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Basic definitions

Definition (of species)
An ensemble of chemically identical molecular entities that can
explore the same set of molecular energy levels on the time
scale of the experiment.

Definition (of phase)
A chemically and physically uniform quantity of matter that can
be separated mechanically and it may consist of a single
substance or of different substances.

Definition (of mixture)
A system constituted by different species (multi-species
mixture) and/or by different phases (multi-phase mixture).
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Scale of separation

Definition (of the characteristic scale of separation δs)
Let us call ∂Ωσ the interface between a generic phase σ and
the other phases, which constitute the mixture. It is possible to
define as δσ

s the characteristic length scale of the previous
surface. Let us now consider the largest of these parameters,
namely δs ≥ δσ

s for any phase σ. Actually this parameter can be
generalized to any mixture, by assuming δs = 0 by definition in
case of a single-phase mixture.

disperse flows δs � L (L characteristic flow length scale):
nearly homogeneous flow;
bubbly or mist flow;

separated flows δs � L:
annular or film flow;
fully separated flow.
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Homogeneous mixture

Definition (of homogeneous mixture)
A generic mixture characterized by a characteristic length scale
of separation δs which is much smaller than the size of the
smallest scale of the description of the phenomenon, i.e.
δs � δx which means that, in case of multi-phase flows, the
disperse phase particles (namely drops or bubbles) are much
smaller than the smallest control volume of the description or,
equivalently, each control volume contains representative
samples of each of the phases.

The following considerations can be applied to any (single-
or multi-phase) multi-species mixture, if and only if each
component is present (at least in very small quantities) in
any control volume
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Concentration measures

The mass concentration is defined as

xσ = ρσ/ρ, (1)

where ρσ is the single species density, while ρ =
∑

ς ρς is
the total mixture density.
The molar density as

nσ = ρσ/mσ, (2)

where mσ is the molecular weight, i.e. the weight of one
mole of molecules.
Consequently the molar concentration as

yσ = nσ/n, (3)

where n =
∑

ς nς is the total mixture molar density.

Pietro Asinari Multi-species Lattice Boltzmann Models



Homogeneous mixture flow modeling
Lattice Boltzmann scheme

MixLBM numerical code

Definitions and applications
Macroscopic modeling
Kinetic modeling

Mixture velocities

The mass-averaged mixture velocity is defined as

u =
∑

ς

xςuς , (4)

where uς is the single species velocity. Since the mass
concentrations where used, the previous quantity is also
called barycentric (mixture) velocity.
Similarly, by means of the molar concentrations, it is
possible to define a mole-averaged mixture velocity,
namely

v =
∑

ς

yςuς . (5)

Since the molar concentrations where used, the previous
quantity is also called molar (mixture) velocity.
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Diffusion fluxes

It is possible to define a specific mass diffusion flux for
each species σ as

jσ = ρσwσ, (6)

where wσ = uσ − u is the mass diffusion velocity and
clearly

∑
ς jς = 0.

Similarly, it is possible to define a specific molar diffusion
flux for each species σ as

kσ = nσzσ, (7)

where zσ = uσ − v is the molar diffusion velocity and
clearly

∑
ς kς = 0.
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Species transport equation

Let us consider the Equation of Change for the species
mass (neglecting chemical reactions)

d

dt

∫
Ωσ

ρσdV =
∫

Ωσ

∂ρσ

∂t
dV +

∫
∂Ωσ

(ρσuσ) · ndS = 0, (8)

and consequently

d

dt

∫
Ωσ

ρσdV =
∫

Ωσ

[
∂ρσ

∂t
+∇ · (ρσuσ)

]
dV = 0, (9)

∂ρσ

∂t
+∇ · (ρσuσ) = 0. (10)

Consequently from the latter

∂ρσ

∂t
+∇· (ρσu) = −∇· jσ,

∂nσ

∂t
+∇ · (nσv) = −∇ · kσ.

