
ANALYSIS OF THERMAL-HYDRAULIC
GRAVITY/ BUOYANCY EFFECTS IN THE
TESTING OF THE ITER POLOIDAL FIELD FULL
SIZE JOINT SAMPLE (PF-FSJS)

R. Zanino1, P. Bruzzone2, D. Ciazynski3, M. Ciotti4, P. Gislon4, S. Nicollet3

and L. Savoldi Richard1

1 Dipartimento di Energetica, Politecnico
Torino, I-10129, Italy

2 EPFL-CRPP, Euratom-Swiss Association
Villigen PSI, CH-5232, Switzerland

3 Association Euratom-CEA, CEA/Cadarache
St Paul Lez Durance Cedex, F-13108, France

4 Euratom-ENEA Association, Frascati Research Center
Frascati, 1-00044, Italy

ABSTRACT

The PF-FSJS is a full-size joint sample, based on the NbTi dual-channel cable-in-
conduit conductor (CICC) design currently foreseen for the International Thermonuclear
Experimental Reactor (ITER) Poloidal Field coil system. It was tested during the summer
of 2002 in the Sultan facility of CRPP at a background peak magnetic field of typically 6 T.
It includes about 3 m of two jointed conductor sections, using different strands but with
identical layout. The sample was cooled by supercritical helium at nominal 4.5-5.0 K and
0.9-1.0 MPa, in forced convection from the top to the bottom of the vertical configuration.
A pulsed coil was used to test AC losses in the two legs resulting, above a certain input
power threshold, in bundle helium backflow from the heated region. Here we study the
thermal-hydraulics of the phenomenon with the M&M code, with particular emphasis on
the effects of buoyancy on the helium dynamics, as well as on the thermal-hydraulic
coupling between the wrapped bundles of strands in the annular cable region and the
central cooling channel. Both issues are ITER relevant, as they affect the more general
question of the heat removal capability of the helium in this type of conductors.
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INTRODUCTION

The PF-FSJS [1] was built using two full-size straight conductors (legs), cabled by
Europa Metalli and jacketed by Ansaldo, according to the ITER 2-channel (annular cable
bundle "B" and central channel "H" regions) cable-in-conduit concept (see FIG 1). The
cable is compacted in a thick SS jacket, according to the ITER PF design [2]. The
conductor consists of 1152 strands, cabled in a 3*4*4x4x6 pattern. Each leg uses NbTi
strands with different resistive barrier, leading to different inter-strand resistances and
therefore different AC losses. The total length (~ 3.5 m) of each leg includes two
terminations: the upper ones (~ 0.6 m long) are used to connect the sample to the
independently cooled bus bars of the test facility, while the lower ones (also ~ 0.6 m long)
are joined together to close the electric circuit [1]. From the thermal-hydraulic point of
view, the two legs are cooled independently with supercritical helium in forced-flow,
nominally at 4.5-5.0 K and 0.9-1.0 MPa.

The PF-FSJS was tested in the Sultan facility of CRPP Villigen, Switzerland in 2002
[3]. Here we concentrate mainly on the AC loss tests of the right leg (the left leg exhibited
similar behavior). During the field pulse, the highest temperature was recorded upstream of
the AC field, when the input power was above a certain threshold. First explanations of the
phenomenon were proposed, stressing the role of the gravity force in the helium dynamics
[4], as well as emphasizing the importance of the thermal-hydraulic coupling between the
two helium channels [5], but a detailed modeling of the whole transient was not carried out.

In this paper we model the thermal-hydraulic phenomenon with the M&M code [6]
and we present the results of the simulations of some of the AC loss shots, comparing them
also with a resistively heated shot.

