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ABSTRACT

Some of the essential features of plasma transport in the tokamak edge with realistic divertor
geometry are simulated using adaptive finite elements to solve a time-dependent scalar
anisotropic conduction-convection-radiation problem. Solutions are compared with those
obtained on fixed finite element mesh and typically show comparable accuracy at a much
lower cost or much better accuracy at comparable cost.

INTRODUCTION

A good understanding of the phenomena that take place in the scrape-off layer (SOL)
region of tokamak plasmas is a critical issue for the success of the fusion program. From the
modeling point of view, some of the most challenging difficulties arise from 1) the complex
geometry of the tokamak SOL and 2) the strong anisotropy in the transport coefficients.

The first issue, in particular, led us in the past to develop the finite element (FE) code
FELS for 2-fluid plasma modeling of the tokamak edge [1]. A detailed comparison [2] with
the 5-point finite volume (FV) code B2 was performed on realistic divertor equilibrium with
straight target quasi-orthogonal to the poloidal magnetic field. We showed that the FE code
converged to the correct solution but, being the target geometry optimal for a 5-point FV
computational molecule, conservative FV proved to be more robust than non conservative FE,
on coarse meshes.

From the point of view of the comparison between FE and FV methods for the
tokamak plasma edge, however, some aspects appear to deserve some further investigation.
Here we shall concentrate on the following question: Can an adaptive mesh, which is
relatively easy to incorporate in an unstructured FE approach but difficult to realize with
structured FV, bring significant advantages in the solution of SOL problems?

The need for adaptivity has indeed become particularly apparent recently, with
hydrogen/impurity radiation being considered as a promising way to reduce the thermal load
on the divertor plates. In the presence of this type of transient phenomena, with nonlinear
radiation sinks strongly depending on the plasma temperature, the accuracy of the numerical
simulations will depend heavily on the possibility to locate and resolve (i.e., capture) moving
structures (fronts) characterized by very strong gradients in the solution. Probably the most



Presented at the Edge Plasma Theory and Simulation Workshop, Innsbruck, Austria, 6-8 July 1998
Accepted for publication in Czechoslovak Journal of Physics (1998)
2

efficient and accurate way to solve these problems at a reasonable computational cost is to use
an adaptive grid.

In rectangular geometry, the possibility to use an adaptive FE scheme to accurately
compute a steady state radiation front ("detached plasma") with anisotropic heat conduction
has already been demonstrated [3]. In this paper we extend the work of [3] by including time
dependency, convection, and treatment of realistic divertor geometry.

We follow the evolution of a scalar quantity (e.g., temperature) in the plasma using a
fully implicit scheme in time and Galerkin (P1) method in space. The set of nonlinear
equations arising at each time step from the discretization is linearized with a globally
convergent version of Newton's method based on a line-search backtracking procedure [3]
(outer iterations) and then solved using GMRES (inner iterations). The plasma solver is
coupled with an automatic unstructured (triangular) mesh generator [4] and the new solution
is checked at each time step so as to determine how and when to update the mesh. Results are
presented showing the flexibility of this strategy for modeling some of the essential features of
edge plasma transport in realistic geometry.

MODEL EQUATION

We consider the following anisotropic conduction-convection-radiation model
problem in a 2-D axis-symmetric domain (portion of the outer leg of a single-null SOL)
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Convection a and conduction q are split in components parallel to the magnetic field
(unit vector b) and perpendicular to the magnetic surfaces (unit vector e� briefly referred to as
radial in the following). The radiation sink S is in general a strongly nonlinear function of u
[3]. Magnetic field quantities are taken from a Grad-Shafranov solver and refer to actual
divertor equilibria of the Asdex-Upgrade tokamak [2].

Although the fluid SOL problem is obviously a vector one (continuity, momentum and
energy balances) this scalar problem can be considered as a good representative of the
difficulties met in solving the full system.

