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ABSTRACT 
 

Gas flow in fuel cell porous electrodes is usually modelled 
with Darcy’s law, which requires the definition of a resistance 
constant for the material. This can be done directly via 
experimentation or indirectly via numerical tuning to fit 
experimental data on cell behaviour. Both methods lack generality, 
as they do not take into account the particular porous structure of 
each electrode. 

In the present work, a numerical procedure for calculating 
the resistance constant for a given porous structure is presented. 
This procedure is based on Lattice Boltzmann models, which treat 
the problem from a microscopic point of view, reproducing 
collisions between fluid molecules and solid particles. It can be 
demonstrated that under certain hypotheses, these models yield 
Navier-Stokes equations on a macroscopic scale, hence obeying 
fluid mechanics laws. 

Here the flow in a set of thirty randomly generated porous 
structures was analyzed, thus obtaining a distribution of values for 
Darcy’s constant. The analysis was repeated for ten different 
pressure gradients applied to a portion of the electrode and for 
three different volume porosities. 

The results showed that, for a given volume porosity, the 
value of Darcy’s constant is strongly affected by the material 
porous structure. On the other hand, the mean value of resistance 
remained almost constant while varying the applied load, thus 
correctly reproducing the linear dependence between velocity and 
pressure gradient, as stated by Darcy’s law.  

As fuel cell models are a great help in designing and 
predicting component operation, a further analysis was carried out 
in order to study the influence of the electrode resistance constant 
on cell performance prediction. The Lattice Boltzmann model was 
used to obtain resistance data characteristic of fuel cell electrodes, 
and the results were implemented in a one dimensional fuel cell 
model. 

The simulations showed that the variation of Darcy’s 
constant does not significantly affect the prediction of the cell 
polarization curve, while a significant effect was found on the 
prediction of the exact operating point on the polarization curve. 

In conclusion, if accurate modelling of a fuel cell is 
required, great care must be taken in evaluating the electrodes 
resistance constant. The procedure presented here, coupled with a 

non destructive tomography scan of the electrode structure could 
greatly help in refining existent fuel cell models. 

 
 

INTRODUCTION  
 

Throughout the last decade, a considerable amount of work 
was carried out in order to obtain ever more refined models of 
proton exchange membrane (PEM) fuel cells. The mathematical 
models obtained were first numerically implemented in one 
dimension [1-6] whereas, recently, several research groups have 
produced detailed three-dimensional models of this type of fuel 
cell [7-15]. Such models helped considerably in understanding the 
complex phenomena occurring during fuel cell operation, thus 
allowing a more accurate cell design. 

While the refinement of modelling techniques and the 
increase in computer power allowed for the creation of very 
accurate fuel cell numerical models, the developers of such tools 
always faced the same problem: retrieving reliable physical data 
concerning fuel cells parts. The lack of accuracy and reliability of 
numerical constants used in the models seriously affects, and in 
some cases cancels out, the improvements done in the numerical 
code. Post process tuning of physical parameters to fit model 
predictions with experimental data is the way normally followed in 
this case. This problem is of particular significance when dealing 
with fuel cell models, as the experimental data available is usually 
limited to the cell polarization curve, which represents the integral 
of the effects of all the constants used in the model. 

Flow of gases in fuel cell porous electrodes is usually 
modelled with Darcy’s law. This characterizes the material with a 
resistance constant, to be evaluated experimentally or numerically 
adjusted to match experimental data. Both these methods pose 
problems when dealing with fuel cells. The small electrode 
thickness makes it difficult to accurately measure the material 
hydraulic constant and guarantee its independence from the 
electrode porous structure. On the other hand, the numerical tuning 
of such a parameter to fit experimental data of cell performance, 
namely its polarization curve, neither guarantees that the true value 
is found, as the cell behaviour also depends on other adjustable 
parameters, nor its independence from the different load 
conditions. 
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The present study tries to address the problem following an 
alternative approach. Here a procedure for calculating the 
hydraulic constant as a function of material structure and applied 
pressure gradient was defined. Even though common numerical 
codes for a Navier-Stokes model could be used to solve the flow in 
each microchannel of the porous media, computational overhead 
and heavy post-processing render them unsuitable for solving the 
flow in the porous material and obtaining Darcy’s constant.  