(11)
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Multi- vs. single-fluid approach

Equation (10) assumes as unknown variables of the
calculation the single species quantities ρσ and uσ.
Obviously in order to solve this system of equations some
additional equations for uσ must be provided. If N is the
number of species, this means N × (1+D) (where D is the
number of physical dimensions) equations to be solved.
This strategy defines the so-called multi-fluid approach.
Equations (11) assume as unknown variables of the
calculation the quantities ρσ (nσ) and u (v), where the
latter is unique for all the species. Obviously in order to
solve this system of equations an additional equation for u
(v) and some phenomenological correlations for jσ (kσ)
must be provided. If N is the number of species, this
means N + D ≤ N × (1 + D) equations to be solved. This
strategy defines the so-called single-fluid approach.
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Fick model

A very popular phenomenological model (or law) for
expressing the diffusion fluxes based on experimental
studies involving binary mixtures is the Fick model. Let us
identify by 1 and 2 the two components of the binary
mixture, then Fick model can be expressed as

k1 = −nD12∇y1, (12)

where D12 is the binary Fick diffusion coefficient (it is
always better to refer the diffusion coefficients to the
original models, because their definitions are not unique).
Equivalently

∇y1 = −k1 − y1(k1 + k2)
nD12

= −y2k1 − y1k2

nD12
= −y1y2

D12
(u1−u2).

(13)
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Passive scalar approach

Let us suppose to adopt the single-fluid approach.
Neglecting the divergence of the total velocity, the
gradients of the total mixture density and those of the total
molecular weight yields

∂y1

∂t
+ v · ∇y1 = D12∇2y1, (14)

where D12 is assumed constant. The previous equation is
the result of the so-called linearized theory, which allows
one to recover an advection-diffusion equation for the
single component concentration.
Equation (14) is a simplified version of the operative
equation considered by the passive-scalar approach,
where the dynamics of the single species is described only
by tracing the corresponding concentration yσ (for given v).

Pietro Asinari Multi-species Lattice Boltzmann Models



Homogeneous mixture flow modeling
Lattice Boltzmann scheme

MixLBM numerical code

Definitions and applications
Macroscopic modeling
Kinetic modeling

Limits of Fick: Duncan & Toor experiment (1962)

These authors examined the diffusion in an ideal ternary
gas mixture made of hydrogen (1) nitrogen (2) and carbon
dioxide (3). The experimental set-up consisted of two bulb
diffusion cells (A and B), which had the initial compositions
given below:

Bulb A : y1 = 0.00, y2 = 0.50, y3 = 0.50,

Bulb B : y1 = 0.50, y2 = 0.50, y3 = 0.00.

At the time t = 0, the stopcock separating the two
composition environments at the center of the capillary
connecting the two bulbs was opened and diffusion of the
three species was allowed to take place.
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Experimental results
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Curious phenomena

Initially, the compositions of nitrogen in the two bulbs are
almost identical and therefore at this point the composition
gradient driving force for nitrogen must vanish. However, it
was observed experimentally that the diffusion of nitrogen
does take place (osmotic diffusion).
The bulb A composition decreases and continues at the
expense of bulb B: this means that this diffusion of
nitrogen is in an up-hill direction (reverse diffusion).
Up-hill diffusion of nitrogen continued to take place until a
critical time is reached when the composition profiles in
wither bulb tend to a plateau. This plateau implies that the
diffusion flux of nitrogen is zero at this point despite the fact
that there is a large driving force existing (diffusion barrier).
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Maxwell-Stefan model

In case of more than two species, Equation (13) can be
generalized by the Maxwell-Stefan model, namely

∇yσ =
∑

ς

Bσςyσyς(uς − uσ) =
1
n

∑
ς

Bσς(yσkς − yςkσ),

(15)
where Bσς = B(mσ,mς) is the binary Maxwell-Stefan
diffusion resistance coefficient. An important comment is
that the previous parameter only depends (according to the
results of the kinetic theory) on the molecular weights of
considered species and on the total pressure and (total)
temperature (thermodynamic variables identifying the
mixture equilibrium state).
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Graphical representation of the Maxwell-Stefan model
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Limiting cases

It is possible to directly compare the previous expression
with the Fick expression in some simple limiting cases. Let
us consider a ternary mixture, like that discussed in the
Duncan & Toor experiment, namely

−n∇y1 = (B12y2 + B13y3)k1 −B12y1k2 −B13y1k3. (16)