EXPERIMENTAL SETUP

The PF-FSJS sample configuration is sketched in FIG 1. Both right and left legs are
instrumented with five temperature sensors: T2, T3 *, and T4 are glued in Cu blocks brazed
on the conductor jacket, Tl is inserted in the helium flow in the bundle region of the
conductor, while T5 is mounted on the outlet helium pipe. The mass flow rate dm/dt along
each leg is measured downstream of the sample. During all runs considered here, it was
always regulated in feed back loop in order to keep it about constant - an important
constraint here, but not relevant in the case of a coil. Two heat sources are available on
each leg: 1) a resistive heater (OH) is wrapped around an ~ 0.4 m long portion of the
conductor jacket with reduced thickness, upstream of T2; 2) a pulsed coil provides a
variable magnetic field over a length of ~ 0.39 m inducing AC losses, between T2 and T4.
Thick SS clamps (not shown in FIG 1) with epoxy insulation are applied all along the two
legs, with the only exception of the temperature sensor locations, and of the OH region [1].

RESULTS AND ANALYSIS

M&M Model. Upgrade and Calibration Issues

The effect of gravity was included in the M&M model [6] in the form of the following
two contributions: 1) The respective body force, p} g cos(#?), is added to the total (dynamic
+ static) pressure gradient - dp/djt in the helium momentum equation of each channel j (=

1 T3 turned out to be not fully reliable during transients and it will not be considered in the following.
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sarorldriver Loation (m) 
Resistive heater 1.2-1.6 

T2 1.835 

T4 2.65 
T1 2.71 

pulsed mil 2.155-2.545 

FIGURE 1. The PF-FSJS. (a) Schematic view of the full sample, including major tbermal-hydraulic sensors 
and drivers (locations are given kom the inlet of the upper joint). (b) Conductor cross-section (51 mm side). 

By H); 2) The power generated by this force per unit volume, v, p, g cos(p), is added to the 
helium (internal + kinetic) energy equation of each channel. Here, cos(cp) accounts for the 
angle between the conductor (x coordinate measured from the top) and the direction of the 
acceleration g, p, is the helium density, Vj is the helium flow speed along each channel. 

The classical up-wards buoyancy force arises in the helium due to the combination of 
gravity and heat deposition, as heated helium expands. This is particularly true for the B 
helium, which is directly heated by the contact with strands and/or jacket, while the heating 
of the H helium is only indirect and depends on the amount of coupling between the two 
channels (see below). If this coupling is not perfect, a transverse temperature gradient will 
arise in the CICC and buoyancy will lead to strands (and jacket) being locally cooled by 
natural (or free) convection upwards, while the forced convection is maintained do 
in the central channel. Although the gravity head was long recognized as giving a non- 
negligible contribution in static conditions (see, e.g., [7]), its dynamic counterpart, i.e., the 
buoyancy force, is considered here for the first time in the context of ITER CICC, to the 
best of our knowledge. 

In the 2-channel geometry of the CICC we have to cope with continuous heat and 
mass transfer between the two channels but, unfortunately, there is a lack in basic 
experimental results to be able to properly model both the conductive and the convective 
mechanisms (in steady state as well as during transients) in a fully validated fashion. In 
M&M the difficult and presently open problem of the calibration of heat transfer between 
B and H is treated including free parameters for each contribution (conductive and 
convective) to the transverse heat flux q l  = qlmd + qlm"" (see [8] for details), in the 
absence of a first principle model/correlation. In qLmd, which is driven by the temperature 
difference AT, = TB - TH, an ad-hoc multiplier K n d  of the series of thermal conductances 
at the B-H interface is implemented. In this series, the standard Dittus-Boelter correlation 
for pipes is used for the helium heat transfer coefficient with any solid, for the sake of 
simplicity? For the convective part, the trunsverse mass flow G, (and the corresponding 

The corresponding lower bound is set at the laminar value of the Nusselt number Nu = 8.235. Note that this 
limit is derived h r n  measurements performed with Re1 100 [9], while the values of 
here is < 1000. A laminar limit Nu = 4, as for a smooth pipe, was adopted by other authors [lo]. 

in the tests considered 
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FIGURE 2. Shot WAC130901: (a) Measured T4, T2 and Tl (all base-lined to T4(t=0)), compared to computed
temperature evolution, (b) Sensitivity of the computed temperature evolution at T2 to the choice of Mcond.

qiconv), driven by the pressure difference Api = pe - PH? is modelled like a flow through a
valve with ad-hoc "friction factor" KCOnv The values of Mcond and Kconv influence the
simulated evolution of the transient and therefore they need to be calibrated for the specific
conductor and transients under investigation. A calibration strategy was established in the
past and successfully applied to different type of transient, e.g., heat slug [9] and/or quench
[10, 11] propagation.