ADAPTIVE STRATEGY

The adaptive strategy (see also [3]) relies on a local interpolation error control based
on the Hessian matrix H, which is computed at each node of the mesh before creating the new
one. The user has essentially 4 free input parameters available: maximum norm � and
minimum norm � of the metric computed from H (see below), maximum rM and minimum rm

aspect ratio of the triangles in the mesh.
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To get the new mesh parameters, one must know the characteristic lengths along the
directions parallel and perpendicular to the poloidal magnetic field, l� and l�, which are
computed as follows: first the eigenvalues �1, �2 of H and the corresponding characteristic
lengths: l j = 1/�|�j| are determined. Then we construct the ellipse with axes l l1 2 and  parallel to
the Hessian eigenvectors, and take the intersections with the axes parallel and perpendicular to
the poloidal magnetic field, respectively. At this point we construct the aspect ratio r = (l �/l�),
and chop it if r>r M or r<r m.

In the reference frame with axes along the poloidal field and along e� respectively the
metric will be proportional to

M = 		
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To get the actual metric M1=� M a suitable value for the scaling factor � is needed.
This is used to have the norm of the metric span a desired range, which then influences the
refinement of the mesh to be generated [3]. If we define I1=[min ||H|| , max ||H||], and I2 =
[�,�], a monotonically increasing mapping I I1 2�  will provide a way to associate the metric
norm to the given H, so that the scaling factor � can be obtained. Until now we have used
linear or square root mappings (the latter leading to larger refined zones). The set of local
metrics is then provided to the BL2D code [4], which will generate an adapted mesh.

In conclusion, the influence of the input parameters on the mesh should be as follows:

� The metric norm controls the size of l� and l�: the bigger is the norm, the
shorter are the characteristic lengths, and the finer is the grid.

� The aspect ratio controls the alignment of the elements with the poloidal
magnetic field: the bigger is the aspect ratio, the smaller is the misalignment.

Figure 1 Final adaptive mesh for radial step  Figure 2 Target profiles for radial step

with purely parallel conduction with purely parallel conduction (fixed

mesh with 6927 nodes, final adaptive

mesh with 883 nodes)
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RESULTS

Effect of parallel conduction on radial layer broadening (pseudo-transient to steady
state). It is well known (see, e.g., [5]) that insufficient alignment of the triangles in the FE
mesh to the poloidal magnetic field will lead to large errors in the parallel fluxes and to
spurious broadening of layers in the radial direction (computed SOL thickness larger than the
actual one). When a fixed mesh is used this is indeed a problem and quickly overrides the
advantage of using an unstructured mesh for complex geometry [2]. Here we want to check if
an adaptive strategy can automatically provide enough alignment even with an unstructured
mesh. Since the mentioned difficulties are caused essentially by the dominant �|| we consider
first a test problem where this is the only transport mechanism (�||=102u5/2, ��=0). We follow
the evolution to steady state of an initial profile of u with a radial step but uniform along a
magnetic flux coordinate. Since this type of “contact discontinuity” should be maintained in
the presence of purely parallel conduction, all broadening in the computed steady state shall
be attributed to the effect of mesh misalignment.

We impose as boundary conditions a radial step at the mid-plane boundary, fixed u at
the outer wall and at the upper and lower separatrix, whereas u is left free at the target (i.e.,
vanishing normal gradient is imposed). During this transient the dimensionless time-step �t
automatically increases from 1e-6 to 1e-2 (the maximum allowed value). The initial uniform
mesh has ~ 7000 nodes. It is then automatically adapted 3 times and the final mesh, shown in
Fig.1, has ~ 1000 nodes. The final mesh is significantly refined near the step and well aligned
to it. The adaptive mesh fairly accurately captures the discontinuity, whereas if the mesh is
kept fixed a much more significant numerical broadening of the layer results (Fig.2).

Effect of parallel convection on MARFE-like structure (transient). We consider here
the parallel convection towards the X-point of a Gaussian shaped hole in u, initially located
near the outer target (see Fig.3), with a||=104, a�=0. Initially, at the bottom of the Gaussian
u=umin=1 while a few “radii” away from its center u=umax=2 everywhere. As opposed to the
case of Cartesian geometry the hole should not exactly preserve its shape, because b is not
divergence free. Therefore, a time convergence study was needed to determine the evolution
of umin as shown in Fig.3 (a space convergence study showed that 9936 nodes are enough to
obtain a grid independent solution on a fixed grid). It is seen that an adaptive grid with
typically ~ 1000 nodes (Fig.3) can give a solution of comparable accuracy than a fixed grid
with many more nodes. This is true, however, only if the grid is not adapted too often. With
�t=5e-8, 57 adaptations over a total transient time of 5e-5 give a solution which is only as
accurate as a solution with �t=5e-7 on the fixed grid (Fig.3). On the contrary, if a criterion for
adaptation is used that leads to only 20 adaptations during the transient, the solution is
comparable to that obtained with �t=1e-7 on the fixed grid (Fig.3). The observed “smoothing”
effect is due to the averaging intrinsic in the interpolation used in the adaptation process.
Macroscopically it results in some profile distortion and broadening as shown in Fig.3.
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Figure 3 Parallel convection of MARFE-like structure towards X-point using constant �t=5e-8. Zooms of the

