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A finite element fluid model of the two-dimensional axisymmetric plasma
edge region in a tokamak is presented. A pure plasma with different electron
and ion temperatures is considered, where its evolution is driven by sources.
The sources are due to the interaction between plasma and neutrals recycling
at the walls, which are described by a Monte-Carlo code. A realistic curvilinear
(poloidal divertor) geometry is treated and can be discretized both with an
unstructured and with a structured flux-surface-fitted mesh generator. The
convergence of the code is demonstrated numerically and the results are
compared with those of a reference finite volume (conservative) code. Q 1997
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1. MOTIVATION

Over the last decade the edge plasma region has risen from (not only topographi-
cally) marginal to a rather central role. At present it is clear that, together with
the problem of confinement, plasma–wall interactions present the major constraints
toward a magnetic fusion reactor: heat loads on plasma facing components must
be reduced to technologically acceptable levels, impurities coming from those com-
ponents must be kept to a sufficiently low concentration in the plasma to avoid
excessive cooling and maintain ignited conditions, etc. [1]. Therefore, in parallel
with new experimental diagnostics of the plasma edge, more and more sophisticated
tools for the computational modeling of this region are being developed.

In a tokamak, the main plasma region is essentially one-dimensional, because
fast equipartition along magnetic field lines is allowed by the existence of closed
magnetic surfaces. On the contrary, the edge plasma region and, in particular, the
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scrape-off layer, i.e. the region with magnetic surfaces intersecting the plasma facing
components, is intrinsically (at least) two-dimensional. In fact, there is no principal
reason for having, e.g., the same plasma temperature at points on the same magnetic
surface, if they are at different distances from, e.g., the divertor target. The modeling
of the plasma edge is therefore much more complex than the modeling of the
main plasma.

From the point of view of the physics, due to the complexity and cost of a fully
kinetic description of the plasma, fluid models [2] are often privileged notwithstand-
ing their limited applicability [3], and the more general kinetic approach is mainly
used to derive suitable boundary conditions [4] and (long mean free path) correc-
tions to the constitutive relations.

From the point of view of the computational approach, finite volume codes have
been developed first [5] and have now reached a high degree of sophistication in
the physics they can treat [6]. During the last years, however, the problem of a
more detailed and accurate treatment of several geometrically complicated features
of the edge, e.g., solid targets extremely inclined to the poloidal magnetic field,
X-point region, etc., has led to considering finite elements [7–10] as an alternative
approach, able in principle to deal more naturally with the mentioned issues (let
us stress at once, however, that no existing finite element code contains at present
so much physics as the major finite volume codes). Very recently, then, and to the
same purpose, some finite volume codes [11, 12] have been upgraded to 9-point
computational stencils in order to allow their use on nonorthogonal grids.

The first attempt with finite elements—the FELS code—worked originally in a
model rectangular geometry [7] with only a simplified treatment of the neutral
particles [8], and similar limitations were also present in subsequent independent
work by other authors [10]. In those papers the computational emphasis was on
the stabilization of the finite element scheme by means of a suitable mesh choice
and/or a Petrov–Galerkin formulation [13]; however, both the essential physical
aspects of a realistic curvilinear domain and of an accurate model for the neutrals,
and the computational issues related to the energy conservation properties of the
scheme in realistic geometries, were not addressed; the adjective ‘‘advanced’’ used
in the title of the present paper refers to the inclusion of these aspects.

Curvilinear geometries both of the toroidal limiter type [14] (with vanishing
poloidal extension) and poloidal divertor type [15] were later treated with FELS
using as discretization of the spatial domain an unstructured mesh of triangles
stretched in the direction of the poloidal magnetic field.

However, it was subsequently realized [16] that the best alignment to the poloidal
field (see below), attainable with a (fixed) unstructured mesh, could still be insuffi-
cient to get a good global energy conservation; therefore, FELS was coupled to a
structured flux-surface-fitted mesh generator, showing a good comparison (in the
absence of sources acting on the plasma) with the reference finite volume code in
the actual poloidal divertor geometry of the ASDEX Upgrade tokamak. (Good
alignment has also been obtained with a novel unstructured mesh generator [17],
which is currently being used in conjunction with a newly developed finite element
code [18].) More recently, also the case of a model toroidal limiter (with finite
poloidal extension tangent to the plasma) was treated with FELS [19].
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Here the results of [16] will be extended to the case with either externally imposed
or self-consistent Monte-Carlo sources, demonstrating numerically the convergence
of the FELS code in both cases, and a detailed comparison with the finite volume
approach to plasma edge modeling will be presented. The paper is organized as
follows: in Section 2 and 3 respectively the plasma and neutral models are briefly
reviewed. The geometries of interest and the mesh generators available to FELS
are discussed in Section 4. Results are presented in Section 5.

2. PLASMA MODEL

The plasma in the edge is modeled as the mixture of two coupled fluids—electrons,
subscript ‘‘e,’’ and a single, singly charged ion species, subscript ‘‘i’’—in a given
magnetic field B; since the typical lengths are much larger than the Debye scale,
the mixture can be considered to be quasineutral (i.e., for the particle densities,
ne 5 ni 5 n); different temperatures Te ? Ti , but the same flow velocity Ve 5 Vi 5

V for both components are assumed.
The latter assumption, i.e. the absence of electric currents, is made for the sake

of simplicity and is rather customary in edge plasma transport studies (see, e.g., [5,
10]). A second important simplifying assumption in the model concerns the number
of nonvanishing components of the fluxes considered here; again similarly to what
was done in [5, 10], we include the parallel (to B) component and treat the compo-
nent perpendicular to the magnetic surfaces (radial component) with a diffusive
ansatz, but we neglect the so-called ‘‘drifts,’’ i.e., the (diamagnetic) component of
the fluxes perpendicular to B on the magnetic surfaces. It is still not clear whether
electric currents and drifts are essential in scrape-off layer modeling; however, they
have recently been included in some models specifically devoted to the study of
their effects [20].

Two coordinate systems will be of use here: (a) a cylindrical global one, (R, w,
Z), with R the distance from, w the angle around, and Z the distance along, the
symmetry axis; (b) a local one, defined by the unit vectors ew in the toroidal direction,
i.e. along w, eu in the poloidal direction, i.e. along the projection of B on the R, Z
plane, and ec 5 eu 3 ew in the radial direction. Axisymmetry (also called toroidal
symmetry), i.e. a/w 5 0 for any scalar a, is assumed throughout, thus reducing
the problem to 2D. Although some 3D effects in the edge plasma of a tokamak
can exist, because of, e.g., magnetic and/or first wall asymmetries, none of the
present edge plasma codes is three-dimensional.