The simulations in this paper have been performed on the right leg of the PF-FSJS,
from the inlet of the upper termination to the outlet of the lower joint (heat transfer through
the joint is neglected for the sake of simplicity, so that the measured value at T5 cannot be
used in the following for comparison). Boundary conditions are: constant inlet pressure pin,
inlet temperature Tin = T4 (t = 0), and outlet flow speed vout (t) deduced from the measured
(dm/dt)out (t) ~ constant. The jacket cross-section variation along the conductor is also
included in the model (reduced at the resistive heater, increased everywhere else by a factor
of- 2.5, to take into account the non-negligible heat capacity of the SS clamps).

Resistively heated shot

We consider first a resistive heater test, shot WAC130901 at 8 g/s, without transport
current, where only the right leg was separately heated. The heater was turned on at t = 0 s
and turned off at t=120s. FIG 2 shows that all temperature sensors react with
progressively later, smaller and slower temperature increase, as we move downstream.
Using as driver the nominal power in the heater (14 W), deposited fully into the jacket as a
square wave in space and time, we compute the evolution of T2, T4, and Tl for different
values of Kconv and Mcond. The best-fit results, obtained with Kconv = 5 and Mcond = 6, are
reported in FIG 2a, showing a very good agreement with the experimental plateau level for
all of the three sensors, while the computed ramp-up and down is faster than measured 3.
The parametric effect of Mcond variations by a factor of 5, on the evolution of the computed
temperature at T2, is shown in FIG 2b. If the B-H coupling is lower (i.e., for lower Mcond)
then the B helium stays hotter while flowing downstream and a higher plateau is computed
at T2. The simulations show no sensitivity to the variation of Kconv in the range 2.5-10.

3 The computed slopes appear to be influenced by the heat capacity of the solid materials, in particular of the
clamps (if the clamps were not included in the model, the computed temperature evolutions would look more
like square waves) and by the heat transfer coefficient between bundle helium and jacket. The low dm/dt
forces hB to be computed from the laminar lower limit (i.e., hB is independent of Reynolds in this case).
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Simulations performed for this case with vs. without the gravity contribution (not
shown) indicate that it has a very small to negligible effect on the computed temperature
evolution at the sensors (all downstream of the heater), probably because of the relatively
low ratio of input power to mass flow rate in the run at hand (see also below).

Inductively heated shots

Estimation of the input power from AC losses

The correct input power from the AC losses needs to be determined beforehand. We
consider a subset of the AC loss shots, WAC220804-07, see TABLE 1, where a pulsed field
with a frequency of 2 to 5 Hz was applied on the virgin conductors over a period
tpuise ~ 60 s, without any transport current. If we assume that no heat is exchanged between
right and left leg through the lower joint (see below), the energy E deposited in the right leg
during the shot is computed as follows:

E= $dm/dtxAhHedt = ^dm/dtx(hHe(T5(t))-hHe((T5)))dt
(1)

where T5(t) is the measured value, <T5> is the average initial value of T5 before the pulse
starts, the enthalpy variation Ahne of the helium is computed at a constant pressure p =
1.015 MPa, and the integral runs over the whole transient duration from t = 0, when the AC
field is turned on, till a steady state has been reached again after the AC field was turned off
(or till the end of the recorded data). From Eq. (1) we can then compute the input power
glow = g/ ^^ Since, however, the different interstrand resistance in the two legs
determined higher AC losses and thus higher heat deposition in the right leg [3], the right
leg actually cools down by heat transfer through the joint, and Qlow represents only a lower
bound for the input power. An upper bound Qup can be computed applying Eq. (1) to Tl
instead of T5. The input power resulting from the field pulse can thus be estimated as Q =
i/2 (Qi™ + QUP) ± 1/2 (QUP _ Qiow^ as reported in TABLE 1 (an additional contribution to the
error bar, not included here, should come from the not recorded tail of the shot, see FIG 3
below).