On the other hand, the lattice Boltzmann methods (LBMs) 
are efficient numerical tools to investigate flows in highly complex 
geometries, such as porous media [16, 17, 18]. Even though 
traditional Navier-Stokes solvers could be used to describe porous 
media flow, LB methods do not require pressure-velocity 
decoupling or the resolution of a large system of algebraic 
equations [19, 20]. They solve a simplified Boltzmann equation for 
an ensemble-averaged distribution of moving, interacting particles 
on a discrete lattice. The macroscopic quantities that describe the 
fluid flow can be calculated as integrals of this distribution. Since 
the motion of particles is limited to fixed paths connecting lattice 
nodes, the resolution process needs only information about nearest 
neighbour nodes. In this way, fluid flow through complex 
geometry can be analyzed by means of an easier mesoscopic 
approach. Analogous considerations apply to wall boundary 
conditions, such as those in porous media. They can be easily 
implemented for any geometric configuration in order to ensure 
no-slip condition at solid occlusions. 

The aim of the present paper is twofold. Firstly, to 
investigate the influence of different porous structures on the 
material resistance constant in order to evaluate whether different 
structures with the same volume porosity behave differently with 
respect to fluid flow through them. Secondly, to evaluate in which 
way different electrode porous structures, characterized by the 
same value of volume porosity, affect the prediction of fuel cell 
operation by a one-dimensional numerical model. 

 
 

MATHEMATICAL MODEL FOR POROUS MEDIA FLOW 

Continuous model  
Under some simplifying hypotheses, kinetic theory states 

that the evolution of the single particle density distribution in a 
rarefied gas of rigid spheres obeys the Boltzmann equation [21]. 
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where  is the continuous single particle distribution 
function,  is the microscopic velocity,  is the acceleration due 
to an external field, and the quadratic expression  is the 
collision integral. Macroscopic quantities, such as the density 
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The collision integral  in the Boltzmann equation 
can be replaced by the single-relaxation-time collision model 

 proposed originally by Bhatnagar, Gross, and Krook (BGK) 
[22].  
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where τ  is the relaxation time and  is the Maxwellian 
equilibrium distribution function which gives a vanishing collision 
integral , i.e. 
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where  is a scalar characteristic velocity which can be 
expressed physically in terms of internal energy. 
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The term that takes into account the effect of the external 
force field can be simplified as follows [23]: 
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Substituting equation (6) into equation (4) yields the final 
form of the adopted BGK model. 
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Using the Chapman-Enskog procedure, a suitable 
expansion of certain solutions of equation (7) recovers the Navier-
Stokes macroscopic description when the bulk viscosity is 
neglected [23]. Thus, 
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where  can be identified with the pressure and 

 with the cinematic viscosity of the fluid. A proper set 
of boundary conditions for single particle distribution function 
must be considered in order to ensure the no-slip condition at the 
walls.  
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Discrete model 
To solve the BGK equation (7), the discrete ordinate 

method can be applied [24]. According to this method, a set of 
discrete microscopic velocities  must be defined on which the 

distribution function is evaluated. The generic function  is 

the single particle distribution function evaluated for velocity  

at . Hence the BGK equation, which is an integro-
differential equation, reduces to a system of differential equations, 
such that 
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Since only the distribution functions for discrete 
microscopic velocities are considered, an interpolation test 
function must be adopted to calculate the macroscopic quantities. 
In this way, the previous integrals (equations (2) and (3)) reduce to 
weighted summations of the considered functions. The 
interpolation test function should be as similar to the Maxwellian 
distribution function as possible in order to easily include the 
equilibrium conditions. If we consider the regime of low speed 
fluid motion |||| vu << , the equilibrium distribution function 
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(equation (5)) can be linearised around the state at rest [24], 
namely, 
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Since the deviation of the distribution function from the one at rest 
is also small, it is assumed that the function 
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interpolation test function )(/),,(
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is a  dimensional polynomial of second degree as it rigorously 
happens for the function . This test function includes 

 unknown parameters, which can be determined by using 
the values of the distribution function for discrete microscopic 
velocities 
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Fig. 1: Lattice discrete velocities for D2Q9. 
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where , ,  and  are the dimensionless coefficients of 
the quadratures. Since usually the number of unknowns for the 
interpolation test function, 1+2D, is smaller than the number of 
discrete microscopic velocities, Q, the problem is ill posed and a 
proper strategy must be adopted in order to recover the Navier-
Stokes macroscopic equations. 
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The system of differential equations for modified 
distribution functions can be simplified by applying the method of 
characteristics. Let us consider the sheaf of characteristic surfaces 
for each discrete microscopic velocity.  
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Moving on characteristic surfaces, the rate of change for 
the distribution function reduces to a time function, and our system 
of differential equations becomes:   
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Finally, the explicit Euler rule can be applied, such that 
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where tδ  is the time step, which must satisfy the stability 
threshold τδ 2<t . 