Transport coefficients in the parallel direction are taken as classical, and the
corresponding constitutive relations are simplified versions [7] of those given in
[2]. On the contrary, transport coefficients in the perpendicular (w) direction are
anomalous and can be prescribed as arbitrary functions by the user. In general,
because of the anisotropy introduced by B, parallel transport coefficients can be
several orders of magnitude larger than the corresponding perpendicular ones [21];
this fact leads to a scrape-off layer which is radially very thin—O(1022 m)—
compared to its parallel length—O(102 m) and will also have an important influence
on the numerics in the following.



884 R. ZANINO

2.1. Weak Form of the Plasma Equations

The set of plasma model equations [2, 8] is brought into so-called weak (or
weighted residual) form by multiplying each equation with an arbitrary test function
f of space and integrating over the whole (3D) spatial domain V. As usual, multidi-
mensional integration by parts (Green’s formula) is then used, leading to surface
integral contributions from the boundary V of V and reducing the minimal required
degree of the polynomials to be used later in the finite element formulation.

The resulting set of equations is given by:

the continuity equation,

(rtf) 5 2kG · nflin 2 kG · nflout 1 (G · =f) 1 (S mf), (1)

where r ; mi n is the mass density, the subscript ‘‘t’’ indicates partial derivation in
time /t, G ; rV is the mass flux, Sm is the mass source; (b) ; e

V
b dV, and kcl

is the surface integral of c on V (the subscripts ‘‘in’’ and ‘‘out’’ refer to the subsets
of V, where G · n , 0 or .0, respectively, and n is the outward-going unit normal
vector to V);

the total parallel momentum balance,

(b · Gtf) 5 2kb · T · nfl 1 (b · T · =f) 2 (=b : Tf) 1 (b · SPf), (2)

where b ; B/uBu, T ; GG/r 1 (pe 1 pi)I 1 IIi is the momentum flux tensor (pe 5

nTe and pi 5 nTi are the pressures, I is the unit dyad, and IIi is the ion viscous
stress tensor, the electron viscosity being neglected here as usual), and SP is the
total momentum source;

a radial diffusion ansatz,

(Gcf) 5 2SD
r

c
fD, (3)

where D is the (anomalous) particle diffusion coefficient across magnetic surfaces;

the electron internal energy balance,

(Ds [pe]tf) 5 2kGE
e · nfl 1 (GE

e · =f) 1 (hG · [=pe 2 SP
e ]/r 1 Qe 1 SE

e jf), (4)

where GE
e ; GspeG/r 1 qe is the electron energy flux, qe is the electron conductive

heat flux, SP
e is the electron momentum source, Qe is the energy interchange due

to collisions between electrons and ions, and SE
e is the electron energy source.

Notice that the G · [=pe 2 SP
e ]/r contribution to the last term on the right-hand side

represents the ohmic heating and comes from the elimination of the electric field
E by using the electron momentum balance (while this strategy is generally accepted
for the parallel component of E, it is used here also for the radial component, only
for the sake of keeping the model self-consistent and as simple as possible—refer
to [22] for a more accurate treatment of the electric field in the edge);
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the total energy balance,

(Etf) 5 2kGE · nfl 1 (GE · =f) 1 (SEf), (5)

where E ; Ds(pe 1 pi) 1 AsG2/r is the total energy density, GE ; GE
e 1 GsGpi/r 1 qi 1

IIi · G/r is the total energy flux (including ion energy convection, conduction, and
viscous dissipation), and SE is the total energy source.

A few comments are due as to the choice of equations solved in the FELS code:
(1), (2), and (4) are present in most of the existing codes, whereas instead of (5)
the ion energy balance is often used (e.g., in [5, 10]); in B2 the total energy balance
is then relaxed to ensure energy conservation. Notice that (3) is kept as a separate
equation (as done in [5], but opposite to what done in [10]) in view of eventually
implementing a more complex form of radial transport (e.g., including inward pinch,
drifts, etc.); notice also that (4) cannot be written in conservative form.

As to the choice of dependent variables, we can observe that primitive variables
(r, velocity components, and temperatures) have often been used in the literature
(e.g., [5, 10]). Here we decided to use conservative variables (as far as possible; see
above). This simplifies the discretization of time derivatives and flux boundary
conditions and is obviously the most natural choice corresponding to equations in
conservative form. One possible disadvantage of our choice of dependent variables
can be related to the following, a priori not obvious, fact: in FELS Te is a derived
variable (Y pe/r); since the (huge) parallel electron heat conductivity is Y T5/2

e [2],
linearization (see Section 2.4) of the heat conduction terms in (4) and (5) leads to
coefficients Y r29/2; in (otherwise uninteresting) regions of very low density, these
coefficients can become very large and compromise the accuracy of the linearization.
Although it was not possible to prove it rigorously, we postulate that this is the
major reason for occasionally having Te R 0 in the numerical solution at nodes
where the density is extremely low (e.g., O(1017) m23).

2.2. Plasma Boundary Conditions

The problem of the boundary conditions to be imposed on the plasma described
by the set (1)–(5) is not yet a completely settled question from the point of view
of the physics.

Difficulties arise in particular with respect to two issues: (1) ion momentum and
energy transport to solid boundaries is complicated by the fact that the ion distribu-
tion function at the Debye sheath in front of a solid wall can be far from Maxwellian
because of the accelerating nature of the sheath for the ions, as opposed to the
electrons [4]; (2) in the practically relevant case of glancing (up to tangent!) incidence
of the poloidal field lines to solid targets, the sheath physics can change completely
(see, e.g., [23]) from the textbook situation of perpendicular incidence and, corre-
spondingly, affect the correct boundary conditions for the fluid plasma. Additional
difficulties can arise, as we shall see in the following sections, if artificial boundaries
have to be introduced for the purpose of, e.g., reducing the number of nodes
requested for a particular simulation.
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From the computational point of view, two types of boundary conditions can be
automatically implemented in the FELS code:

(1) Dirichlet-like boundary conditions. Here a combination of the components
of the vector of unknowns

u ; [r, Gi , Gc , pe , E ] (6)

is equated to some space and time-dependent function on VD # V (Gi ; b · G);

(2) Robin-like boundary conditions. Here a component of the vector of out-
ward fluxes,

gn ; [G · n, b · T · n, 2, GE
e · n, GE · n], (7)

is equated to some combination of the components of u on VR 5 V 2 VD .

