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1 Introduction

1.1 Instructions for this document

Some suggestions on how to use this document are reported. For each section, it is important
for the reader to understand the comments, which are highlighted as

(!!) important comments.

At the first reading, this allows one to skip the details of the mathematical derivations.

1.2 Useful definitions and applications

In order to understand which kind of applications will be discussed in this lecture, let us
introduce first the following definitions.

Definition 1 (of species) An ensemble of chemically identical molecular entities that can
explore the same set of molecular energy levels on the time scale of the experiment.

The first part of the previous definition is quite simple, i.e. a species is composed by
chemically identical molecular entities. The second part is slightly more complicated. The
latter part allows one to better clarify the attribute identical for some molecular entities.
In fact, some molecular entities may show different properties with regards to a very fast
perturbation, but, on the other hand, in a slow experiment the same mixture of entities may
behave as a single chemical species, i.e. there is virtually complete equilibrium population of
the total set of molecular energy levels belonging to the considered entities. This means that
it is better to define some molecular entities as identical with regards to the perturbations
and the time scales involved in the considered experiment.

(!!) It is worth the effort to point out that the definition of species only refers to
the chemical properties of the considered entities, without any constraints to the
physical properties.

Definition 2 (of phase) A chemically and physically uniform quantity of matter that can
be separated mechanically and it may consist of a single substance or of different substances.
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More precisely, a phase is a region in the parameter space of thermodynamic variables
in which they are analytic. Between such regions there are abrupt changes in the properties
of the system, which correspond to discontinuities in the thermodynamic variables and/or
their derivatives.

Phases are sometimes confused with states of matter, but there are significant differences.
States of matter refers to the differences between gases, liquids, solids, etc. If there are two
regions in a chemical system that are in different states of matter, then they must be different
phases. However, the reverse is not true because a system can have multiple phases which
are in equilibrium with each other and also in the same state of matter.

Definition 3 (of mixture) A system constituted by different species (multi-species mix-
ture) and/or by different phases (multi-phase mixture).

Definition 4 (of component) A constituent element of a system and, in particular, one
of the individual entities contributing to a whole mixture.

The definition of component (and consequently the expression multi-component) is some-
how ambiguous, because it is not immediately clear if it refers to a species (chemically iden-
tified entity) or a phase (both chemically and physically identified entity). However it always
means that different entities are considered and hence it implies the existence of a mixture.

(!!) Let us consider a multi-phase mixture. The definition of phase refers to both
the chemical properties and the physical properties of the considered entities.
Since the phases can be separated mechanically from the mixture, then some
level of separation exists at a scale well above the molecular level. Consequently
two phases can not strictly coexist in the same point.

Definition 5 (of the characteristic scale of separation δs) Let us call ∂Ωσ the inter-
face between a generic phase σ and the other phases, which constitute the mixture. It is
possible to define as δσ

s the characteristic length scale of the previous surface. Let us now
consider the largest of these parameters, namely δs ≥ δσ

s for any phase σ. Actually this
parameter can be generalized to any mixture, by assuming δs = 0 by definition in case of a
single-phase mixture.

Let us now define as L the smallest characteristic length scale of the phenomenon. For
example, this length scale can be imagined as the characteristic length, over which the
spatial gradients of the flow variables show a meaningful variation. According to the previous
definitions, the possible flows in a multi-phase mixture can be classified [1] as

• disperse flows δs � L:

– nearly homogeneous flow, it is the asymptotic limit of a disperse flow in which
the disperse phase is distributed as an infinite number of infinitesimally small
particles, bubbles, or drops and this limit implies zero relative motion between
the phases;
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– bubbly or mist flow, it is a flow quite disperse in that the particle size is much
smaller than the pipe dimensions but in which the relative motion between the
phases is significant;

• separated flows δs � L:

– annular or film flow, it is a flow where the droplets are an important feature and
therefore it can only be regarded as partially separated;

– fully separated flow, it consists of two single phase streams when low velocity flow
of gas and liquid in a pipe.

Any numerical modeling modifies the original set of characteristic scales of the phe-
nomenon. Usually the actual smallest scale of the numerical description of the phenomenon
differs from the smallest scale of the phenomenon itself. This is due to the fact that we
introduce infinitesimal geometrical entities (mesh entities) in order to compute numerically
the continuous operators. Let us define as δx the smallest characteristic length scale of
our description of the phenomenon. For example, this length scale can be imagined as the
discretization mesh size, used by a proper numerical scheme.

Definition 6 (of homogeneous mixture) A generic mixture characterized by a charac-
teristic length scale of separation δs which is much smaller than the size of the smallest scale
of the description of the phenomenon, i.e. δs � δx which means that, in case of multi-
phase flows, the disperse phase particles (namely drops or bubbles) are much smaller than
the smallest control volume of the description or, equivalently, each control volume contains
representative samples of each of the phases.

(!!) The last definition allows the reader to understand the meaning of the title of
this lecture. The key idea is that the following considerations can be applied to
any (single- or multi-phase) multi-species mixture, if and only if each component
is present (at least in very small quantities) in any control volume. Hence, for
example, capillarity and interface-tracking problems are neglected.

The previous considerations apply also to the popular Continuous Phase Models (CPM)
used for multi-phase flows by the scientific and engineering community [1].

Finally, the reactive flows are neglected in this lecture. Taking into account reactive flows
by including reactive terms in the equations governing the single species dynamics seems a
straightforward activity. However at least three difficulties arise.

• Most of the practical chemical models for reactive flows involve differential equations
in order to compute the source terms and the minimum number of equations to be
considered is usually very huge. For example, the meaningful skeleton set for methane-
air combustion involves 25 reactions and 15 species, in order to properly take into
account the leading bimolecular reactions, dissociations and recombinations.

• Most of chemical mechanisms can be modeled by means of reversed and effective reac-
tions. The reaction rate is determinated by an equilibrium reaction constant, as defined
by law of mass action. Unfortunately the last condition is highly non linear (not simply
quadratic as it happens for the non linear terms in Navier-Stokes equations).
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• Finally, in most of the cases, the previous chemical model is too complicated to be di-
rectly solved. For this reason, some systematic reduction techniques based on complex
mathematical algorithms must be considered.

2 Macroscopic modeling

2.1 Concentration measures, mixture velocity and diffusion fluxes

Let us introduce some concentration measures in order to identify the relative composition
of the mixture in a generic point [2]. In particular, the mass concentration is defined as

xσ = ρσ/ρ, (1)

where ρσ is the single species density 1, while ρ =
∑

ς ρς is the total mixture density.
Let us introduce the molar density as

nσ = ρσ/mσ, (2)

where mσ is the molecular weight, i.e. the weight of one mole of molecules. By means of the
previous quantity is possible to define a molar concentration as

yσ = nσ/n, (3)

where n =
∑

ς nς is the total mixture molar density.
By means of the previous quantities, it is possible to define the relative fluxes describing

the peculiar flow of each component of the mixture. In particular, by means of the mass
concentrations, it is possible to define a mass-averaged mixture velocity, namely

u =
∑

ς

xςuς , (4)

where uς is the single species velocity. Since the mass concentrations where used, the
previous quantity is also called barycentric velocity. Consequently it is possible to define a
specific mass diffusion flux for each species σ as

jσ = ρσwσ, (5)

where wσ = uσ − u is the mass diffusion velocity and clearly
∑

ς jς = 0.
Similarly, by means of the molar concentrations, it is possible to define a mole-averaged

mixture velocity, namely

v =
∑

ς

yςuς . (6)

Consequently it is possible to define a specific molar diffusion flux for each species σ as

kσ = nσzσ, (7)

where zσ = uσ − v is the molar diffusion velocity and clearly
∑

ς kς = 0.

1In case of multi-phase mixtures, ρσ is the apparent phase density, which is related to the actual one ρ′
σ

by means of the generic volume fraction ασ of the phase σ, i.e. ρσ = ασρ′
σ. This is due to the fact that

ρσ = Mσ/V , while the actual phase density is ρ′
σ = Mσ/Vσ and for multi-phase mixtures

∑
ς Vς = V .
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2.2 Species transport equation

Concerning multi-species flow modeling, it is not clear which mixture velocity is the best in
order to describe the mixture dynamics. Actually the mixture literature would be a much
deal simpler if there were only one way to characterize the mixture dynamics [2]. This
has produced some ambiguities in defying the macroscopic transport equations (and the
corresponding transport coefficients) for mixture modeling.