Analysis of shots WAC220804 - 07

The measured temperature evolution at the different sensors is reported in FIG 3a-d
for shots at increasing Q. T4 and Tl are located only 10-15 cm (see FIG 1) downstream of
the heated region, and the estimated VB (t = 0) ~ 1-2 cm/s, so that they take-off very
quickly, driven by B helium convection, after the beginning of the heating. On a longer
timescale (20-40 s), for Q > ~ 5 W, an increase of the upstream T2 is also observed, which
can only be interpreted (to be confirmed by the simulations below) as an indication of
backflow of hot helium, at least in the bundle region. The backflow is faster, the higher Q
is, but the inlet temperature (not shown) remains unperturbed. While all peak temperatures

TABLE 1. Simulated AC loss shots

Shot#

WAC220804
WAC220805
WAC220806
WAC220807

Type

AC loss at 2 T
AC loss at 2 T
AC loss at 2 T
AC loss at 2 T

dm/dt
(g/s)

4
4
4
4

Freq
(Hz)
2.0
3.0
4.0
5.0

tpuise
(s)
60
60
60
60

Max AT4 a

(K)
0.38
0.57
0.78
0.98

Max AT2 a

(K)
0

0.77
1.23
1.63

Power b

(W)
4.7 + 0.8
8.811.0
14 ±1.5

18.5 ±1.6
1 Maximum temperature increase measured at sensor during the whole transient
3 Estimated (see text)
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FIGURE 3. Comparison between measured (symbols) and computed (lines) temperature evolutions at T2, T4,
Tl in different AC loss runs with increasing Q (see TABLE 1). (a) Shot WAC220804; (b) Shot WAC220805;
(c) Shot WAC220806; (d) Shot WAC220807.

increase with Q, the peak T2 is also higher than T4 and Tl, although the latter are closer to
the heated region, indicating that the directly heated helium moves upward. It may also be
noticed that T2 tends to reach a plateau.

In the simulations, the average Q from TABLE 1 has been used for all shots, fed
entirely and directly to the strands. A new calibration of the B-H coupling was also
performed for this different type of transient. The calibration was aimed at best fitting the
peak temperature increase at T2 on shot WAC220807, see FIG 3d, and it led to Kconv - 5
and MCOnd = 1.2, which are then kept frozen in all AC loss simulations. Note that this value
of Mcond is a factor of 5 below that needed to best fit the resistive shot above, and that with
this value the resistive run simulation would overestimate the measured AT2 by a factor ~ 2
(see FIG 2b). Also in this case, however, he is independent of Reynolds, i.e., from the mass
flow rate. If the dependence on dm/dt would be accounted for, a somewhat lower Mcond
could be expected, compared to the resistive case. Part of this difference may be related
with the above-mentioned uncertainty in the lower bound for Nu, but we do not have at
present a full justification for the quantitative difference of Mcond needed in the two cases.

The results of the simulation are compared to the measured values in FIG 3. There is
good agreement with the experiment in the downstream sensors (T4 and Tl) at all Q.
Concerning the behavior of the solution upstream, first of all the important feature of the Q
threshold for the T2 response (i.e., for backflow) is qualitatively reproduced. The hot rising
helium reaches T2 at approximately the correct time, but then the rise of the signal is much
slower (more similar to a ramp than to the step-wise shape of the measured temperature)
and no plateau is seen in the simulation. Also, the coupling parameter values which allow a
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good fit of the peak temperature at T2 for the highest Q do not lead to good quantitative
agreement in the case of lower Q, see FIG 3a-c. The fundamental role played by the
gravity/buoyancy force in this transient is emphasized by the fact that no variation of the
upstream temperature at T2 nor back/low is seen in simulations without gravity
contribution while, as opposed to the resistive case, also downstream sensors are
quantitatively affected (not shown).