Since (1) is hyperbolic in character, at least in the poloidal direction, boundary
conditions will have to be imposed only on the ‘‘in’’ portions of V, whereas the
‘‘out’’ integrals will be discretized as they are. Since (2), (4), (5) are parabolic,
some boundary condition will be needed everywhere on V, whereas obviously (3)
requires no boundary conditions. The specific boundary conditions used in the
present paper will be discussed in Section 5.

2.3. Space Discretization and Artificial Dissipation Mechanisms

A poloidal (vertical) cross section of the domain V is triangulated by means of
either an unstructured mesh generator (see Section 4.1) or a structured one (see
Section 4.2).

Linear Galerkin finite elements (P1 test and trial functions) are then used to
discretize the set (1)–(5) and the corresponding boundary conditions in space on
the chosen mesh of triangles. The choice of triangular elements, as opposite to [10],
where bilinear quadrilaterals were used, is motivated by the fact that we want to
be as flexible as possible in the description of complicated edge geometries. On
the other hand (see below), it could turn out that the optimal element choice is
probably a combination of quadrangles away from solid boundaries and/or X-points
and triangles in those regions. Since this would imply a significant increase of
complexity of the code, such a possibility has not been implemented yet into FELS.

The choice of test and trial functions also deserves a comment. On the one hand,
being the set (1)–(5) of second order in space, linear test and trial functions are
sufficient to obtain a nontrivial discretization, and the Galerkin method (using the
same set of test and trial functions) can be shown to be optimal in the case of a
linear elliptic problem [24]. On the other hand, the sources in (1)–(5) can be
extremely localized near the solid boundaries, and in the same regions the parallel
flow is assumed to become sonic [4], so that a situation can arise with steep poloidal
gradients in a region where convection dominates over diffusion/conduction (this
effect is nonlinearly increased by the T 5/2 dependence of the parallel diffusivities,
together with the significant drop of T near the solid boundaries). Therefore, unless
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a sufficiently fine mesh is available to resolve the steep gradients, spatial oscillations
will arise and extend even away from the convection-dominated region, making
the numerical solution of no use [24].

In FELS we have thus implemented two forms of artificial dissipation, in order
to provide some stabilizing mechanism to the pure Galerkin formulation:

(1) modified parallel artificial diffusion [24] in (1). I.e., we add to the physical
G in (1) the numerical flux 2Di(r/u)eu ; Di Y (Gi/r)h varies element by element,
and h is the diameter of the circumference circumscribed to the given triangle;

(2) following an idea of Argyris, instead of implementing a full Petrov–Galerkin
scheme for (1)–(5), which would become rather cumbersome [10], we weight, with
the modified Petrov–Galerkin test function, only the convective portion of the
residual in (2), (4), (5). Although not leading to a fully consistent scheme [13], this
still gives the desired streamline upwind-like diffusion and has the advantage of
being easily amenable, with straightforward algebra, to a simple modification of
the parallel diffusivities. In practice, the parallel viscosity h R h[1 1 f1(Re)], the
parallel electron heat conductivity ke R ke[1 1 f2(Pe)], and the parallel ion heat
conductivity ki R ki[1 1 f3(Re)], where Re and Pe are the mesh Reynolds and
Paclet numbers, respectively (recall that the classical parallel momentum and ion
heat diffusivities are both O(Re21) [2]). The definition of Re and Pe can be heuristi-
cally derived from the convection/diffusion ratios in (2) and (4), respectively. Using
h as the length scale one gets, element by element,

Re ;
hnVi

buh
, Pe ;

hnVi

buke
. (8)

Starting from the 1D recipe for convection–diffusion of a scalar as given in [13]
one finally finds that f1 5 l1[Re 3 coth(Re) 2 1], f2 5 l2[Pe 3 coth(Pe) 2 1], and
f3 5 l3[Re 3 coth(Re) 2 1]. The parameters l1 , l2 , l3 are introduced here both
as an external control on the numerical diffusivities (see below) and in view of the
uncertainties in the application of a recipe developed for a simple 1D scalar problem
to the complex 2D set (1)–(5).

For both of the previous artificial dissipation mechanisms, we check their effect
on a numerical solution in the following way: Once a steady state (see next section)
with Di and l1 , l2 , l3 ? 0 has been obtained, we restart with both Di and l1 , l2 ,
l3 reduced by, say, an order of magnitude, and we repeat this until no significant
effect can be seen in the solution. During the actual transient, however, vanishingly
small values of Di and l1 , l2 , l3 can be insufficient to obtain a converged solution.

In FELS the elemental matrix elements are computed in a local reference frame,
with the axes aligned with eu and ec at the center of mass of the element. With the
exception of the third term on the right-hand side of (2) a constant element by
element approximation is used for bu [18].

2.4. Time Discretization, Linearization, and Plasma System Solver

At this point the set (1)–(5) and its boundary conditions have been reduced to
a set of nonlinear ordinary differential equations in time; the unknowns are the
values of u at each node of the mesh.
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Although modeling of time-dependent phenomena in the edge (e.g., ELMs) has
very recently received attention [25], in this paper we shall restrict ourselves to the
more traditional study of steady states. Since time-dependency is used here only
as a means to solve a complex nonlinear set of equations, stability more than
accuracy becomes an issue. In FELS we chose to implement a q-method for the
time discretization, which includes fully explicit, Crank–Nicolson, and fully implicit
schemes. It must be noticed, however, that the very large parallel electron heat
conductivity essentially rules out the possibility of using explicit methods as in [9],
because the stability restrictions would become practically unacceptable; here, only
the fully implicit or the Crank–Nicolson options will be used.

The resulting set of nonlinear algebraic equations is linearized with a single
Newton–Raphson step, using as a guess at each new time step the last-obtained value
of u; the Jacobian is evaluated analytically (an alternative, numerical evaluation for
the same problem was discussed in [40]). Some form of relaxation (roughly in the
flavor of linesearch/backtracking techniques) is also applied, so that typically the
value of u at the new time step is taken as a convex combination of the last computed
value and the previously computed one.