In case of a solvent species, i.e. y1 → 0, y2 → 0 and then
consequently y3 → 1, the previous expression becomes
−n∇y1 = B13k1 and hence the consistency with the Fick
model is recovered by selecting 1/D12 = B13.
In case of a dilute species, i.e. y1 → 0, in this case the
consistency requires 1/D12 = B12y2 + B13y3.
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Full Boltzmann equations

The simultaneous Boltzmann equations for a mixture
without external force can be written as:

∂tfσ + ξ ·∇fσ = Qσ, (17)

where Qσ =
∑

ς Qσς and Qσς = Qςσ, ς 6= σ, is the cross
collision term for two different species σ and ς. Obviously,
for an N -component system, there will be N such
equations. In general, the collision term is

Qσς =
∫

dξςdΘdεB(Θ, ‖ξσς‖)[f ′σf ′ς − fσfς ], (18)

where f ′σ (f ′ς ) and fσ (fς ) denote the post-collision and
pre-collision state of the particle of species σ (ς),
respectively, ξσς = ξ − ξς .
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Momentum transfer among the species

Clearly the momentum of the single species is not
conserved, because the species are interacting each other
by transferring momentum, in such a way that the total
mixture momentum is conserved.
In case of Maxwellian particles, the momentum exchange
among the components prescribed by the full Boltzmann
equations is given by∫

ξQσdξ = p
∑

ς

Bσςyσyς(uς − uσ), (19)

where now the Maxwell-Stefan diffusion resistance
coefficient Bσς can be interpreted as macroscopic
consequence of the interaction potential between species
σ and ς.
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Simplified kinetic models

Obviously, the system of N equations for N species is
much more formidable to analyze than the Boltzmann
equation for a single-species system.
A popular approach is to derive simplified model
Boltzmann equations which are more manageable to
solve. Numerous model equations are influenced by
Maxwell’s approach to solve the Boltzmann equation by
using the properties of the Maxwell molecule and the
linearized Boltzmann equation.
The simplest model equations for a binary mixture is that
by Gross and Krook, which is an extension of the
single-relaxation-time model for a pure system — the
celebrated Bhatnagar-Gross-Krook (BGK) model.
Following this railway, a lot of models (Sirovich, Hamel, ...)
have been proposed.
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Basic consistency constraints

1 The Indifferentiability Principle, which prescribes that, if a
BGK-like equation for each species is assumed, this set of
equations should reduce to a single BGK-like equation,
when mechanically identical components are considered.

2 The relaxation equations for momentum and temperature,
i.e. the equations describing the time decay of the
momentum and temperature differences among the
species, should be as close as possible to those derived by
means of the full Boltzmann equations.

3 All the species should tend to a target equilibrium
distribution which is a Maxwellian, centered on a proper
macroscopic velocity, common to all the species.

4 The non-negativity of the distribution functions for all the
species should be satisfied.

5 A generalized H theorem for mixtures should hold.
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Simplified AAP model

Let us consider a simplified version of the AAP model
[Andries, Aoki, and Perthame 2002], which is based on
only one global (i.e., taking into account all the species ς)
operator for each species σ, namely

∂t̂fσ + ξ ·∇̂fσ = λσ

[
fσ(∗) − fσ

]
, (20)

where

fσ(∗) =
ρσ

(2πϕσ/3)
exp

[
−3 (ξ − u∗σ)2

2 ϕσ

]
, (21)

and

u∗σ = uσ +
∑

ς

m2

mσmς

Bσς

Bσσ
xς(uς − uσ). (22)
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Properties of simplified AAP model

The target velocity can be easily recasted as

u∗σ = u +
∑

ς

(
m2

mσmς

Bσς

Bσσ
− 1

)
xς(uς − uσ). (23)

If mσ = m for ∀σ, then (Property 1)

u∗σ = u +
∑

ς

(
m2

mm

Bmm

Bmm
− 1

)
xσxς(uς − uσ) = u. (24)

Clearly (Property 2)

∑
σ

xσu∗σ = u+
∑

σ

∑
ς

(
m2

mσmς

Bσς

Bσσ
− 1

)
xσxς(uς − uσ) = u.