As far as the basic assumptions of the kinetic theory of gases are satisfied, it is always
better to refer to the latter in order to deduce the macroscopic transport coefficients. However
in this case, a popular alternative based on the equation of change of the species mass is
proposed in order to start with an heuristic discussion of the macroscopic models [2].

Let us consider the Equation of Change for the species mass, which is a conserved quantity
since the chemical reactions are neglected, namely

d

dt

∫
Ωσ

ρσdV =

∫
Ωσ

∂ρσ

∂t
dV +

∫
∂Ωσ

(ρσuσ) · ndS = 0, (8)

and consequently
d

dt

∫
Ωσ

ρσdV =

∫
Ωσ

[
∂ρσ

∂t
+∇ · (ρσuσ)

]
dV = 0, (9)

∂ρσ

∂t
+∇ · (ρσuσ) = 0, (10)

∂ρσ

∂t
+∇ · (ρσu) = −∇ · jσ, (11)

∂nσ

∂t
+∇ · (nσv) = −∇ · kσ. (12)

The last two equations are two equivalent formulations of the species transport equation.
However they already allow to point out a fundamental distinction 2, which will clarified
later on by discussing the kinetic modeling.

(!!) Equation (10) assumes as unknown variables of the calculation the single
species quantities ρσ and uσ. Obviously in order to solve this system of equations
some additional equations for uσ must be provided. If N is the number of species,
this means N×(1+D) (where D is the number of physical dimensions) equations
to be solved. This strategy defines the so-called multi-fluid approach.

(!!) Equation (11) or Equation (12) assumes as unknown variables of the calcula-
tion the quantities ρσ (nσ) and u (v), where the latter is unique for all the species.
Obviously in order to solve this system of equations an additional equation for u
(v) and some phenomenological correlations for jσ (kσ) must be provided. The
phenomenological correlations for jσ (kσ) allow one to compute these terms by
means of the main unknowns, i.e. ρσ (nσ) and u (v). If N is the number of
species, this means N + D ≤ N × (1 + D) equations to be solved. This strategy
defines the so-called single-fluid approach.

2In multi-phase modeling, the continuous phase models (CPM) can be usually divided in two sets: those
coherent with the single-fluid approach (e.g. Mixture models) and those coherent with the multi-fluid
approach (e.g. Eulerian-Eulerian models, Eulerian-granular models).
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Obviously the latter approach ensures a reduction of the number of equations to be solved
(for N > 1), but it forces one to introduce some proper phenomenological correlations: in
the following, the Fick model and the Maxwell-Stefan model will be discussed.

2.3 Fick model

A very popular phenomenological model (or law) for expressing the diffusion fluxes based
on experimental studies involving binary mixtures is the Fick model [2]. Let us identify by
1 and 2 the two components of the binary mixture (this is for highlighting that some of the
properties of this model are not general, but they depend on considering two components
only). Hence the Fick model can be expressed as

k1 = −nD12∇y1, (13)

where D12 is the binary Fick diffusion coefficient (it is always better to refer the diffusion
coefficients to the original models, because their definitions are not unique), or equivalently

∇y1 = − k1

nD12

= −k1 − y1(k1 + k2)

nD12

= −y2k1 − y1k2

nD12

= −y1y2

D12

(u1 − u2). (14)

Let us suppose to adopt the single-fluid approach. Consequently our unknows becomes nσ

and v. Let us suppose to consider a binary mixture and to use the Fick model in order to
expressed the diffusion fluxes. Finally let us consider the low Mach number limit for the
barycentric flow, which implies a barycentric velocity nearly diverge-free (∇ · u ≈ 0 and
consequently ∇·v ≈ 0) and consequently a total density field nearly constant. Finally let us
consider a mixture characterized by modest concentration gradients such as the total molec-
ular weight, i.e. 1/m =

∑
ς(xς/mς), is nearly independent of the local mass concentrations.

Neglecting the divergence of the total velocity, the gradients of the total mixture density and
those of the total molecular weight yields

∂y1

∂t
+ v · ∇y1 = D12∇2y1, (15)

where D12 is assumed constant. The previous equation is the result of the so-called linearized
theory, which allows one to recover an advection-diffusion equation for the single component
concentration3.

(!!) Equation (15) is a simplified version of the operative equation considered
by the passive-scalar approach. Essentially according to this strategy, the dy-
namics of the single species is described only by tracing the corresponding molar
concentration yσ, due to a given velocity field v.

In this lecture, the problem of finding reliable experimental expressions for the transport
coefficients will not be discussed. However a lot of experimental data have been already
collected [3].

3In the following, the Fick model will be generalized in order to include a tensor D of diffusion coefficients.
In this case, exploiting the properties of the corresponding modal matrix, it is possible to make diagonal the
diffusion tensor D so that the problem reduces to finite a set of uncoupled advection-diffusion equations.
This means that the previous discussion is not so particular.
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Figure 1: Experimental set-up of the experiment conducted by Duncan & Toor (1962) and
main results [4].

2.4 Limits of Fick model: osmotic diffusion, reverse diffusion and
diffusion barrier

Even though the Fick model is very simple, it shows some serious drawback when more
than two species are considered [4]. In order to realize this, let us consider the following
experiment conducted by Duncan & Toor (1962). These authors examined the diffusion in
an ideal ternary gas mixture made of hydrogen (1) nitrogen (2) and carbon dioxide (3). The
experimental set-up consisted of two bulb diffusion cells, pictured in Fig. 1.

The bulbs, bulb A and bulb B, had the initial compositions given below:

Bulb A : y1 = 0.00000, y2 = 0.50086, y3 = 0.49914,

Bulb B : y1 = 0.50121, y2 = 0.49879, y3 = 0.00000.

At the time t = 0, the stopcock separating the two composition environments at the center
of the capillary connecting the two bulbs was opened and diffusion of the three species was
allowed to take place. The composition-time trajectories for each of the three diffusing
species in either bulb has been presented in Fig. 1. Let us first examine what happens to
hydrogen (1) and carbon dioxide (3). The composition-time trajectories are as we should
expect. The diffusion behavior of these two species hydrogen and carbon dioxide may be
termed to be Fickian, i.e. down their respective composition gradients.

However if we examine the composition-time trajectory of nitrogen (2), we see several
curious phenomena. Initially, the compositions of nitrogen in the two bulbs are almost
identical and therefore at this point the composition gradient driving force for nitrogen must
vanish. However, it was observed experimentally that the diffusion of nitrogen does take
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place and this is contrary to the Fickian expectations, since yA(t = 0) = yB(t = 0). In
particular, the bulb A composition decreases and continues at the expense of bulb B: this
means that this diffusion of nitrogen is in an up-hill direction. Up-hill diffusion of nitrogen
continued to take place until a critical time is reached when the composition profiles in wither
bulb tend to a plateau. This plateau implies that the diffusion flux of nitrogen is zero at this
point despite the fact that there is a large driving force existing. Beyond the critical time,
the behavior of nitrogen is again in good agreement with the Fickian predictions.

The previous discussed phenomena are:

• osmotic diffusion, namely diffusion of a component despite the absence of a driving
force;

• reverse diffusion, namely diffusion of a component in a direction opposite to that
dictated by its driving force;

• diffusion barrier, namely diffusion flux is zero despite a large driving force.

(!!) Clearly this example shows the intrinsic limits of the Fick model. The
key problem is that in the Fick model each molar flux is driven only by the
corresponding molar concentration gradient. Each species behaves on its own.
In particular this problem can be corrected by taking into account the mutual
interactions among the species.

2.5 Maxwell-Stefan model

In case of more than two species, Equation (14) can be generalized by the Maxwell-Stefan
model [2, 4], namely

∇yσ =
∑

ς

Bσςyσyς(uς − uσ) =
1

n

∑
ς

Bσς(yσkς − yςkσ), (16)

where Bσς = B(mσ, mς) is the binary Maxwell-Stefan diffusion resistance coefficient. An
important comment is that the previous parameter only depends (according to the results of
the kinetic theory) on the molecular weights of considered species and on the total pressure
and temperature (thermodynamic variables identifying the mixture equilibrium state). A
graphical representation of this model is reported in Fig. 2.