In approaching a steady state with an unconditionally stable method, increasingly
longer time steps Dt can be taken; furthermore, the nature of the coupling to the
neutral particles as implemented in the code (see Sections 3.1 and 5.2) is such that
very different time steps can be taken just after or long after a Monte-Carlo call.
Therefore, a time adaptive algorithm has been implemented in FELS: depending
on the maximum relative variation, uDuu/u, of r, pe , and E on V between two
successive time steps, the old Dt is either decreased, left as it is, or else increased.
We typically increase Dt by a factor 1.1 if uDuu/u , 3%, or we decrease it by a factor
1.5 if uDuu/u . 5%. In the latter case the previous step is rejected and repeated
with the new Dt.

The set of linear equations obtained as described above is then solved at each
time step by a public domain solver. The most important features of the assembled
matrix are that it is sparse (as always with finite elements, because of the localization
of test and trial functions) and nonsymmetric (because of convection and nonlineari-
ties). Therefore we have chosen a well-known iterative method, GMRES, with
incomplete LU preconditioning, implemented in the routine DSLUGM of the public
domain library SLAP (sparse linear algebra package); block diagonal precondi-
tioning was found to be less efficient in most instances. For the cases at hand a
relatively large dimension of the Krylov space (from 20 to 40, say) was chosen;
smaller dimensions led to very slow or even no convergence of the iterations to
the prescribed tolerance (typically slightly above machine precision).

The FELS code is written in FORTRAN77 double precision.

3. MODEL OF THE NEUTRAL PARTICLES

For the description of neutral particles in the plasma edge, models at different
levels of sophistication can be found in the literature: semi-analytical simplified
ones (see, e.g., [8]), diffusive models (see, e.g., [10]), fully kinetic models (e.g., [26]),
Monte-Carlo models (e.g., [27]), and fluid (Navier–Stokes) models [28].
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Another way to compare the different models is by observing that not all of
these apply to any possible plasma condition; for instance, both Monte-Carlo and
kinetic models are typically linear, i.e., neutral–neutral collisions are neglected.
Because of the recent interest for very high neutral density regimes, on the other
hand, Navier–Stokes models have been developed, incorporating in the macroscopic
neutral transport coefficients, also the effect of those collisions (the extension to
nonlinear Monte Carlo has been very recently discussed in [29]).

For the time being, FELS is coupled both to a simplified model [8] and to the
Monte-Carlo code EIRENE [27]. The simplified model is essentially used only to
build initial plasma conditions not too far from the steady state for the FELS-
EIRENE coupled runs, so that not too many EIRENE calls are needed. From here
on, therefore, we shall restrict our discussion to the Monte-Carlo model.

EIRENE is a fully three-dimensional Monte-Carlo code developed with the aim
of investigating neutral gas transport in tokamak plasmas. It solves, for each neutral
(atoms, molecules) or trace (molecular ions) particle species of interest, the corre-
sponding linear kinetic equation, by means of statistical methods based on so-called
collision estimators or, alternatively, tracklength type estimators.

Essentially all the reaction rates of practical interest and the reflection properties
at solid walls are collected in the form of functional dependences on the relevant
parameters (e.g., plasma temperature) in two files of suitable form.

The user can define, mostly by means of a single input file, the domain geometry
(which does not necessarily coincide with, but more typically includes, the plasma
domain V), the types of neutral particles, and the corresponding reactions to be
considered, the number of particles to be launched, the solid reflection model, etc.
A user interface file is also present which does the I/O for the communication
between the plasma and the neutral codes (see below) and where the neutral
boundary conditions are defined.

3.1. Plasma–Neutral Coupling Algorithm

The plasma in the edge is very tightly and nonlinearly coupled to the neutrals.
The sources in (1)–(5) come in our case from the plasma–neutral interactions [30],
whereas, vice versa, the neutral histories strongly depend on the background plasma
conditions. In particular, the higher the plasma density, the tighter the coupling.
Furthermore, the sources are nonlocal in nature because their intensity and, to
some extent, even their location depend on the outgoing plasma fluxes at recycling
surfaces [8]. On the other hand, the evolution of the neutrals is typically much
faster than the evolution of the plasma [30], so that it is possible to assume that
during the evolution of the plasma the neutrals go through a succession of quasi-
steady states.

From the computational point of view it is important to notice that the cost of
a Monte-Carlo run is typically much larger than the cost of a plasma time step.
Therefore, we call EIRENE only every several plasma time steps (see Section 5.2).
After an EIRENE call we decide to call it again when the integrated plasma flux
on a recycling surface has changed relatively by more than a given fraction (typically
1 to 5%). This criterion is purely empirical and tries to avoid too large plasma



890 R. ZANINO

variations between two EIRENE calls, which would essentially impede the conver-
gence of the coupled system.

During an EIRENE run the execution of FELS is kept frozen, using the
LIB$SPAWN runtime library routine of the VMS operating system; i.e., EIRENE
is not treated as a subroutine of FELS. At the end of each EIRENE run the
execution of FELS is then automatically resumed. The two codes communicate by
means of files: EIRENE becomes from FELS one file with the finite element mesh,
one file with the plasma density and temperatures at each node in the poloidal
cross section of V, and another one with density, flow velocity components and
temperatures at each node of the recycling boundaries. In turn, FELS becomes
from EIRENE one file with the element by element distribution of the mass,
momentum, and energy sources.

The strategy we have just discussed is similar to what was originally used for the
B2/EIRENE coupling. When going toward high density regimes (above 0.5 3 1020

m23 at the midplane, say) the coupling between plasma and neutrals becomes so
strong that the procedure mentioned often leads to oscillations in time. In order
to avoid this, a so-called time-dependent Monte-Carlo approach (with EIRENE
treated now as a subroutine) has been developed recently [31], but it is not coupled
yet to FELS.

4. EDGE PLASMA GEOMETRIES AND MESH GENERATION

The two principal edge plasma geometries of current interest are those of the
poloidal divertor (in, e.g., ASDEX-Upgrade, JET, ALCATOR C-Mod, D-III D,
the ITER project) and of the toroidal limiter (in, e.g., TFTR, Tore Supra, FTU,
TEXTOR, the IGNITOR project).

The current status of divertor modeling is reviewed in [32]. Detailed limiter
modeling by means of 2D plasma codes is much less developed; the TEXTOR
geometry was modeled with B2/EIRENE [22] and with a finite element code [9]
(the finite element simulations were not very accurate, however, and the partly
explicit algorithm used in that code was too much CPU demanding [33]). More
recently, an FTU-like model geometry was treated with FELS [19].