(25)
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Diffusive scaling

In the following asymptotic analysis [Junk et al., 2005], we
introduce the dimensionless variables, defined by

xi = (lc/L) x̂i, t = (UTc/L) t̂. (26)

Defining the small parameter ε as ε = lc/L, which
corresponds to the Knudsen number, we have xi = ε x̂i.
Furthermore, assuming U/c = ε, which is the key of
derivation of the incompressible limit [Sone, 1971], we
have t = ε2 t̂. Then, AAP model is rewritten as

ε2
∂fσ

∂t
+ ε ξi

∂fσ

∂xi
= λσ

[
fσ(∗) − fσ

]
. (27)

In this new scaling, we can assume
∂αfσ = ∂fσ/∂α = O(fσ) and ∂αM = ∂M/∂α = O(M),
where α = t, xi and M = ρσ, qσi where qσi = ρσuσi.
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Regular Knudsen expansion

Clearly the solution of the BGK equation depends on ε.
The solution for small ε is investigated in the form of the
asymptotic regular expansion

fσ = f (0)
σ + εf (1)

σ + ε2f (2)
σ + · · · . (28)

ρ and qσi are also expanded:

ρσ = ρ(0)
σ + ερ(1)

σ + ε2ρ(2)
σ + · · · , (29)

qσi = εq
(1)
σi + ε2q

(2)
σi + · · · , (30)

since the Mach number is O(ε), the perturbations of qσi

starts from the order of ε. Consequently

fσ(∗) = f
(0)
σ(∗) + εf

(1)
σ(∗) + ε2f

(2)
σ(∗) + · · · , (31)

Regular expansion means ∂αf
(k)
σ = O(1) and

∂αM (k) = O(1).
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Asymptotic analysis of AAP model

Collecting the terms of the same order yields

f (k)
σ = f

(k)
σ(∗) − g(k)

σ , (32)

g(0)
σ = 0, (33)

g(1)
σ = τσ∂Sf

(0)
σ(∗), (34)

g(2)
σ = τσ[∂tf

(0)
σ(∗) + ∂Sf

(1)
σ(∗) − τσ∂2

Sf
(0)
σ(∗)], (35)

· · · ,

where ∂S = ξi∂/∂xi and τσ = 1/λσ.
The previous coefficients of the regular expansion allows
one to derive the macroscopic equations recovered by the
AAP model.
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Tuning the single species relaxation frequency

Taking the first order moments of g
(1)
σ yields

λσρ(0)
σ [u∗(1)

σ − u(1)
σ ] = ∇p(0)

σ , (36)

where p
(k)
σ = ϕσρ

(k)
σ /3.

If λσ is selected as λσ = p Bσσ/ρ, then the previous
expression becomes

1/p(0)∇p(0)
σ =

∑
ς

Bσς yσyς [u(1)
ς − u(1)

σ ], (37)

which clearly proves that the leading terms of the
macroscopic equations recovered by means of the AAP
model are consistent with Maxwell-Stefan model
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LBM scheme: SRT versus MRT formulation

Two formulations of the LBM scheme have already been
proposed [Asinari, sub. PRE 2007]:

the first based on single-relaxation-time formulation, which
is simpler but it produces consistent results as far as the
mass diffusion process is the only concern (considered in
the following discussion !);
and the second based on a multiple-relaxation-time
formulation, which allows one to consistently recover both
mass diffusion and viscous phenomena

Both the formulations were verified by means of asymptotic
analysis. For the first formulation, the classical Hilbert
expansion was preferred, while for the second formulation,
a technique based on the Grad moment system was used.
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D2Q9 lattice

Let us define the AAP model for a set of discrete velocities,

ε2
∂fσ

∂t
+ εVi

∂fσ

∂xi
= λσ

[
fσ(∗) − fσ

]
, (38)

where Vi is a list of i-th components of the velocities in the
considered lattice and f = fσ(∗), fσ is a list of discrete
distribution functions (change in the notation !!)
corresponding to the velocities in the considered lattice.
Let us consider the two dimensional 9 velocity model,
which is called D2Q9, namely

V1 =
[

0 1 0 −1 0 1 −1 −1 1
]T

, (39)

V2 =
[

0 0 1 0 −1 1 1 −1 −1
]T

. (40)
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Rule of computation for the list

The components of the molecular velocity V1 and V2 are
the lists with 9 elements. Before proceeding to the
definition of the local equilibrium function fσ(∗), we define
the rule of computation for the list.
Let h and g be the lists defined by h = [h0, h1, h2, · · · , h8]T

and g = [g0, g1, g2, · · · , g8]T . Then, hg is the list defined by
[h0g0, h1g1, h2g2, · · · , h8g8]T . The sum of all the elements
of the list h is denoted by < h >, i.e. < h >=

∑8
i=0 hi.