It is possible to directly compare the previous expression with the Fick expression in
some simple limiting cases. Let us consider a ternary mixture, like that discussed in the
Duncan & Toor experiment, namely

−n∇y1 = (B12y2 + B13y3)k1 −B12y1k2 −B13y1k3. (17)

In case of a solvent species, i.e. y1 → 0, y2 → 0 and then consequently y3 → 1, the previous
expression becomes −n∇y1 = B13k1 and hence the consistency with the Fick model is
recovered by selecting 1/D12 = B13. Another example is the case of a dilute species, i.e.
y1 → 0, in this case the consistency requires 1/D12 = B12y2 + B13y3.
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Figure 2: Graphical representation of the Maxwell-Stefan model for ternary system [4].

The previous examples prove that, in some limiting cases, it is possible to recover the
results of the Maxwell-Stefan model by means of a simpler model and by selecting prop-
erly the values of the diffusion coefficient. In general it is possible to express the pre-
vious expression for the Maxwell-Stefan model by means of a tensorial notation, namely
−n[∇y] = [R][k], where [k] collects in a single vector the components of all the single-
species diffusion vectors, [∇y] collects all the components of the single-species concentration
gradients and [R] = [R(mσ, yσ)] is a tensor with proper size. The generalization of the Fick
model is possible by [k] = −n[D][∇y] where [D(mσ, yσ)] = [R]−1.

(!!) The last argumentation is not completely convincing. In fact, [R(mσ, yσ)]
is a tensor which depends on the local concentrations (unlike the tensor Bσς).
This means that in some points the inverse of the tensor [R] may not be defined.
This is a serious problem if the passive scalar approach is adopted because, in this
case, the diffusion fluxes must be expressed since they are not original unknowns.

3 Kinetic modeling

3.1 Boltzmann equations

We will discuss succinctly the kinetic theory for mixtures. The simultaneous Boltzmann
equations for a mixture without external force can be written as:

∂tfσ + ξ ·∇fσ = Qσ, (18)
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where Qσ =
∑

ς Qσς and Qσς = Qςσ, ς 6= σ, is the cross collision term for two different
species σ and ς. Obviously, for an N -component system, there will be N such equations. In
general, the collision term is

Qσς =

∫
dξςdΘdεB(Θ, ‖ξσς‖)[f ′

σf
′
ς − fσfς ], (19)

where f ′
σ (f ′

ς) and fσ (fς) denote the post-collision and pre-collision state of the particle of
species σ (ς), respectively, ξσς = ξ − ξς , and we refer the details of the collision integral of
Eq. (19) to standard texts on the Boltzmann equation [3, 5, 6, 7, 8].

Obviously, the system of N equations for N species is much more formidable to analyze
than the Boltzmann equation for a single-species system. Before proceeding with simplified
expressions, it is worth the effort to compute the following integral [9]∫

ξQσdξ = p
∑

ς

Bσςyσyς(uς − uσ), (20)

where now the Maxwell-Stefan diffusion resistance coefficient Bσς can be interpreted as
macroscopic consequence of the interaction potential between species σ and ς.

(!!) The previous expression is of fundamental importance, because it naturally
shows the link between the kinetic description and the phenomenological coeffi-
cients involved in Maxwell-Stefan model. Actually the latter can be computed as
functions of the interaction potentials only. Moreover the exchange of momen-
tum among the species prescribed by the Maxwell-Stefan model is firmly based
on the continuous Boltzmann equations.

In modeling of an N -species system, the first objective is to find a suitable approximation
for the integral collision term of Eq. (19) that would significantly simplify the computation
while maintaining the most essential part of the physics. For this purpose, the linearized or
relaxation collision models are applied [7, 8, 10].

The justification for the relaxation approximation for the collision terms relies on our
understanding of the underlying physics pertinent to mixtures. In a system of multiple
species, there are a number of competing equilibration processes occurring simultaneously.
The approach to equilibrium in the system can be roughly divided into two stages.

• In the first stage, each individual species equilibrates within itself so that its local
distribution function relaxes to a local Maxwellian, and this process of individual equi-
libration is referred to as Maxwellization.

• In the second stage, the entire system equilibrates so that the velocity and temperature
differences among different species vanish eventually.

Obviously the equilibrating process of a multi-species system involves a number of differ-
ent time scales. In addition, the Maxwellization itself can take place in various scenarios
depending on the molecular weights and mass fractions of the interacting species.

Consider two binary mixtures, for example, each consisting of a light and a heavy gas.
The total mass of each species is equal for one mixture, implying a smaller number density for
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the heavier gas, and the number densities of the two species is equal for the other, implying
a larger mass density (or mass fraction) for the heavier species. In equal-mass mixture,
the Maxwellization of light species is mostly due to self-collision whereas the equilibration
of the heavier species is predominantly due to cross collisions. This is due to the fact
that the number of heavy molecules available for collisions is smaller. In the equal-number
mixture, Maxwellization of both species involves self and cross collisions. This example
illustrates the equilibrating process in a mixture depends strongly on the properties of the
mixture. When the Maxwellization process is complete, the stress of the corresponding
species becomes isotropic, or equivalently the heat conduction relaxes to zero. Therefore,
the scale on which the stress becomes isotropic or the heat conduction relaxes is a suitable
measure of Maxwellization. The equilibration among different species can also take place in
several different manners. Velocity and temperature differences may equilibrate on the same
temporal scale, as in the equal-mass mixture, or on vastly different scales, as in the equal-
number mixture. In addition, these equilibrating processes need not to occur sequentially
but also concurrently with the Maxwellization [11].

There is a significant amount of literature on gas mixtures within the framework of
kinetic theory [5, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. In the Chapman-Enskog
analysis for a simple gas, one assumes a clear separation of scales in space and time, that
is, to distinguish the spatial and temporal scales which are much larger than the mean free
path or mean free time, respectively. An analogy for a mixture becomes much more difficult
because of multiplicity of spatial and temporal scales due to inter-species interactions. In
the work of Chapman and Cowling [5], the full Boltzmann equations for a binary mixture
are analyzed under the assumptions that all scales are of the same order approximately, or
equivalently, that the phenomenon of interest is smooth with respect to all collisional scales.
The determination of various transport coefficients was the main objective of Chapman and
Cowling [5] and no attempt was made to describe the evolution dynamics for mixtures [11].

3.2 Traditional BGK models

For realistic systems of engineering interest, direct analysis or numerical simulation of the
Boltzmann equation is not feasible in general. This is due to the difficulty involved in evalu-
ating the complex integral collision operators. Two approaches can be followed to circumvent
this difficulty. The first, Grad’s moment method, is to obtain the non-normal solutions of
the Boltzmann equation (i.e., the solutions beyond the hydrodynamic variables) [23]. The
Boltzmann equation is equivalent to system of infinite number of moment equations. In the
Grad’s moment method, the moment system is truncated to a finite number of moments
and closure modeling is required to express the unclosed moments in terms of the closed
ones. And the second is to derive simplified model Boltzmann equations which are more
manageable to solve. Numerous model equations are influenced by Maxwell’s approach to
solve the Boltzmann equation by using the properties of the Maxwell molecule [24] and the
linearized Boltzmann equation. The simplest model equations for a binary mixture is that
by Gross and Krook [13], which is an extension of the single-relaxation-time model for a
pure system — the celebrated Bhatnagar-Gross-Krook (BGK) model [25].

With the BGK approximation [25, 13], the collision integrals Qσς [σ, ς ∈ (A, B)] can be
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approximated by following linearized collision terms

Jσσ = − 1

τσ

[fσ − fσ(0)], Jσς = − 1

τσς

[fσ − fσς(0)], (21)

where fσ(0) and fσς(0) are Maxwellians

fσ(0)(ρσ, uσ, Tσ) =
ρσ

(2πRσTσ)D/2
e−(ξ−uσ)2/(2RσTσ), (22a)

fσς(0)(ρσ, uσς , Tσς) =
ρσ

(2πRσTσς)
D/2

e−(ξ−uσς)2/(2RσTσς), (22b)

where D is the spatial dimension, Rσ = kB/mσ and mσ are the gas constant and the
molecular mass of the σ species, respectively, and kB is the Boltzmann constant. There are
three adjustable relaxation parameters in the collision terms: τσ, τς , and τσς = (ρς/ρσ)τςσ.
The species Maxwellian fσ(0) is characterized by the conserved variables of each individual
species: the mass density ρσ, the mass velocity uσ, and the temperature Tσ; while the
mixture Maxwellians fσς(0) and fςσ(0) are characterized by four adjustable parameters: uσς ,
uςσ, Tσς , and Tςσ. There are several considerations in determining these arbitrary parameters:
simplicity of the resulting theory, accuracy of approximation, and ease of computation. The
cross-collisional terms would be symmetric only if one takes uσς = uςσ = u and Tσς =
Tςσ = T , where u and T are the velocity and temperature of the mixture, which are yet
to be defined. This is essential in preserving the irreversible thermodynamics, especially
the Onsager relation [26]. Another thermodynamic relation needs to be satisfied is the
Indifferentiability Principle [9], that is, if two species are identical, the system of the mixture
equations (18) collapses the equation of a pure species. Obviously, this is true for the
Boltzmann equation, but it does not hold for the BGK-type model equations for mixtures.
As we shall see later, the constraints imposed by the Indifferentiability Principle would also
affect the self collision terms.