From the point of view of the modeling, the major difference between limiter
and divertor is that in the limiter case a tangency line exists between the separatrix
and the limiter surface, whereas in divertor designs the plates are never at angles
below some degree, say, with respect to the poloidal magnetic field. This fact makes
the limiter modeling more difficult from the point of view of automatic mesh
generation and boundary conditions [19]. In this paper we shall concentrate on a
divertor geometry.

In both the limiter and the divertor cases it turns out that the finite element mesh
must obey certain requirements (in particular, of alignment to the poloidal magnetic
field; see below) in order to guarantee an accurate numerical solution. In the
following we shall briefly describe the major features of two mesh generators coupled
to FELS, together with their relative simplicity and ability to satisfy the above-
mentioned requirements.

We conclude this section by observing that very recently [34, 35] significant
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progress has been made in the generation of adaptive anisotropic meshes for gasdy-
namics, and we are currently investigating the application of those ideas to edge
plasma modeling [41].

4.1. Unstructured Mesh Generator

The problem of modeling a magnetized plasma in the edge of a fusion device
presents a peculiarity with respect to many other problems where finite elements can
be of interest; because of the huge differences between parallel and perpendicular
transport coefficients, the solution is expected to be fairly regular along poloidal
field lines (except near targets, or X-points, or wherever sources should be present)
with typical scale lengths much larger than in the radial direction [21] (a qualitatively
similar situation arises in gasdynamics, albeit for very different reasons, at shocks
and/or viscous boundary layers). This anisotropy implies, on the one hand, that
the elements could typically be very elongated and, on the other hand, that a very
careful alignment of at least one side of each element with the local direction of
the poloidal field should be guaranteed, in order to make the numerical errors in
the poloidal gradients as small as possible. The importance of the latter point resides
in the fact that the fluxes are obtained by multiplying those gradients by large
coefficients, so that large conservation errors could arise even with relatively small
errors in the poloidal gradients. In the context of finite elements, numerical experi-
ments on simple model problems with anisotropic diffusion of a scalar were reported
in [9, 10, 21], showing the widening of internal layers in the case of mesh misalign-
ment; in the context of finite volumes similar results were given in [36]. A rigorous
analysis of the effects of misalignment on a finite element scheme, however, does
not seem to be available yet, not even for simple model problems.

With the previous points in mind, we have modified an existing unstructured
mesh generator (see [14] and references therein) which produced an unstructured
mesh of nearly equilateral triangles using the advancing front technique, by including
the possibility of stretching the triangles along a locally prescribed direction, produc-
ing a mesh of triangles with locally prescribed aspect ratio.

The generator is rather general, in that it can deal in principle with any magnetic
geometry and any shape of the domain. It only requires the definition of the vertices
of the boundary of the domain (which can be connected by straight lines, arcs of
circumference, or cubic splines), and of the desired local element size, aspect ratio,
and stretching direction.

However, although meshes with average misalignments as small as a few degrees
can be easily obtained (see Figs. 2a–c and Table I) even in realistic poloidal divertor
geometries [15], this is not always sufficient to guarantee a good accuracy in a
strongly curvilinear magnetic field [16] (see also Section 5.1); therefore, we recently
included the possibility of generating a structured, flux-surface-fitted mesh, as dis-
cussed in the next section.

4.2. Structured Flux-Surface Fitted Mesh Generator

The structured mesh generator which is coupled to FELS essentially obtains a
mesh of triangles by regularly cutting into two the flux-surface-fitted, structured,
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but not necessarily orthogonal, mesh of quadrilaterals obtained by the Sonnet
generator [37] developed at Garching by H. P. Zehrfeld. Sonnet is coupled to the
Diva equilibrium code and can work in any measured or computed (by solving the
Grad–Schlueter–Shafranov equation) magnetic geometry.

From the point of view of the user, Sonnet essentially requires: a definition of the
solid boundaries (vertices connected by straight lines); a partition of the separatrix; a
definition of the flux-surfaces (c values) on which the nodes will then be requested
to lie. These nodes are obtained by mapping the partition of the separatrix on the
other flux surfaces using a certain number of orthogonals (to be prescribed) and
of nonorthogonals, separately in each of the various subdomains (e.g., private
region, scrape-off layer, core plasma). The nonorthogonals are needed in order to
be able to build a structured mesh in the relevant case when the solid boundaries
are not orthogonal to the poloidal field lines.

With Sonnet the average misalignments even in actual poloidal divertor geome-
tries fall down well below one degree, and this allows (see Section 5.1) a much better
accuracy than with an unstructured mesh. On the other hand, all the disadvantages of
a structured mesh appear; in particular, selective refinement near the X-points or
near complex solid boundaries, if needed, is impossible. In this respect, it is likely
that the optimal solution (not implemented yet in any finite element code for the
edge plasma) would be a mixed mesh of unstructured triangles near X-points and
complex solid boundaries, and structured quadrilaterals elsewhere. Of course, such
a choice would also make the code more cumbersome.

5. RESULTS

The results presented here refer to the geometry of the single null poloidal
divertor as shown schematically in Fig. 1. First of all a detailed comparison will be
presented between the results of FELS and those of the reference finite volume
code, B2, in the case of externally imposed sources (a first comparison in the
case without sources was already presented in [16]). For these tests the model
implemented in B2 was simplified such as to match the model given by (1)–(5). We
shall then concentrate on the results obtained with FELS/EIRENE. Convergence
studies for these cases will also be presented, with emphasis on the global energy
conservation properties of the present finite element formulation.

Since we are interested in discussing numerical convergence in space, very many
nodes are needed, so that in order to make the problem tractable from the point
of view of CPU and memory, only a subset of the whole edge region will be
considered, corresponding to the lower outer leg of the scrape-off layer. With
reference to Fig. 1: AX is the upper separatrix, X is the X-point, XB is the lower
separatrix, BC is the target, CD (on a flux surface) qualitatively represents the first
wall, and DA represents a midplane boundary. The magnetic geometry refers to
shot no. 4881 of the ASDEX-Upgrade tokamak, at time t 5 3s.