Then, the (dimensionless) density ρσ and momentum
qσi = ρσuσi are defined by

ρσ =< fσ >, qσi =< Vifσ > . (41)
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Continuous equilibrium moments

Let us introduce the following function

fe(ρ, ϕ, u1, u2) =
ρ

(2πϕ/3)
exp

[
−3 (ξ − u)2

2 ϕ

]
. (42)

Let us define � · �=
∫ +∞
−∞ · dξ1dξ2 and the generic

moment mpq =� fe ξp
1ξq

2 �.
All the equilibrium moments appearing in the Euler system
of equations are the following m00, m10, m01, m20, m02,
m11. Unfortunately this set is made of 6 elements, but the
dimension of the considered lattice (for symmetry reasons)
is 9. Hence other 3 (=9-6) target equilibrium moments are
missing. Arbitrarily they are selected as m21, m12 and m22.
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Simplified continuous equilibrium moments

Collecting the previous results yields

m̄c(ρ, ϕ, u1, u2) = ρ [1, u1, u2,

u2
1 + ϕ/3, u2

2 + ϕ/3, u1u2,

u1 u2
2 + u1ϕ/3, u2

1 u2 + u2ϕ/3,

ϕ (u2
1u

2
2 + u2

1ϕ/3 + u2
2ϕ/3 + ϕ/9)]T .

The previous analytical results involve high order terms
(like u1 u2

2) which are not strictly required, in order to
recover the macroscopic equations we are interested in.

mc(ρ, ϕ, u1, u2) = ρ [1, u1, u2,

u2
1 + ϕ/3, u2

2 + ϕ/3, u1u2,

u1/3, u2/3,

(u2
1 + u2

2)/3 + ϕ/9]T
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Design of discrete local equilibrium

On the selected lattice, the discrete integrals mσ(∗),
corresponding to the previous continuous ones, can be
computed by means of simple linear combinations of the
discrete equilibrium distribution function fσ(∗) (still
unknown), namely mσ(∗) = Mfσ(∗) where M is a matrix
defined as

M = [1, V1, V2, V
2
1 , V 2

2 , V1V2, V1V
2
2 , V 2

1 V2, V
2
1 V 2

2 ]T . (43)

We design the discrete local equilibrium such as
mσ(∗) = mc(ρσ, ϕσ, u∗σ1, u

∗
σ2), or equivalently

fσ(∗) = M−1mc(ρσ, ϕσ, u∗σ1, u
∗
σ2). In particular the latter

provides the operative formula for defining the local
equilibrium and consequently the scheme.
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Discrete operative formula

Eq. (38) is formulated for discrete velocities, but it is still
continuous in both space and time.
Since the streaming velocities are constant, the Method of
Characteristics is the most convenient way to discretize
space and time and to recover the simplest formulation of
the LBM scheme.
Applying the second-order Crank–Nicolson yields

f+
σ = fσ + (1− θ) λσ

[
fσ(∗) − fσ

]
+ θ λ+

σ

[
f+

σ(∗) − f+
σ

]
, (44)

where θ = 1/2.
The previous formula would force one to consider quite
complicated integration procedures [Asinari, PRE 2006]. A
simple variable transformation has been already proposed
in order to simplify this task [He et al., JCP 1998].
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Variable transformation

(Step 1) Let us apply the transformation fσ → gσ defined by

gσ = fσ − θ λσ

[
fσ(∗) − fσ

]
. (45)

(Step 2) Let us compute the collision and streaming step
leading to gσ → g+

σ by means of the modified updating
equation

g+
σ = gσ + λ′σ

[
fσ(∗) − gσ

]
, (46)

where λ′σ = λσ/(1 + θλσ).
(Step 3) Finally let us come back to the original discrete
distribution function g+

σ → f+
σ by means of

f+
σ =

g+
σ + θ λ+

σ f+
σ(∗)