Since a mixture ultimately relaxes to the equilibrium defined by the mixture variables u
ant T , it is logical to use fσς(0) as the equilibrium in the Chapman-Enskog analysis. Fewer
terms in the expansion of fσ about fσς(0) would be needed in many cases if one chooses
uσς = uσ and Tσς = Tσ, i.e., fσς(0) = fσ(0). The main difference in using the mixture
variables u and T , as opposed to the species variables uσ and Tσ is that the former leads
to the single-fluid theory, from which one set of hydrodynamic equations for the mixture
variables is derived, while the latter leads to the multi-fluid theory [15, 21], from which two
sets of coupled hydrodynamic equations of mixture variables can be derived.

(!!) However the distinction between single-fluid and multi-fluid approach mainly
depends on how many equations at kinetic level are solved and how the numer-
ical results are collected at macroscopic level in order to produce the mixture
description.

For σ species, the BGK-type collision term combining self- and cross-collisions can be
rewritten as:

Jσ = −
(

1

τσ

+
1

τσς

)
[fσ − fσ(0)]−

1

τσς

[fσ(0) − fσς(0)]. (23)
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Mathematically, fσ(0) can be expanded in terms of fσς(0), equivalently, the fluid properties of
individual species, ρσ, uσ, and Tσ in terms of the mixture fluid properties, ρ, u, and T , or
vice versa. As pointed out by Gross and Krook [13], and similarly by Hamel [17, 19], one can
also linearly combine these two expansions with an adjustable parameter 0 ≤ β ≤ 1, that is,
a portion of fσ(0), βfσ(0), is expressed in terms of fσς(0), and a portion of fσς(0), (1− β)fσς(0),
is expressed in terms fσ(0):

fσ(0) − fσς(0) = nσ(2πRσT )−3/2
(
e−c2σ/2RσT − e−c2/2RσT

)
= (1− β)fσ(0)

[
1− e−(2cσ+wσ)·wσ/2RσT

]
− βfσς(0)

[
1− e(2c−wσ)·wσ/2RσT

]
, (24)

where c = ξ−u, cσ = ξ−uσ, wσ = uσ−u, and we have assumed the mixture is isothermal,
i.e., Tσ = Tσς = T .

If the cross-collision term is linearized in terms of the diffusion velocity wσ, one obtains
the generalized model of Sirovich [15, 27]:

Jσ = − 1

τσ

[fσ − fσ(0)]−
1

τσς

sσ ·wσ, (25)

where

sσ =
1

RσT

[
(1− β)fσ(0)(ξ − uσ) + βfσς(0)(ξ − u)

]
. (26)

The original model of Sirovich [15] is recovered when β = 0. This model allows two relaxation
times, consequently a variable Schmidt number Sc independent of the Reynolds number Re.

So far we have yet to define the mixture velocity u and temperature T . The choice of
u and T is unique and is a key issue in the BGK-type of modeling. By insisting that the
relaxation equations for the velocity difference (uσ − uς) and the temperature difference
(Tσ − Tς) obtained from the full Boltzmann equations and the model equations must be the
same, the following definitions for the mixture velocity and temperature must be used [16]:

u = uσς = uςσ =
mσuσ + mςuς

mσ + mς

, (27a)

Tσς = Tσ +
2mσmς

(mσ + mς)2

[
(Tς − Tσ) +

mς

6kB

(uς − uσ)2

]
. (27b)

However, the above definition of u for the BGK model equations contradicts the Indiffer-
entiability Principle [9]. That is, for two identical species σ and ς, the model equations do
not reduce to the one for a single species gas. For the BGK model equations of mixtures,
the Indifferentiability Principle can be maintained if the barycentric velocity is used in the
mixture Maxwellian:

u =
ρσuσ + ρςuς

ρσ + ρς

. (28)

But the barycentric velocity is inconsistent with the conditions (27a) derived from the full
Boltzmann equations. Hence a dilemma arises: between the consistency with the full Boltz-
mann equations and the Indifferentiability Principle, which one to maintain? As we will
argue next, the Indifferentiability Principle is more important for the hydrodynamic model-
ing of mixtures considered here.
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(!!) It is simple to realize the importance of the Indifferentiability Principle. If for
identical particles, the model equations do not reduce to one for a single species
gas, this means that some inconsistencies may exist, even in the macroscopic
transport equations.

3.3 Advanced BGK models

In order to discriminate the possible simplified models, some consistency constraints must
be considered first. The basic consistency constraints [9] in the design of simplified kinetic
models for mixture modeling are the following.

1. The simplified model should satisfy the Indifferentiability Principle [28], which pre-
scribes that, if a BGK-like equation for each species is assumed, this set of equations
should reduce to a single BGK-like equation, when mechanically identical components
are considered (microscopic formulation). This essentially means that, when all the
species are identical, one should recover at macroscopic levels the equations governing
the single component gas dynamics (macroscopic formulation). This property is sat-
isfied by the bilinearity of the collision operators in the full Boltzmann equations for
mixtures.

2. The relaxation equations for momentum and temperature, i.e. the equations describing
the time decay of the momentum and temperature differences among the species, should
be as close as possible to those derived by means of the full Boltzmann equations.

3. All the species should tend to a target equilibrium distribution which is a Maxwellian,
centered on a proper macroscopic velocity, common to all the species.

4. The non-negativity of the distribution functions for all the species should be satisfied.

5. A generalized H theorem for mixtures should hold.

Unfortunately it is well known that, in the framework of the Lattice Boltzmann Method
(LBM), both issue (4) concerning the non-negativity of the distribution functions [29], which
is valid only asymptotically in the limit of low Mach number, and issue (5) concerning the
existence of an H theorem, cannot be satisfied [30]. For these reasons, the following discussion
will focus on the first three issues only.

(!!) In the following, for sake of simplicity, only the isothermal models will
be considered, i.e. Tσ = T for any σ, since the main interested is focused on
isothermal diffusion.

The key idea is to discuss the advanced BGK model proposed by Andries et al.[9] in case
of isothermal flow, in order to simplify it and to highlight the main features. This model is
based on only one global (i.e., taking into account all the species ς) operator for each species
σ, namely

∂tfσ + ξ ·∇fσ = λσ

[
fσ(∗) − fσ

]
, (29)
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where λσ = 1/τσ is the relaxation time frequency and the local equilibrium is defined by

fσ(∗) =
ρσ

(2πeσ)D/2
exp

[
−(ξ − u∗)

2

2 eσ

]
, (30)

where eσ = RσT is the internal energy for species σ and finally u∗
σ is a proper (undefined)

macroscopic velocity representative of the whole mixture.
In order to derive the expression for the undefined velocity, we recall Eq. (20) and we

define u∗
σ such as that the latter condition is satisfied as well for the simplified BGK model,

i.e. that the BGK model ensures the same exchange of momentum among the species,
namely

λσρσ (u∗
σ − uσ) = p

∑
ς

Bσςyσyς(uς − uσ), (31)

or equivalently

u∗
σ = uσ +

p

λσρσ

∑
ς

Bσςyσyς(uς − uσ). (32)

Actually the relaxation frequency λσ is undefined and its choice is crucial for the complete
model [9]. Fortunately in our simplified case, it is much easier to select these parameters. In
particular, let us consider the limiting case of all identical species, i.e. mσ = m, which is the
same limiting case considered by the Indifferentiability Principle. In this case, the previous
expression reduces to

u∗
σ = uσ +

p Bm m

λσρ
(u− uσ). (33)

If and only if λσ = λ = p Bm m/ρ, then u∗
σ = u (barycentric velocity) and summing Eqs.