In Fig. 2 we show details of a typical unstructured mesh (a–c) and a typical
structured mesh (d–f), corresponding in Table I to the ‘‘unstr’’ and ‘‘1179’’ entries,
respectively; the two meshes have a comparable total number of nodes, and the
zooms refer to the proximity of the midplane (a,d), of the X-point (b,e), and of
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FIG. 1. Schematic view (poloidal cut) of the full axisymmetrical plasma edge region in a single null
poloidal divertor tokamak. The results presented here refer to the subset identified by the cross section
AXBCDA of the domain V, which is shown with a dashed pattern.

the target (c,f). A reference-structured mesh for the whole domain is shown in
[16]. Notice that an apparently reasonable alignment can be obtained with the
unstructured mesh generator, which can additionally provide a much finer (selective)
resolution near the X-point.

Only steady state results will be presented here, the steady state being defined
as the condition when the maximum relative variation uDuu/u of r, pe , and E on V

between two successive time steps is below a certain threshold (1025 to 1024, say),
and the time step Dt has reached a previously fixed maximum value (typically 1022

to 1 times the sound time scale).
In all cases presented here the boundary conditions (b.c.) imposed on the plasma

are as follows:

on AX Dirichlet b.c. on the density (1 3 1019 m23) and the temperatures (Te 5

Ti 5 50 eV), together with vanishing radial flux of parallel momentum;

on XB symmetry is assumed, i.e., a homogeneous Neumann b.c.; this boundary
is an artificial one, because the domain should in principle include the private region;

on BC—an outflow boundary for (1)—no boundary condition is imposed on the
density, whereas a Dirichlet b.c., isothermal sonic parallel flow, is imposed on the
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FIG. 2. Details of typical unstructured (a–c) and structured (d–f) finite element meshes with compara-
ble number of nodes (entries ‘‘unstr’’ and ‘‘1179’’ in Table I): (a,d) near midplane, (b,e) near X-point,
(c,f) near target.



895FINITE ELEMENT SCRAPE-OFF LAYER MODELING

TABLE I
Characteristics of Finite Element Meshes Used

MESH 1134 1136 1177 1178 1179 1180 1187 1188 1189 Unstr.

Elements 1344 2856 1798 3596 7192 7192 7440 6232 7488 7301
Nodes (total) 731 1530 960 1890 3750 3717 3984 3300 3971 3789
Nodes on upp. sep. 16 31 22 43 85 43 169 85 169 88
Nodes on separatrix (tot) 43 85 32 63 125 63 249 165 209 119
Nodes on midplane 17 18 31 31 31 61 16 20 20 19
Nodes on target 17 18 31 31 31 61 16 20 20 62
kal [8]a 0.69 0.55 0.52 0.31 0.24 0.26 0.42 0.36 0.33 2.4
kAal/AV [8]b 0.74 0.49 0.68 0.38 0.31 0.35 0.61 0.52 0.61 2.1
a . 18 [%]c 10 6 10 2 2 2 8 6 6 68
a . 58 [%]d 0.97 0.81 2.2 0.08 0.1 0.07 0.3 0.2 0.3 8

a Average misalignment (see text).
b Area weighted average misalignment.
c Fraction of elements with misalignment .18.
d Fraction of elements with misalignment .58.

momentum balance; as to the energy balances we impose Robin b.c. in the usual
[4] form of sheath energy transmission factors de 5 4.5 and di 5 2.5 for ions and
electrons separately (in other words we impose GE

j i 5 djGiTj , with j 5 e, i);

on CD we impose a Robin b.c. on the continuity equation (radial particle flux
fixed by a given radial scale length (5 0.01 m) for the density), vanishing radial
shear of the parallel flow velocity, and Dirichlet temperature pedestals (Te 5 Ti 5

2 eV); also this boundary is rather artificial, because the actual first wall hardly
coincides with a flux surface;

on DA, finally, we assume symmetry/stagnation conditions to apply; also this
boundary is artificial, because the domain should in principle extend around the
main plasma up to the inner target.

As a general comment on the use of artificial boundaries we can say that XB
and DA are considered here only because of the need to use a smaller domain for
performing convergence studies with a still tractable number of nodes; for a treat-
ment with FELS of the whole plasma edge, without need of introducing these
artificial boundaries, see [21]. On the other hand, if CD should actually coincide
with the first wall, from the physics point of view one would not really know at
present what to impose there as a b.c., because it would then have portions at very
small (but not vanishing) angles to the magnetic surfaces (see the discussion on
this point in [19]).

As to the various coefficients present in (1)–(5) we used, for the results reported
in this paper, the following values: uniform anomalous D in (3), and momentum
diffusivity (for radial viscosity), equal to 1 m2/s, uniform anomalous ion and electron
heat diffusivities, equal to 2 m2/s; classical [2] values for the parallel ion viscosity,
the parallel electron, and ion heat conductivities, and the electron–ion energy
interchange term Qe in (4). The ion species is deuterium.
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All of the computations were performed either on a DEC-Alpha 3000 workstation
at Torino, or on an IBM-RISC 6000 workstation at Garching.

5.1 Comparison against Finite Volumes with External Sources

In this section we assume that on the plasma act only an external mass source
S m and an external electron energy sink S E

e 5 2Ei 3 Sm (with Ei 5 30 eV); both
could be related, e.g., to ionization. The mass source is distributed as a Gaussian bell
centered in B, with decay lengths of 0.05 m (0.04 m) in the direction perpendicular
(parallel) to the target. The intensity of S m is chosen such as to contribute a
significant fraction (about 80%) of the total mass outflux through the target.

We shall now compare the steady state radial profiles of density and temperatures
(along the Neumann/Robin boundaries AD and BC) obtained with FELS, against
those obtained with the finite volume code B2. B2 is designed to run on a structured
orthogonal mesh of quadrilaterals, and the meshes on which FELS and B2 are
compared have the same location of the nodes.

The most important features of all of the meshes used in the present paper have
been collected in Table I. B2 was run on two (quasi-orthogonal) meshes (1177 and
1179 entries of Table I) and FELS was run also on several other meshes, both
structured (e.g., 1178 and 1189) and unstructured (‘‘unstr’’ entry). The comparison
between the results obtained with the two codes on mesh 1179 is shown in Figs.
3a–f. One sees that very good agreement is obtained for all relevant quantities.
Notice also that the weak nonorthogonality of meshes 1177 and 1179 appears to
play a very little role in the B2 solution, although B2 strictly speaking assumes an
orthogonal mesh (more precisely, c gradients are computed in B2, assuming that
the centers of mass of two ‘‘radially’’ adjacent quadrilaterals are connected by a
line which is orthogonal to the local flux surface, and this is exact only if the mesh
is orthogonal).