computational domain including X-point (lowermost point) region and straight target on the right. Solution @

t=0 (upper left), and @ t=5e-5 on fixed mesh with 9936 nodes (upper center) and on adaptive mesh with 828

nodes (upper right). Adaptive mesh with 518 nodes @ t=5e-8 (lower left), @ t=5e-5 (lower center) and time

convergence study of umin (lower right).

Effect of nonlinear radiation sink (evolution to “detached” steady state). Here we
reconsider, in actual divertor geometry with oblique plate and using a time dependent
treatment, the problem of the balance between conduction (�||=102u5/2, ��=1) and nonlinear
(ionization/impurity) sink discussed in [3]. Boundary conditions are: u=50 at the core plasma,
u=2 at target and first wall, vanishing flux at mid-plane and private flux region. The sink S(u)
has a (slightly smoothed) square wave dependence on u and vanishes outside the u interval
(5,10). In order to simulate a “detachment” transient the amplitude of S(u) is increased in time
from 1e7 (attached solution) to 2e7 (detached solution) as shown in Fig.4. The final adaptive
mesh (Fig.4) has about 12000 nodes, most of which concentrated in the strong curvature
region 5<u<10 where the sink is active, and appears to properly follow the solution. We also
attempted to solve this problem on fixed meshes: a structured one, quasi-orthogonal and flux-
surface fitted with ~ 4000 nodes as used in [2], and a uniform unstructured one with ~ 15000
nodes. In both cases we were unable to properly reproduce the solution of Fig.4 and negative
values of u appeared systematically during the transient.

CONCLUSIONS AND PERSPECTIVE

We have shown the potential of adaptive finite elements to accurately simulate, for a
time-dependent scalar anisotropic conduction-convection-radiation problem, some of the
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essential features of plasma transport in the tokamak edge with realistic divertor geometry.
The solution and adaptive strategies, however, still have to be fully optimized.

We plan to extend this treatment to the full vector problem of a 2-fluid plasma as
modeled by the FELS code [1-2].

Figure 4 “Detachment” transient simulated by increasing the amplitude S of the nonlinear radiation sink S(u).

Zooms of the computational domain including X-point (lowermost point) region and oblique target on the right.

Attached solution for S=1e7 (left) used as initial condition for evolution to detached steady state with S=2e7

(center). Final adaptive mesh with 12631 nodes (right).
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Table 1 Mesh characteristics. BW=maximum band width, <�>=average misalignment [2], <�A>/<A>=area
averaged misalignment[2], m=type of metric mapping (L=linear, S=square root).

Problem / Mesh type Nodes Elements BW<�> (o) <�A>/
<A> (o)

� � rm rM m

Layer / unif. fixed (Fig.2) 6927 13150 9 12. 12. - - - - -
Layer / adapt. final (Figs.1,2) 883 1570 19 2.7 3.8 1.e-8 1.e8 5 50 L
Marfe / unif. fixed 9936 18971 10 15. 14. - - - - -
Marfe / adaptive @ t=5e-8
(Fig.3)

518 840 19 13. 10. 4.e4 4.e6 1 1 S

Marfe / adaptive @ t=5e-5
(Fig.3)

828 1353 14 13. 13. 4.e4 4.e6 1 1 S

Sink / unif. unstruct. fixed 14947 29462 10 1.6 1.6 5.e7 5.e7 15 15

Sink / unif. struct. fixed 3750 7192 7 0.24 0.31 - - - - -
Sink / adaptive final (Fig.4) 12631 24959 13 3.2 3.8 1.e5 7.e9 5 5 L