(29) over the species yields
∂tf + ξ ·∇f = λ

[
f(m) − f

]
, (34)

where f =
∑

σ fσ and f(m) is defined by

f(m) =
ρ

(2πe)D/2
exp

[
−(ξ − u)2

2 e

]
, (35)

where eσ = RT , R = R0/m and R0 is the universal gas constant. Clearly this model satisfies
the Indifferentiability Principle. The derived condition does allow one to define uniquely
the relaxation frequency in a generic case, i.e. λσ = p Bσσ/ρ. Substituting in the previous
expression yields

u∗
σ = uσ +

∑
ς

m2

mσmς

Bσς

Bσσ

xς(uς − uσ). (36)

(!!) The previous expression completely defines the macroscopic velocity consid-
ered by the model for the definition of the local equilibrium. This velocity is a bit
different from those usually used in order to characterize the mixture dynamics.
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Let us consider the following additional property. Multiplying Eq. (36) by ρσ and
summing over all the species yields∑

σ

ρσu
∗
σ = ρu + ρ

∑
σ

∑
ς

m2

mσmς

Bσς

Bσσ

xσxς(uς − uσ) = ρu, (37)

or equivalently
∑

ς xςu
∗
ς = u =

∑
ς xςuς .

4 Lattice Boltzmann scheme

4.1 Basic BGK equation

In order to derive the simplest lattice Boltzmann scheme for the previous model, let us recall
first the model equation, where the Boltzmann scaling is highlighted by using the quantities
with hat, namely

∂f̂σ

∂t̂
+ ξi

∂f̂σ

∂x̂i

= λσ

[
f̂σ(∗) − f̂σ

]
, (38)

where x̂i, t̂, and ξi are the (dimensionless) space coordinates, time, and molecular velocity
components, respectively; f̂σ(t̂, x̂i, ξi); λσ is a positive constant of the order of unit; and
finally f̂σ(∗)(t̂, x̂i, ξi) is the equilibrium distribution function for the species σ, namely

f̂σ(∗) =
ρσ

2 πϕσ/3
exp

[
−3 (ξi − u∗σi)

2

2 ϕσ

]
, (39)

where u∗σi is defined by Eq. (36),

ρσ =� f̂σ �, qσi = ρσuσi =� ξi f̂σ �, (40)

and

� · �=

∫ +∞

−∞
(·) dξ1dξ2. (41)

(!!) The parameter ϕσ is introduced in order to take into account of differ-
ent molecular weights mσ and consequently different internal energies eσ for the
species.

Recall that the unit of space coordinate and that of time variable in Eq. (38) are the
mean free path lc(= cTc) and the mean collision time Tc, respectively. Obviously, they are
not appropriate as the characteristic scales for flow field in the continuum limit. Let the
characteristic length scale of the flow field be L and let the characteristic flow speed be U .
There are two factors in the limit we are interested in. The continuum limit means lc � L
and the low speed limit means U � c. In the following asymptotic analysis, we introduce
the other dimensionless variables, defined by

xi = (lc/L)x̂i, t = (UTc/L)t̂. (42)
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Defining the small parameter ε as ε = lc/L, which corresponds to the Knudsen number, we
have xi = εx̂i. Furthermore, assuming

U/c = ε, (43)

which is the key of derivation of the low Mach number limit [31], we have t = ε2t̂. Then,
Eq. (38) is rewritten as

ε2∂fσ

∂t
+ εξi

∂fσ

∂xi

= λσ

[
fσ(∗) − fσ

]
, (44)

where fσ(t, xi, ξi) and fσ(∗)(t, xi, ξi). In this new scaling, we can assume

∂f

∂α
= O(f),

∂M

∂α
= O(M), (45)

where f = fσ(∗), fσ and α = t, xi and M = ρσ, qσi.
Since LBM does not need to give the accurate behavior of rarefied gas flows, a simpli-

fied kinetic equation, such as the discrete velocity model of isothermal BGK equation with
constant collision frequency is often employed as its theoretical basis, namely

ε2∂fσ

∂t
+ εVi

∂fσ

∂xi

= λσ

[
fσ(∗) − fσ

]
, (46)

where Vi is a list of i-th components of the velocities in the considered lattice and f = fσ(∗), fσ

is a list of discrete distribution functions corresponding to the velocities in the considered
lattice.

(!!) Change in notation: now f = fσ(∗), fσ is a list of discrete distribution func-
tions corresponding to the velocities in the considered lattice.

Let us consider the two dimensional 9 velocity model, which is called D2Q9. In D2Q9
model, the molecular velocity Vi has the following 9 values:

V1 =
[

0 1 0 −1 0 1 −1 −1 1
]T

, (47)

V2 =
[

0 0 1 0 −1 1 1 −1 −1
]T

. (48)

The components of the molecular velocity V1 and V2 are the lists with 9 elements. Before
proceeding to the definition of the local equilibrium function fσ(∗), we define the rule of
computation for the list. Let h and g be the lists defined by h = [h0, h1, h2, · · · , h8]

T and
g = [g0, g1, g2, · · · , g8]

T . Then, hg is the list defined by [h0g0, h1g1, h2g2, · · · , h8g8]
T . The

sum of all the elements of the list h is denoted by < h >, i.e. < h >=
∑8

i=0 hi. Then, the
(dimensionless) density ρσ and momentum qσi = ρσuσi are defined by

ρσ =< fσ >, qσi =< Vifσ > . (49)
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Then, fσ(∗) is defined by

fσ(∗) = ρσ

[
1− 5/9 ϕσ − 2/3 (u∗σ1)

2 − 2/3 (u∗σ2)
2,

1/9 ϕσ + 1/3 (u∗σ1) + 1/3 (u∗σ1)
2 − 1/6 (u∗σ2)

2,

1/9 ϕσ + 1/3 (u∗σ2) + 1/3 (u∗σ2)
2 − 1/6 (u∗σ1)

2,

1/9 ϕσ − 1/3 (u∗σ1) + 1/3 (u∗σ1)
2 − 1/6 (u∗σ2)

2,

1/9 ϕσ − 1/3 (u∗σ2) + 1/3 (u∗σ2)
2 − 1/6 (u∗σ1)

2,

1/36 ϕσ + 1/12 (u∗σ1 + u∗σ2) + 1/8 (u∗σ1 + u∗σ2)
2 − 1/24 (u∗σ1)

2 − 1/24 (u∗σ2)
2,

1/36 ϕσ − 1/12 (u∗σ1 − u∗σ2) + 1/8 (−u∗σ1 + u∗σ2)
2 − 1/24 (u∗σ1)

2 − 1/24 (u∗σ2)
2,

1/36 ϕσ − 1/12 (u∗σ1 + u∗σ2) + 1/8 (−u∗σ1 − u∗σ2)
2 − 1/24 (u∗σ1)

2 − 1/24 (u∗σ2)
2,

1/36 ϕσ + 1/12 (u∗σ1 − u∗σ2) + 1/8 (u∗σ1 − u∗σ2)
2 − 1/24 (u∗σ1)

2 − 1/24 (u∗σ2)
2
]T

.

(50)

Clearly ρσ can also be obtained as the moment of fσ(∗), but this not the case for qσi:

ρσ =< fσ(∗) >, q∗σi =< Vifσ(∗) >6= qσi. (51)

The coordinates of spatial discrete points (lattice) employed in the LBM computation
are (x̂1, x̂2) = (l,m), where l and m are integers. Let x∗i be the coordinate of a lattice

point. Then, x∗i − V
(k)
i is the coordinate of a lattice adjacent to the lattice point x∗i . LBM

computation is nothing more than the forward Euler time integration formula of Eq. (46)
with the time step of the unity:

fσ(t + ε2, xi, Vi) = fσ(t, xi − Viε, Vi) + λσ gσ(t, xi − Viε, Vi), (52)

where
gσ = fσ(∗) − fσ. (53)

The relation to the macroscopic equations will be explained in the next section.