Another very important point is the comparison of the spatial convergence speed
of the two approaches: in Figs. 4a–f we report the profiles obtained running FELS
on some meshes (1177, 1178, 1179, 1189) which are poloidally progressively finer,
plus one unstructured mesh of comparable poloidal resolution as 1179. One notices
first that the results on the unstructured mesh present significant errors, notwith-
standing the relatively small misalignments of the elements (this was already noticed
in a rectangular geometry; see [16]); second, it appears that the results of FELS
converge spatially only after a mesh with significant poloidal resolution (compared
with the relatively weak poloidal gradients in the solution) is used. Even more
importantly, however, one can consider the comparison between the results obtained
from B2 on the two meshes 1177 and 1179, as shown in Figs. 5a–f. It is clear
that finite volumes converge spatially faster than finite elements in this example,
particularly as to the temperature profiles.

Our understanding of the previous difference between finite elements and finite
volumes is that the fact of satisfying exactly approximate global conservation laws
(as a consequence of local conservation) gives the finite volume approach a greater
robustness (in the sense of a weaker mesh sensitivity) than the finite elements. In
the case of the continuity equation the fluxes are themselves unknowns, so that
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FIG. 3. Comparison between FELS (solid lines) and B2 (open squares) steady state results on mesh
1179, with external sources: (a–c) midplane profiles versus radial distance [m] from separatrix, (d–f)
target profiles versus distance [m] from B along target; (a,d) particle density n [m23], (b,e) electron
temperature Te [eV]; (c,f) ion temperature Ti [eV].

particles are always very well conserved, also by finite elements. Typical relative
particle conservation errors, defined as u1 2 (net particle outflow through V)/
(particle source integrated over V)u, are #O(1023); for the same reason, the plasma
density is the quantity showing the least mesh dependence. On the contrary, in the
energy balances the conductive fluxes are proportional to gradients of unknowns,
which are not continuous at element interfaces. Therefore, the local conservation
concept is meaningless in the context of P1 Galerkin finite elements, and global
energy conservation can be obtained with them only to the limit of the vanishing
element size.

With P1 Galerkin finite elements, in an elliptic problem, the error in the unknowns
should decrease quadratically with some element size, whereas the error in the
gradients should decrease linearly. Since the energy flux is a combination of conduc-
tive and convective contributions we expect a behavior of the error in global energy
conservation somewhere between linear and quadratic. This was verified by running
the same case on several meshes (see Table I): we demonstrate numerically the
convergence of FELS with external sources in Fig. 6, where the absolute conserva-
tion error in total energy is reported as a function of some parameters characterizing
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FIG. 4. Spatial convergence of FELS (same quantities of Figs. 3a–f): steady state profiles on ‘‘Unstr.’’
mesh (dotted lines); on mesh 1177 (stars); on mesh 1178 (dash-dotted lines); on mesh 1179 (solid lines);
on mesh 1189 (dashed lines).

FIG. 5. Spatial convergence of B2 (same quantities of Figs. 3a–f): steady state profiles on mesh
1177 (stars); on mesh 1179 (open squares).
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FIG. 6. Absolute error in total energy conservation [a.u.] for FELS with external sources versus
total number of nodes (a), number of nodes on upper separatrix (b), number of nodes on separatrix
(c), number of nodes on target (d). (The solid symbol in (b) refers to the solution computed on the
unstructured mesh.)

different meshes. Notice that, as expected from the previous discussion, poloidal,
as opposed to radial, resolution is crucial for convergence.

From the practical point of view it is important to assess if still reasonable element
sizes (with respect to memory and CPU requirements) can lead to sufficiently
small conservation errors, for the problem at hand, or vice versa, what order of
conservation error implies a sufficiently correct solution (the latter point is obviously
important in order to assess if a solution is ‘‘good,’’ without having to compare
with another code); this is essentially equivalent to determining numerically the
constant in an error estimate. What turns out is that the relative error in global
energy conservation, defined similarly as the relative particle conservation error,
needs to be #O(10%), in order to have a solution correct to some percentage.
Conservation errors, however, may also be important per se, because one has
engineering constraints not only on the accuracy of the solution but also on the
accuracy of the energy fluxes themselves, in particular for the determination of the
power load on the plate BC.

It is clear that the relative inaccuracy of the finite element method for the problem
at hand partly resides in the choice of P1 basis functions. It is not to be expected,
however, that this problem can be easily solved by increasing the degree of interpola-
tion, because in 2D only going up to P5, which is extremely impractical, could
guarantee continuity of the unknowns and of all their first partial derivatives, i.e.,
of the fluxes, at the element interfaces [24]. An interesting alternative could be
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given by mixed type finite element methods, where the fluxes are treated as depen-
dent variables (unknowns). These methods reduce in certain cases to finite volume
methods and, as such, guarantee local conservation; however, they have the problem
that it is rather difficult to accomodate into their framework an upwinding recipe
[38]. Possibly the most interesting and readily applicable development which could
make finite elements more competitive against finite volumes lies in the adaptive
techniques for anisotropic meshes; for gasdynamics problems these techniques al-
ready allow obtaining solutions of the same quality with both methods on optimized
meshes [39].

5.2 Plasma Coupled to Monte-Carlo Neutrals

In this section we present results of a typical FELS/EIRENE coupled run. The
plasma coefficients and boundary conditions have been chosen as discussed above.
The sources acting on the plasma, on the contrary, are now self-consistently com-
puted by the Monte-Carlo code EIRENE. Ten thousand particles are launched in
EIRENE from the target BC. For the case at hand the following particle species
are followed by EIRENE: D0 , D2 , D1

2 (molecular ions are considered as a trace pop-
ulation).

The boundary conditions for the neutral particles are as follows: on the target
BC a particle recycling coefficient equal to 1 is assumed; for all other boundaries we
assume that the fast component of each species described by EIRENE is reflected,
whereas 2% of the thermal component is pumped, so that steady state conditions
for the neutrals can be obtained. Notice that these boundary conditions are purely
demonstrative, which can be justified within the mainly computational framework
of the present paper; if a comparison with experiments or a detailed physics discus-
sion would be aimed at, different boundary conditions and even a different (larger)
domain, e.g., extending up to the actual vessel walls, should be used for the neutrals.