In FIG 4 the computed dm/dt(x) and T(x) in the B and H regions are reported at the
time when the pulsed coil is turned off (t = 60 s). We note that B helium is being
transported upwards starting form the pulsed coil location. In order to maintain the total
dm/dt - constant, the mass flow rate in the hole has to increase, i.e., helium is being driven
from B to H upstream of the heater and backwards to B downstream. As to the temperature
profiles, TB (and therefore the temperature of strands and jacket) is being transported
upwards by convection. The heating of the H helium mostly occurs upstream of the heater,
i.e., it is mainly due to qi, but ATH « ATB at the heater, indicating a relative de-coupling
between B and H on these short distances.

The parametric effect of Mcond variations by a factor of 5, on the evolution of the
computed temperature at T2, is shown in FIG 5 (no sensitivity to variations of Kconv). The
same coupling used for the resistive case (Mcond = 6) would lead to no backflow here, a
larger coupling apparently implying stronger cooling from the down-flowing H helium and
therefore lower reach of the "bubble" upstream. On the contrary, the computed T4 and Tl
(not shown) are relatively insensitive to variations of MCOnd (as the helium flowing
downstream of the heater in both regions comes mostly from the hole, see FIG 4).

CONCLUSIONS AND PERSPECTIVE

Thermal-hydraulic transients, induced in the PF-FSJS either by a resistive heater at
8 g/s or by AC losses at 4 g/s, have been analyzed with M&M. The temperatures measured
downstream of the heater in the resistive run are well reproduced by the code, assuming in
the model a certain level of B-H coupling. Concerning the AC loss tests:
1. The fundamental role of buoyancy forces is such that, in the PF-FSJS, the region where

the AC power is deposited is cooled by natural convection (up-wards) against the
down-wards flowing helium in forced convection, with a reduction in the heat removal
capability of the coolant, at least in terms of the time needed to recover; on the contrary,

A

I 2
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1.5 2 2.5
Length along RL (m)

1 . 5 " 2
Length along RL (m)

FIGURE 4. Computed spatial profile of the solution for WAC220807 @ t=60s. (a) dm/dtB (x) (solid line) and
dm/dtn (x) (dashed line), transverse mass flow rate per unit length G^/L (dash-dotted), (b) TB (x) (solid line) and
TH (x) (dashed line). The location of the sensors (solid diamonds) and of the heated region (solid rectangle) is
also reported.
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FIGURE 5. Shot WAC220807. Sensitivity of the computed temperature evolution at T2 to the choice of Mcond.

forced flow convection in the opposite (up-wards) direction would obviously add-up
beneficially;

2. The measured temperature evolution downstream of the AC pulse region is well
reproduced by M&M, but upstream the agreement is only qualitative. These difficulties
emphasize that there is still insufficient knowledge of transverse heat and mass transfer
processes in the typical 2-channel ITER CICC, which affects the accuracy of a detailed
modeling.

3. In the extrapolation to ITER coils, no significant contribution of buoyancy to the
helium dynamics is expected in the case of the PF and CS, because the slope of the
conductor there should be very small. The case of the TF, with partly vertical
conductors, significant nuclear heat load, and alternating up-down forced convection in
odd-even pancakes, warrants a dedicated investigation, which will be presented
elsewhere. Mass flow rate, input power and operating pressure effects should be
considered parametrically.
In the perspective, we also plan to study if and how the buoyancy effects analyzed in

this paper, and the related nature of the thermal-hydraulic coupling between the two helium
channels, affected the stability of the PF-FSJS conductor.
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