the corrected and not corrected case is clear at
the lower temperature, but if we incredBgax, the two
5. Scheme correction solutions becomes indistinguishable. However, push-

ing the grid distortion up to 89°%the correction effect
We discuss a possible modification to the B2-

solps5.0 scheme, to correct for the grid distortion. In Scheme correction: distortion = 89 deg
order to simplify the analysis, we make the further o T '
assumption of zero plasmalecity and concentrate Tmax = 15 [eV]
on the diffusive terms. The most natural way to cor- _
rect Eq. (4) would be to implement a 9-point com- 2, of
putational molecule. For example, it can be shown g
that the scheme becomes consistent if to the dis- g
crete operator. defined inSection 3we addK = -l
Xy (tan@)K1/2h.hy + tan0)?K/ h2) where the two =
additional computational molecules are:
4 —Not corrected
. (~@+2) 4 d-2n) e I o |
K= 1 0 -1 , Distance from the wall [m]
0 0 0 , . .
Fig. 6. Effect of the correction for a grid distortion of 89For

e 0O 0 O a low temperature cas@max = 10 eV, the temperature profiles
Kr=|11 -2 1]. (6) is sensitively different depending on having corrected the scheme

0 0 0 for the grid distortion or not. For a higher temperature case,

Tmax= 15 eV, the correction becomes influent.

Itis not necessarily desirable to move to a 9-point sten-
cil, because of the significaprogramming effort re- 16
quired. In order to avoid solving a larger system of
algebraic equations, we can think of treating explic-
itly the additional operatok . To show the effect our
procedure, we solved the test equation on a skewed
domain, shown irFig. 5. It represents schematically

Scheme correction: distortion = 89.5 deg

Temperature [eV]

—Not corrected|
----Corrected

0 5§ 10 15 20 25 30 35 40 45 50
Distance from the wall [m]

Fig. 5. Schematic representation of the domain used to test the Fig. 7. Effect of the correction for a high grid distortion 89.5he
correction for the grid distribution. correction effect is noticeable also for a large temperature case.
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becomes noticeable fd@kyax as high a¥max= 15 eV,
Fig. 7.

6. Conclusions

We analyzed the potentialities of the B2-solps5.0
code for studying the Scrape-off Layer in FWL config-
uration, as is planned, e.g., for IGNITOR. We showed
that a quadrilateral mesh fitting the magnetic geome-
try grid can be built in the neighborhood of the tan-
gency point, provided we tolerate substantial grid dis-
tortions. The 5-point scheme adopted by B2-solps5.0
is not designed to operate on distorted grids. How-
ever, if one line co-ordinate is aligned with the domi-
nant transport direction and the transport itself is suf-
ficiently anisotropic, thenaccuracy of the scheme is
small except near the tangency point. A relation has
been derived quantitatively analyzing the importance
of the distortion, and finding the marginal condition
for which it becomes relevant. For standard edge Toka-
mak modeling, the above requirements may be some-
times met in case of extremely tilted target plates and
very low temperature plasma (detached). For a FWL
configuration, the distortion effect becomes dominant

near the tangency point, and contributes to severely de-

teriorate the quality of the solution there. We proposed
a method to correct for the grid distortion without re-

F. Subba, R. Zanino / Computer Physics Communications 164 (2004) 377-382

sorting to a 9-point algebraic solver. Numerical exper-
iments showed the effect of the correction in simple
test cases. This is encouraging in view of coupling our
algorithm with the full system of equations solved by

B2-s0lps5.0.
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