1 + θ λ+
σ

. (47)
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Problem for mixtures

In case of mixtures, the problem arises from the (Step 3),
which requires both λ+

σ and f+
σ(∗), depending on the

updated hydrodynamic moments at the new time step.
Since the single component density is conserved, Eq. (45)
yields

ρ+
σ = 〈g+

σ 〉, (48)

consequently it is possible to compute p+
σ , ρ+, p+ and λ+

σ .
However this is not the case for the single component
momentum, because this is not a conserved quantity and
hence the first order moments for g+

σ and f+
σ differ

[Arcidiacono et al., PRE 2007], namely

〈Vi g
+
σ 〉 = ρ+

σ u+
σi − θ λ+

σ ρ+
σ (u∗+σi − u+

σi) =

= ρ+
σ u+

σi − θ p+
∑

ς

Bσς y+
σ y+

ς (u+
ςi − u+

σi). (49)
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Solution: solving locally a linear system of equations

In the general case, Eq. (49) can be recasted as

〈Vi g
+
σ 〉 = q+

σi − θ λ+
σ

∑
ς

χσς (x+
σ q+

ςi − x+
ς q+

σi), (50)

where q+
σi = ρ+

σ u+
σi and

χσς =
m2

mσmς

Bσς

Bσσ
. (51)

Finally, grouping together common terms yields

〈Vi g
+
σ 〉 =

[
1 + θ λ+

σ

∑
ς

(χσς x+
ς )

]
q+
σi − θ λ+

σ x+
σ

∑
ς

(χσς q+
ςi).

(52)
Clearly the previous expression defines a linear system of
algebraic equations for the unknowns q+

σi.
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Basic algorithm

The proposed numerical code is formulated not in the
standard way.
Even though it is not an efficient implementation, the
proposed formulation is much more similar to any other
explicit finite difference (FD) scheme.
This offers some advantages:

1 it makes easier to implement hybrid schemes, i.e. to mix up
kinetic and conventional schemes on the same
discretization;

2 it makes easier to compare the LBM scheme with other FD
schemes, mainly in terms of updating rule;

3 it makes easier to implement simple boundary conditions,
based on the concept of local equilibrium.

Anyway the basic sequence of collision and streaming step
is preserved.
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Main loop

fd(1:nx,1:ny,0:8,1:species)

do t = 1,nt,1
do i = 1,nx,1

do j = 1,ny,1
call UpdateLatticeData(...,f(:,:));
do s = 1,species,1

fd_new(i,j,:,s) = f(:,s);
call HydrodynamicMoments(...);

enddo
enddo

enddo
fd(:,:,:,:) = fd_new(:,:,:,:);

enddo
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UpdateLatticeData loop

do k=0,8,1
iI = i + Incr(k,1); jI = j + Incr(k,2);
do s=1,species,1

! BCs rs,uxs,uys in I(i+,j+)
enddo
! Model quantities (md=0,1,2)
do s=1,species,1
call EquilibriumDistribution(...,feq(:))
lambda(s)=...;
do ik=0,8,1
fc(ik)=f(ik,s)+lambda(s)*(feq(ik)-f(ik,s));
enddo
f_new(BB(k),s) = fc(BB(k));

enddo
enddo
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UpdateLatticeData loop with variable transformation

do k=0,8,1
do s=1,species,1
call EquilibriumDistribution(...,feq(:))
lambda(s)=...;
TRANSFORMATION f(:,s) -> g(:,s)
do ik=0,8,1
gc(ik)=g(ik,s)+lambda’(s)*(feq(ik)-g(ik,s));
enddo
g_new(BB(k),s) = gc(BB(k));

enddo
enddo
BACK-TRANSFORMATION g_new(:,s) -> f_new(:,s)
COMPUTE CONSERVED MOMENTS
SOLVE LINEAR SYSTEM FOR NON-CONSERVED MOMENTS
APPLY FORMULA (Step 3)
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Ternary mixture

In case of ternary mixture Eq. (15) reduces to

n∇y1 = B12y1k2 + B13y1k3 − (B12y2 + B13y3)k1, (53)

n∇y2 = B21y2k1 + B23y2k3 − (B21y1 + B23y3)k2, (54)

n∇y3 = B31y3k1 + B32y3k2 − (B31y1 + B32y2)k3. (55)