4.2 Asymptotic analysis

The solution of Eq. (52) for small ε is investigated in the form of the asymptotic expansion

fσ = f (0)
σ + εf (1)

σ + ε2f (2)
σ + · · · . (54)

The hydrodynamic moments ρσ and qσi are also expanded:

ρσ = ρ(0)
σ + ερ(1)

σ + ε2ρ(2)
σ + · · · , (55)

qσi = εq
(1)
σi + ε2q

(2)
σi + · · · . (56)

Since the Mach number is O(ε), the perturbations of qσi start from the order of ε. Introducing
the previous expansions in the Eq. (50), applying Taylor expansion to fσ(∗) yields:

fσ(∗) = f
(0)
σ(∗) + εf

(1)
σ(∗) + ε2f

(2)
σ(∗) + · · · , (57)
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where f
(k)
σ(∗) (k = 1, 2, · · · ) are known polynomial functions of the moments. Corresponding

to Eq. (45), the coefficients in all these expansions are assumed to satisfy

∂f (m)

∂α
= O(1),

∂M (m)

∂α
= O(1), (58)

where f (m) = f
(m)
σ(∗), f

(m)
σ , α = t, xi and M = ρσ, qσi.

(!!) The previous expansions cannot be applied directly to Eq. (52) because the
latter involves the solution in different neighboring points.

Before substituting the above expansions into Eq. (52) and equating the terms of the same
order of power of ε, we have to express fσ(t+ε2, xi, Vi), fσ(t, xi−Viε, Vi), and gσ(t, xi−Viε, Vi)
as their Taylor expansions around (t, xi)

fσ(t + ε2, xi, Vi) =
∞∑

k=0

ε2k

k!
∂tk fσ(t, xi, Vi), (59)

fσ(t, xi − Viε, Vi) =
∞∑

k=0

(−ε)k

k!
∂k

S fσ(t, xi, Vi), (60)

gσ(t, xi − Viε, Vi) =
∞∑

k=0

(−ε)k

k!
∂k

S gσ(t, xi, Vi), (61)

where ∂S = V1∂x1 + V2∂x2 . Introducing the previous Taylor expansions in Eq. (52) and then

consequently the expansion given by Eq. (54) yields the expressions for the coefficients f
(k)
σ

(k = 1, 2, · · · ) as follows.

f (k)
σ = f

(k)
σ(∗) − g(k)

σ , (62)

g(0)
σ = 0, (63)

g(1)
σ = τσ∂Sf

(0)
σ(∗), (64)

g(2)
σ = τσ[∂tf

(0)
σ(∗) + ∂Sf

(1)
σ(∗) − ωσ∂

2
Sf

(0)
σ(∗)], (65)

where

ωσ = τσ − 1/2. (66)

Clearly the discrete effects due to the low accuracy of the forward Euler integration rule is
shown by the fact that ωσ 6= τσ, as it should be for the continuous model. Multiplying Eq.
(64) by the lattice velocity and summing over all the lattice velocities yields

λσρ
(0)
σ [u∗(1)

σ − u(1)
σ ] = ∇p(0)

σ (67)

where p
(0)
σ = ϕσ/3 ρ

(0)
σ . The previous expression can be recasted as

λσρ
(0)

∑
ς

m2

mσmς

Bσς

Bσσ

xσxς [u
(1)
ς − u(1)

σ ] = ∇p(0)
σ , (68)
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or equivalently

∇p(0)
σ = p(0)

∑
ς

Bσς yσyς [u
(1)
ς − u(1)

σ ], (69)

which it is perfectly equivalent to the Maxwell-Stefan model.
Summing Eq. (65) over all the lattice velocities yields

∂tρ
(0)
σ + ∇ · [ρ(0)

σ u∗(1)
σ ] = ωσ ∇2p(0)

σ , (70)

or equivalently

∂tρ
(0)
σ + ∇ · [ρ(0)

σ u(1)
σ ] = ωσ ∇2p(0)

σ −∇ · [ρ(0)
σ u∗(1)

σ − ρ(0)
σ u(1)

σ ], (71)

and
∂tρ

(0)
σ + ∇ · [ρ(0)

σ u(1)
σ ] = (ωσ − τσ)∇2p(0)

σ = −1/2∇2p(0)
σ 6= 0. (72)

The simple BGK scheme does not preserve the mass continuity for the single species. Cearly
this is due to the low accuracy of the forward Euler integration rule.

(!!) This is indeed bad news, but the problem can be easily solved by considering
a multiple-relaxation-time (MRT) scheme, because, in this case, the single species
continuity is forced by the collision matrix.

4.3 Efficient numerical implementation

It is well known that it is very convenient to discretize the LBM schemes along the charac-
teristics, i.e. along the lattice velocities, because they are constant and analytical known.
However, as discussed in the previous section, the popular forward Euler integration rule can
not be applied in this case because it leads to a lack of mass conservation [32]. Consequently
a more accurate scheme must be considered: for example, the second-order Crank–Nicolson
rule is enough in order to avoid this problem.

Let us discretize Eq. (46) by the following formula

f+
σ = fσ + (1− θ) λσ

[
fσ(∗) − fσ

]
+ θ λ+

σ

[
f+

σ(∗) − f+
σ

]
, (73)

where the argument (t, xi) is omitted and the functions computed in (t + ε2, xi + ε Vi) are
identified by the superscript +. The Crank–Nicolson rule is recovered for θ = 1/2. The
previous formula would force one to consider quite complicated integration procedures [32].
Fortunately a simple variable transformation has been already proposed in order to simplify
this task [33], and successfully applied in case of mixtures [34]. The generalization of this
procedure to the MRT formulation for mixtures is trivial by following Ref. [35].

Let us introduce a local transformation

gσ = fσ − θ λσ

[
fσ(∗) − fσ

]
. (74)

Substituting the transformation given by Eq. (74) into Eq. (73) yields

g+
σ = gσ +

λσ

1 + θλσ

[
fσ(∗) − gσ

]
, (75)
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where it is worth the effort to remark that the local equilibrium remains unchanged. Essen-
tially the algorithm consisists of (a) appling the previous transformation fσ → gσ defined by
Eq. (74), then (b) computing the collision step gσ → g+

σ by means of the formula given by
Eq. (75) and finally (c) coming back to the original discrete distribution function g+

σ → f+
σ .

The problem, in case of mixtures, arises from the last step. In fact, the formula required in
order to perform the last task (c) is

f+
σ =

g+
σ + θ λ+

σ f+
σ(∗)

1 + θ λ+
σ

. (76)

In order to compute both λ+
σ (depending on total pressure and total density) and f+

σ(∗), the
updated hydrodynamic moments, i.e. the hydrodynamic moments at the new time step, are
required. Since the single component density is conserved, recalling Eq. (74) yields

ρ+
σ = 〈g+

σ 〉, (77)

consequently it is possible to compute p+
σ , ρ+, p+ and finally λ+

σ .
However this is not the case for the single component momentum, because this is not a

conserved quantity and hence the first order moments for g+
σ and f+

σ differ [34]. Recalling
Eq. (74) and taking the first order moment of it yields

〈Vi g
+
σ 〉 = ρ+

σ u+
σi − θ λ+

σ ρ+
σ (u∗+σi − u+

σi) = ρ+
σ u+

σi − θ p+
∑

ς

Bσς y+
σ y+

ς (u+
ςi − u+

σi). (78)

It is worth the effort to point out an important property. Summing the previous equations
for all the components yields ∑

σ

〈Vi g
+
σ 〉 = ρ+u+

i , (79)

which means that, since the total mixture momentum is conserved, then it is possible to
compute it directly by means of g+

σ . For this reason, it is possible to consider a simplified
procedure in case of particles with similar masses.

4.3.1 Particles with similar masses

In case of particles with similar masses, u∗+σi
∼= u+

i and Eq. (78) reduces to

〈Vi g
+
σ 〉 ∼= ρ+

σ u+
σi − θ λ+

σ ρ+
σ (u+

i − u+
σi), (80)

and equivalently, by taking into account Eq. (79),

ρ+
σ u+

σi
∼=
〈Vi g

+
σ 〉+ θ λ+

σ x+
σ

∑
σ〈Vi g

+
σ 〉

1 + θ λ+
σ

. (81)

Actually the situation is even simpler, bacause the previous formula is not needed. In fact,
if u∗+σi

∼= u+
i , it is enough u+

i by Eq. (79) to compute f+
σ(∗) for the back transformation given

by Eq. (76).
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4.3.2 Particles with different masses

In the general case, Eq. (78) can be recasted as

〈Vi g
+
σ 〉 = q+

σi − θ λ+
σ

∑
ς

χσς (x+
σ q+

ςi − x+
ς q+

σi), (82)

where q+
σi = ρ+

σ u+
σi and

χσς =
m2

mσmς

Bσς

Bσσ

. (83)

Finally, grouping together common terms yields

〈Vi g
+
σ 〉 =

[
1 + θ λ+

σ

∑
ς

(χσς x+
ς )

]
q+
σi − θ λ+

σ x+
σ

∑
ς

(χσς q+
ςi). (84)

Clearly the previous expression defines a liner system of algebraic equations for the unknowns
q+
σi. This means that in order to compute the updated values for all q+

σi a linear system of
equations must be solved in terms of known quantities 〈Vi g

+
σ 〉. Obviously the solvability

condition for the previous system depends on the updated mass concentrations and it can
not be ensured in general. Note that this potential restriction of the discussed scheme is
a constraint of the proposed numerical implementation and not of the kinetic model itself.
The possibility to tune θ is not available, because all the schemes for θ 6= 1/2 may imply
a lack of mass conservation. Even though this feature did not represent a problem in the
reported numerical simulations, it should be further investigated.