In order to give an idea of the computational nature of the coupling between
plasma and neutrals we show in Fig. 7 the behavior of the relative variation DG/G
(with respect to the ‘‘initial’’ one; see below) of the plasma particle flux integrated
over the target surface (G ; eBC G · n dS), as a function of the time step number.
A threshold of 1% in DG/G was used as a criterion to call again EIRENE (the
‘‘initial’’ above refers to the conditions either before the first call of EIRENE, or
right after the temporarily last call). Notice that also the time step Dt is brought
back to its minimum value (O(1026) times the sound time in this case) right after
a call of EIRENE.

Initially the plasma is set up as a steady state obtained with a simplified model
for the neutrals, so that EIRENE produces significant changes in the plasma rather
fast and must be called relatively frequently. Eventually the calls to EIRENE
become less and less frequent, until a steady state is reached (uDuu/u , 1024, together
with Dt 5 Dtmax 5 1022 times the sound time, is used as steady state definition
here). This required four runs of FELS/EIRENE, about 7000 plasma steps, and 47
EIRENE calls; each run following the first one is obviously restarted from the last
obtained solution.

An example of contour plots of the steady state plasma profiles obtained in such
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FIG. 7. Convergence in time to steady state of a FELS/EIRENE coupled run versus time step
number: initial run (a,e), first restart (b,f), second restart (c,g), third restart (d,h); Figs. a–d, time step
size Dt normalized to sound time (solid lines), maximum relative variation uDuu/u of r, pe, E over V

between two successive time steps (’’1’’ symbols); Figs. e–h, maximum relative variation DG/G (with
respect to the ‘‘initial’’ one; see text) of the particle flux integrated on the target.
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FIG. 8. Contour plots of steady state results of a FELS/EIRENE coupled run on mesh 1189: particle
density (a); poloidal flow velocity field (b); electron temperature (c); ion temperature (d).

a way is shown for the sake of completeness in Figs. 8a–d. The essential standard
physical features of the problem at hand are well reproduced by our numerical
solution, namely the poloidal uniformity of density and temperatures far from the
target where the sources are acting, and the significant increase of the density,
acceleration of the poloidal flow, and drop of the temperatures near the target.

Of course, it is expected that the considerations on global energy conservation
made in the previous section become even more important here, because of the
stronger localization of the Monte-Carlo sources with respect to the externally
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FIG. 9. Absolute error in total energy conservation [a.u.] for FELS with self-consistent EIRENE
sources versus total number of nodes (a), number of nodes on separatrix (b), number of nodes on
target (c), average misalignment (degrees) (d). (The average misalignment is computed by taking the
arithmetical average over V of the minimum angle formed by the sides of each triangle with the local
direction of the poloidal magnetic field at the center of gravity of that triangle.)

imposed ones, and the consequently stronger gradients, which will worsen the
accuracy (the particle source contributes now about 98% of the total particle outflux
through the target). In order to better understand which of the mesh features
most influences the quality of the solution we show in Figs. 9a–d the results of a
convergence study of the FELS/EIRENE coupled system, reporting the absolute
error in global energy conservation versus some of the mesh features which could
be thought of as important in principle. Clearly, the extreme anisotropy of the
problem at hand must play a major role in determining which parameter is actually
important and which is not.

The same case has been run on the structured meshes 1134, 1136, 1178, and 1189
(see Table I). As relevant mesh parameters we consider here the dependence of
the energy conservation error on: the total number of nodes, Fig. 9a; the number
of nodes on the separatrix (poloidal resolution), Fig. 9b; the number of nodes on
the target (radial resolution), Fig. 9c; and the average misalignment of the mesh, Fig.
9d. The convergence of the coupled code system FELS/EIRENE is demonstrated
numerically by Figs. 9a,b. It is clear from Fig. 9b that a sufficiently large poloidal
resolution, everywhere and not only in the region where the sources are active, is
essential. As in the case of external sources, no significant correlation between
radial resolution and convergence appears to exist (Fig. 9c) in the case at hand.
Finally, one sees from Fig. 9d that a sufficiently small misalignment is required for
minimizing the error in energy conservation, but reducing the misalignment by
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increasing the radial resolution can be counterproductive, unless a sufficiently good
poloidal resolution is also guaranteed. The latter point can be compared with that
found in rectangular geometry with straight field lines [16], where reducing the
misalignment always reduces the error; therefore it can be concluded that poloidal
resolution is essential when FELS is applied to realistic curvilinear magnetic geome-
tries.

6. CONCLUSION AND PERSPECTIVE

A finite element code, FELS, has been developed for 2D 2-fluid modeling of the
tokamak plasma edge. FELS is advanced with respect to other finite element codes,
e.g., [10], because it can deal with realistic curvilinear geometries, and because it
is coupled to the Monte-Carlo code for neutrals, EIRENE, which allows a detailed
and realistic description of the interactions between plasma and recycling atoms
and molecules. These extensions also involve significant new computational issues,
as was shown here.

Several aspects make the edge problem particularly challenging and difficult,
among which the extreme anisotropy in the transport coefficients, the significant
nonlinearities, the number of different particle species involved, and, last but not
least, the basic uncertainities concerning all plasma transport phenomena in the
direction perpendicular to the magnetic surfaces and some of the boundary condi-
tions.

In the present paper we have compared the results of FELS with those of the
finite volume code B2, showing very good agreement between the two codes, in
the case of external sources. Also, a slower spatial convergence of FELS with
respect to B2 was noticed.

Typical steady state plasma profiles obtained with FELS/EIRENE in a subset
of the ASDEX-Upgrade poloidal divertor geometry were shown, and the numerical
convergence of the coupled code system was demonstrated. Results pertaining to
the full divertor geometry, including inner and outer plate, private region and a
portion of the core plasma have been discussed elsewhere [21].

In the perspective of future developments of FELS one can (somewhat artificially)
consider separately the computational issues and the physics issues.

From the computational point of view the practical need for finite elements (as
opposite to the more conventional finite volumes) has to be demonstrated. This is,
in the opinion of the author, the next top priority and will come from a comparison
(which is beyond the scope of the present work) against finite volume codes, e.g.,
[11, 12], recently upgraded to a 9-point computational stencil—the least prerequisite
to work on a nonorthogonal grid in the finite volume framework. Modern adaptive
meshing techniques could also help in bridging the gap between the two meth-
ods [41].

From the physics point of view, the major required extensions of FELS are: going
from 2-fluid to multifluid, i.e., the inclusion of impurities in the plasma model, and
(possibly) the inclusion of drifts and electric currents. This would bring FELS to
the level of physics currently implemented in the most advanced finite volume
codes and allow a meaningful comparison with experiments.
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