The molecular weights are mσ = [1, 2, 3], the
homogeneous internal energies are [eσ = 1/3, 1/6, 1/9]
and consequently the corrective factors are
ϕσ = [1, 1/2, 1/3].
The theoretical Fick diffusion coefficient is Dσ = α/mσ,
where α ∈ [0.002, 0.8] and the theoretical Maxwell–Stefan
diffusion resistance is given by

Bσς = β

(
1

mσ
+

1
mς

)−1/2

, β ∈ [5, 166]. (56)
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Solvent test case

A component of a mixture is called solvent if its
concentration is predominant in comparison with the other
components of the mixture.
Let us suppose that, in our ternary mixture, the component
3 is a solvent. In particular, the initial conditions for the
solvent test case are given by

p1(0, x) = ∆p

[
1 + tanh

(
x− L/2

δx

)]
+ ps, (57)

p2(0, x) = ∆p

[
1− tanh

(
x− L/2

δx

)]
+ ps, (58)

p3(0, x) = 1− 2 (∆p + ps), (59)

where clearly p(0, x) =
∑

σ pσ = 1 and ∆p = ps = 0.01.
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Solvent test case: simplified transport coefficients

Hence y3
∼= 1 and consequently y1

∼= 0 and y2
∼= 0. Under

these assumptions, Eqs. (53, 54) reduce to

∇y1 = −B13y1(u1 − v) = B13y1(v − u1), (60)

∇y2 = −B23y2(u2 − v) = B23y2(v − u2), (61)

Consequently the measured diffusion resistances are
given by

B∗
13 =

1
D∗

1

=
∂y1/∂x

y1(v − u1)
, (62)

B∗
23 =

1
D∗

2

=
∂y2/∂x

y2(v − u2)
, (63)

where, in this test, the Maxwell–Stefan model reduces to
the Fick model.
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Solvent test case: Fick model
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Dilute test case

A component of a mixture is said dilute if its concentration
is negligible in comparison with the other components of
the mixture.
Let us suppose that, in our ternary mixture, the component
1 is dilute. In particular, the initial conditions for the dilute
test case are given by

p1(0, x) = ∆p

[
1 + tanh

(
x− L/2

δx

)]
+ ps, (64)

p2(0, x) = ∆p

[
1− tanh

(
x− L/2

δx

)]
+ ps +

+(1− r) (1− 2 ∆p), (65)
p3(0, x) = r (1− 2 ∆p)− 2 ps, (66)

where p(0, x) =
∑

σ pσ = 1, ∆p = ps = 0.01, r = 1/2.

Pietro Asinari Multi-species Lattice Boltzmann Models



Homogeneous mixture flow modeling
Lattice Boltzmann scheme

MixLBM numerical code

Basic algorithm
Numerical simulations

Dilute test case: Maxwell–Stefan model
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Non-Fickian test case: Stefan tube

It is essentially a vertical tube, open at one end, where the
carrier flow licks orthogonally the tube opening. In the
bottom of the tube is a pool of quiescent liquid. The vapor
that evaporates from this pool diffuses to the top.

p1(0, x) = p1(0, 0)
1
2

[
1− tanh

(
x− L/2

δx

)]
+ ps, (67)

p2(0, x) = p2(0, 0)
1
2

[
1− tanh

(
x− L/2

δx

)]
+ ps, (68)

p3(0, x) = [1− p3(0, 0)]
1
2

[
1 + tanh

(
x− L/2

δx

)]
+ p3(0, 0),

(69)

where the constant ps = 10−4 has been introduced for
avoiding to divide per zero.
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Stefan tube
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Conclusions

In the present talk, a new LBM scheme for homogeneous
mixture modeling, which fully recovers Maxwell–Stefan
diffusion model in the continuum limit, without the
restriction of the macroscopic mixture-averaged
approximation, was discussed.
As a theoretical basis for the development of the LBM
scheme, a recently proposed BGK-type kinetic model for
gas mixtures [Andries et al., JSP 2002] was considered.
This essentially ties the LBM development to the recent
progresses of the BGK-type kinetic models and opens new
perspectives.
In the reported numerical tests, the proposed scheme
produces good results on a wide range of relaxation
frequencies.
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