In the degenerate case χσς = 1, i.e. particles with equal masses, Eq. (84) reduces to

〈Vi g
+
σ 〉 =

(
1 + θ λ+

σ

)
q+
σi − θ λ+

σ x+
σ q+

i , (85)

which is equivalent to Eq. (81).
In the next section, the results for some numerical simulations are reported.

5 Numerical examples

5.1 Simple code

In order to simplify the understanding this lecture, an example code has been prepared. The
source code can be freely downloaded at

(!!) http://staff.polito.it/pietro.asinari/rome08/

5.2 Fickian limiting test cases

In this notes, some simple numerical examples are considered, essentially concerning the
recovered macroscopic diffusion model in the continuum limit. In particular, the Maxwell–
Stefan diffusion model, in comparison with the simpler Fick model, allows one to automati-
cally recover the effective diffusion coefficients in different limiting cases, depending on the
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local concentrations, without any a priori guess about the concentration fields. In particular,
in the reported numerical simulations, this feature will be verified in two limiting cases: (a)
the solvent test case and (b) the dilute test case [36, 1]. The geometrical configuration and
the procedure in order to measure the transport coefficients is quite standard [37, 38] and it
can be physically explained as the mixing in an opposed-jet configuration [34].

In case of ternary mixture Eq. (16) reduces to

n∇y1 = B12y1k2 + B13y1k3 − (B12y2 + B13y3)k1, (86)

n∇y2 = B21y2k1 + B23y2k3 − (B21y1 + B23y3)k2, (87)

n∇y3 = B31y3k1 + B32y3k2 − (B31y1 + B32y2)k3. (88)

Let us consider a 1D computational domain, filled by a ternary mixture. All the physical
quantities will be expressed in lattice units. The molecular weights are mσ = [1, 2, 3] and
consequently the corrective factors are ϕσ = [1, 1/2, 1/3]. The theoretical Fick diffusion
coefficient is Dσ = α/mσ, where α ∈ [0.002, 0.8] and the theoretical Maxwell–Stefan diffusion
resistance is given by

Bσς = β

(
1

mσ

+
1

mς

)−1/2

, (89)

where β ∈ [5, 166].
The computational domain is defined by (t, x) ∈ [0, T ]× [0, L]. The boundary conditions

for all the components at the borders of the computational domain, i.e. at x = 0, L, are
of Neumann type, i.e. ∂pσ/∂x = 0 at any time. The initial conditions depends on the
considered limiting case (see below). The spatial discretization step is called δx and the
total number of grid points is Nx = L/δx = 100. Similarly the time discretization step
is selected in such a way that δt ∼ δx in order to have c = δx/δt = 1, and in particular
Nt = T/δt = 30.

5.2.1 Solvent test case

A component of a mixture is called solvent if its concentration is predominant in comparison
with the other components of the mixture. Let us suppose that, in our ternary mixture, the
component 3 is a solvent. In particular, the initial conditions for the solvent test case are
given by

p1(0, x) = ∆p

[
1 + tanh

(
x− L/2

δx

)]
+ ps, (90)

p2(0, x) = ∆p

[
1− tanh

(
x− L/2

δx

)]
+ ps, (91)

p3(0, x) = 1− 2 (∆p + ps), (92)

where clearly p(0, x) =
∑

σ pσ = 1. In the reported numerical simulations, ∆p = ps = 0.01.
The parameter ps is a small pressure shift in order to avoid divisions by zero in passing from
the momentum to the velocity.
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Hence y3
∼= 1 and consequently y1

∼= 0 and y2
∼= 0. Under these assumptions, Eqs. (86,

87) reduce to
∇y1 = −B13y1(u1 − v) = B13y1(v − u1), (93)

∇y2 = −B23y2(u2 − v) = B23y2(v − u2), (94)

Consequently the measured diffusion resistances are given by

B∗
13 =

1

D∗
1

=
∂y1/∂x

y1(v − u1)
, (95)

B∗
23 =

1

D∗
2

=
∂y2/∂x

y2(v − u2)
, (96)

where, since in this test, the Maxwell–Stefan model reduces to the Fick model, it is possible
to define two Fick diffusion coefficients D1 = 1/B13 and D2 = 1/B23 for non-solvent compo-
nents. Since the main attention was for the mass diffusion process, in the reported numerical
results the single–relaxation–time (SRT) formulation was considered. For this reason, the
viscous dynamics (next approximation of the mixture momentum equation) is not reliable.
In particular, the SRT formulation does not allow one to relax all the single component stress
tensors with the same mixture viscosity as it should be for recovering the mixture dynamics
(see previous section on MRT formulation). This means that, for the reported simulations,
the ratio between the Fick diffusion coefficient and the mixture viscosity Sc = ν/D, i.e. the
Schmidt number, is not reliable.

First of all, a generalized Fick model was implemented and the corresponding numerical
results are reported in Figs. 3 and 4 for non-solvent component 1 and 2 respectively. In
case of the Fick model, a direct correlation exists between the Fick diffusion coefficient and
the relaxation frequency, namely λσ = ϕσ/(3 Dσ), and this explains the auxiliary axises of
the previous figures. The implicit numerical implementation allows one to consider large
relaxation frequencies, since the stability region is widened. The LBM implementation of
the generalized Fick model well matches the expected transport coefficients. At the lowest
and the highest end of the considered range, the measured transport coefficients slightly
overestimate and underestimate the theoretical values respectively.

Secondly, a complete Maxwell–Stefan model, without a priori restriction of the mixture-
averaged approximation [39, 36], was implemented and the corresponding numerical results
are reported in Figs. 5 and 6 respectively. The key idea is to verify that the model au-
tomatically reduces to the solvent limit, i.e. that the dynamics of component 1 is mainly
ruled by resistance B13 and that of component 2 by resistance B23. In this case, there is
no direct correlation between the Maxwell–Stefan resistances (three as the possible interact-
ing couples) and the relaxation frequencies (three as the number of components). As the
number of components increases, then the number of Maxwell–Stefan resistances is usually
larger than the number of components. Also in this case, the LBM implementation of the
Maxwell–Stefan model well matches the expected resistance coefficients.

5.2.2 Dilute test case

A component of a mixture is said dilute if its concentration is negligible in comparison with
the other components of the mixture. Let us suppose that, in our ternary mixture, the
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Figure 3: Solvent test case for a ternary mixture: y3
∼= 1 and consequently y1

∼= 0 and
y2
∼= 0. Comparison between expected Fick diffusion coefficient for component 1, i.e. D1,

with the transport coefficient D∗
1 from the numerical implementation of the generalized Fick

model, measured by Eq. (95). The corresponding values for the relaxation frequencies λ1

are reported as well.

component 1 is dilute. In particular, the initial conditions for the dilute test case are given
by

p1(0, x) = ∆p

[
1 + tanh

(
x− L/2

δx

)]
+ ps, (97)

p2(0, x) = ∆p

[
1− tanh

(
x− L/2

δx

)]
+ ps + (1− r) (1− 2 ∆p), (98)

p3(0, x) = r (1− 2 ∆p)− 2 ps, (99)

where clearly p(0, x) =
∑

σ pσ = 1. In the reported numerical simulations, ∆p = ps = 0.01
and r = 1/2. Clearly r must be close to 1/2, otherwise this test case reduces to the previous
one about existence of a solvent. Again the parameter ps is a small pressure shift in order
to avoid divisions by zero in passing from the momentum to the velocity.

Hence y1
∼= 0 and consequently y1 � y2 + y3. Under these assumptions, Eq. (86) reduces

to
∇y1 = −(B12y2 + B13y3)k1 = y1 B1 (v − u1), (100)
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Figure 4: Solvent test case for a ternary mixture: y3
∼= 1 and consequently y1

∼= 0 and
y2
∼= 0. Comparison between expected Fick diffusion coefficient for component 2, i.e. D2,

with the transport coefficient D∗
2 from the numerical implementation of the generalized Fick

model, measured by Eq. (96). The corresponding values for the relaxation frequencies λ2

are reported as well.

where B1 = B12y2 + B13y3 is an equivalent effective resistance. Consequently the measured
diffusion resistance is given by

B∗
1 =

1

D∗
1

=
∂y1/∂x

y1(v − u1)
, (101)

where, since also in this test, the Maxwell–Stefan model reduces to the Fick model, it is
possible to define a Fick diffusion coefficients D1 = 1/B1 for the dilute component. Con-
cerning the actual Schmidt number, considerations similar to those already discussed for the
previous test case holds here as well.

In Fig. 7, the numerical results for the Maxwell–Stefan implementation are reported and,
in particular, the measured values for the equivalent effective resistance B1 are compared
with the theoretical expected values. Also in this case, the LBM implementation of the
Maxwell–Stefan model well matches the expected values. It is worth the effort to point out
that the effective resistance B1 is never directly imposed in the code, but it is a natural
outcome of the model, which depends on the local molar concentrations.
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Figure 5: Solvent test case for a ternary mixture: y3
∼= 1 and consequently y1

∼= 0 and
y2
∼= 0. Comparison between expected Maxwell–Stefan resistance coefficient for component

1, i.e. B13, with the resistance coefficient B∗
13 from the numerical implementation of the

Maxwell–Stefan model, measured by Eq. (95).

5.3 Non-Fickian test case: Stefan tube

The previous numerical simulations proved that the proposed model allows one to recover
some well-known results for Fickian test cases. Since there are already plenty of lattice Boltz-
mann implementations that simulate Fickian diffusion, the innovative part of the previous
simulations relies on the fact that all the transport coefficients of the model are kept constant
for all the tests, without introducing any artificial external tuning, in order to match the
considered limiting test case.

In this section, the full capabilities of the Maxwell–Stefan model will be proved for a
non-Fickian test case. Let us consider a popular test, i.e. the Stefan tube (see chapter 2 of
[2] for details). The Stefan tube is a simple device sometimes used for measuring diffusion
coefficients in binary vapor mixtures, in case of the presence of an additional gas carrier.
It is essentially a vertical tube, open at one end, where the carrier flow licks orthogonally
the tube opening. In the bottom of the tube is a pool of quiescent liquid. The vapor that
evaporates from this pool diffuses to the top of the tube. The stream of gas carrier across the
top of the tube keeps the molar concentration of diffusing vapor there essentially to nothing.
The molar concentration of the vapor at the vapor-liquid interface is its equilibrium value.
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Figure 6: Solvent test case for a ternary mixture: y3
∼= 1 and consequently y1

∼= 0 and
y2
∼= 0. Comparison between expected Maxwell–Stefan resistance coefficient for component

2, i.e. B23, with the resistance coefficient B∗
23 from the numerical implementation of the

Maxwell–Stefan model, measured by Eq. (96).

For sake of simplicity, let us consider the same ternary mixture, already discussed in the
previous sections, where the third species is assumed to be the gas carrier. Let us assume Eq.
(89) for the Maxwell–Stefan diffusion resistance, with β = 66.13, which implies B13 = 57.27,
B12 = 54.00, B23 = 72.44.

The computational domain is defined by (t, x) ∈ [0, T ]× [0, L]. Concerning the boundary
conditions, the partial pressures for all the species at the bottom of the tube p1(0, 0) = 0.319,
p2(0, 0) = 0.528, p3(0, 0) = 0.1530 and those at the opening of the tube p1(0, L) = 0.0,
p2(0, L) = 0.0, p3(0, L) = 1.0 are specified. In particular, the pressure condition proposed in
Ref. [40] was adopted. This boundary condition is now available for the lattice Boltzmann
method too [41]. Recasting this condition for the compressible case reads

−pσn + ν
∂(ρσuσ)

∂n
= −p̃σn, (102)

where n is the unit outer normal direction at the boundary, pσ is the pressure at the boundary
and p̃σ is the average pressure at the boundary. In our mono-dimensional test case, clearly
p̃σ = pσ and the previous condition implies ∂(ρσuσ 1)/∂x = 0 at both x = 0, L. This means
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Figure 7: Dilute test case for a ternary mixture: y1
∼= 0 and consequently y1 � y2 + y3.

Comparison between expected Maxwell–Stefan equivalent effective resistance for component
1, i.e. B1, with the resistance coefficient B∗

1 from the numerical implementation of the
Maxwell–Stefan model, measured by Eq. (101).

that we have to consider both Dirichlet boundary conditions (for partial pressures) and
homogeneous Neumann boundary conditions (for single species momenta).

The initial conditions are

p1(0, x) = p1(0, 0)
1

2

[
1− tanh

(
x− L/2

δx

)]
+ ps, (103)

p2(0, x) = p2(0, 0)
1

2

[
1− tanh

(
x− L/2

δx

)]
+ ps, (104)

p3(0, x) = [1− p3(0, 0)]
1

2

[
1 + tanh

(
x− L/2

δx

)]
+ p3(0, 0), (105)

where the constant ps = 10−4 has been introduced for stability reasons, i.e. for avoiding to
divide per zero in the computation of the velocity.

The spatial discretization step is called δx and the total number of grid points is Nx =
L/δx = 60. Similarly the time discretization step is selected in such a way that δt ∼ δx in
order to have c = δx/δt = 1, and in particular Nt = T/δt = 120, 000.
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Figure 8: Non-Fickian test case: composition profiles in a Stefan diffusion tube. Negative
flux is assumed for the gas carrier pointing toward the liquid bottom (x = 0), i.e. N3 =
−6.1776 · 10−5. The reference solutions are obtained by solving the boundary value problem
by the shooting method and a multi-variable Newton method.

Concerning the numerical solution, at constant temperature and pressure, the total mo-
lar density is constant and the driving forces are the molar concentration gradients ∇yσ.
Furthermore, since there are no radial or circumferential gradients in the composition, the
continuity equation at steady state implies that ρσuσ 1 is a constant, as well as Nσ = yσuσ 1.
The first two Eqs. (86, 87) can be rewritten as

dy1

dx
= B12(y1N2 − y2N1) + B13[y1N3 − (1− y1 − y2)N1], (106)

dy2

dx
= B12(y2N1 − y1N2) + B23[y2N3 − (1− y1 − y2)N2], (107)

while Eq. (88) can be omitted, since it is not linearly independent on the previous ones. The
previous system of ordinary differential equations, with the boundary conditions already
discussed, realizes a boundary value problem, which can be solved, for example, by the
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shooting method [42]. Essentially the idea is to define the proper values for the parameters
N1, N2, N3 in order to ensure the required boundary conditions at x = L. The solution of
this problem is not unique. In fact, some additional information concerning the physics of
the problem needs to be provided. For example, from the practical point of view, usually the
gas carrier does not dissolve in the liquid and, for this reason, its flux is zero, i.e. N3 = 0.
In general, the pressure difference across the tube of the gas carrier is responsible of its
dynamics. Hence the flux of the gas carrier points toward the liquid pool at the bottom, i.e.
N3 ≤ 0. In the following, only the test with N3 = −6.1776 · 10−5 is considered.

In Fig. 8 the molar concentration profiles are reported. The numerical simulations
performed by the proposed LBM model agree well with the results obtained by directly
solving the boundary value problem. Clearly the molar concentrations show a non-Fickian
behavior. In fact, the Fick model would prescribe linear profiles of the molar concentrations
for this boundary value problem. The coupling among the species, which is responsible of
the non linear profiles, can not be simulated by any simplified Fick diffusion coefficient. This
feature, which has been experimentally proved by Carty and Schrodt (1975) [4], demonstrates
the superiority of the Maxwell–Stefan formulation.

Concerning the LBM implementation of the model, special attention must be devoted to
the partial pressure boundary conditions in a general application. For the reported results,
a simple boundary condition in the moment space was adopted, but more complicated cases
would required more accurate boundary conditions, like those reported in Ref. [41].
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