In the following computations, a square lattice ( ) 
[25] which makes use of a two-dimensional computational domain 
(

92QD

2=D ) and nine discrete velocities ( ) is considered. The 
lattice discrete velocities are shown in Figure 1a and are 
analytically given by: 
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In this case, a proper strategy for the choice of the 
dimensionless coefficients of the quadratures is: 9/4'00 == ww , 

9/1' == ii ww  for 4,3,2,1=i  and 36/1' == ii ww  for 
8,7,6,5=i . These values allow satisfying the operative 

definitions of macroscopic quantities, equations (14) and (15). 
Let us consider the following equivalence for the 

considered lattice: 

[ ] ∑∑
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⊗=−⊗

Q

i
i

i
ii

Q

i
i

e
iii w

ww
11 18

)( vvuvv ρϕ  (20) 

Since the effect of the external force field appears only in the 
momentum equation (9), the previous equivalence can be used to 
simplify the discrete BGK equation (18) [26], which becomes 
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where ag ρ= . 
A Chapman-Enskog procedure is again applied to derive 

the macroscopic equations of the model, namely, 
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where )/5.01(~
τδζζ t−= . The previous equations are valid 

only if the low speed limit  is satisfied, as highlighted in 
the derivation process. The macroscopic equations for the discrete 
model (22, 23) do not recover directly the Navier-Stokes model, as 
it happened for the continuous model (8, 9). Some hypotheses must 
be introduced to eliminate this discrepancy. 

c<<|| u

Electrode model 
The discrepancy with the Navier-Stokes model resides in 

the momentum equation, given by 
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If the compressibility factor is small enough, then the density 
gradients are mainly due to pressure gradients 2/~~

scp∇=∇ρ , 

where  is the speed of sound. If we consider the incompressible 

limit , the divergence argument in equation (25) is very 
small: 
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If we suppose that the divergence argument does not change 
rapidly around zero, the error (equation (25)) can be neglected. 

Let us consider a forcing term that depends on the pressure 
gradient p~∇−= βg . If the parameter β  is properly chosen, i.e. 

, then the Navier-Stokes model is recovered, 
namely, 
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The previous equation is valid only if the low speed limit c<<|| u  

(microscopic condition) and the incompressible limit sc<<|| u  
(macroscopic condition) are satisfied, as highlighted in the 
derivation process.  

In the following computations, the lattice velocity c  and 
the collision time τ  are chosen in order to produce selected values 

for the cinematic viscosity 0ζ  and spatial step 000 yx δδδ == . 
Thus, 
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where τδω /t=  is the dimensionless collision frequency and has 
a fixed value due to a stability criterion ( 6.12.1 ÷=ω ). The 
previous expressions (equations (28) and (29)) allow one to 
consider different spatial resolutions in order to produce a mesh-
independent solution. In the following computations, a mesh-
independent solution is found when the results for the default mesh 
and finer mesh differ by less than 2 %. 

Finally, a proper set of boundary conditions must be 
considered [27, 28]. Since the computational domain was chosen to 
be smaller than the physical thickness of the electrode, periodic 
boundary conditions were considered at the domain border. Inside 
the domain, additional boundary conditions for single particle 
distribution functions must be considered in order to ensure the no-
slip condition at the walls, i.e. at the interface with the solid 
occlusions. Let us consider the surface wall node shown in Figure 
1b. The boundary is aligned with the x-direction and 2ϕ , 5ϕ , 6ϕ  
are the inward-pointing links, which are unknown because they 
depend on the wall behaviour. The quadratures (equations (14) 
and(15)) and the specified velocity components 0~~ == yx uu  are 

not enough to determine 2ϕ , 5ϕ , 6ϕ  and ρ~  because the 
resolution system is under determined. The additional condition 
needed is called the bounce-back rule and prescribes complete 
reflection for weighted inward-pointing distribution functions 
normal to the surface ( 22ϕw ), namely 
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In this way, the problem is well posed and can be solved, resulting 
in 

[ ]
[ ]

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=
−+=
−−=

+++++=

2442

63311886

53311775

887744331100

/)(
/)(5.0
/)(5.0

)(2

ww
wwww
wwww

wwwwww

ϕϕ
ϕϕϕϕ
ϕϕϕϕ

ϕϕϕϕϕϕρ

 (31) 

Since the bounce-back method (BBM) was also applied 
originally to 55ϕw  and 66ϕw , the present one is called the 
improved bounce-back method, (IBBM) because it reduces the 
arbitrary assumptions [28]. It can be demonstrated that the IBBM 
is equivalent to supposing a preliminary distribution due to ideal 
reflection and then operating a mass redistribution for inward-
pointing links. As evident from solutions (31), the IBBM allows 
one to determine the values of three unknown discrete distribution 
functions. When analyzing complex porous geometries, some 
configurations exist for which the number of unknown functions is 
smaller (see Figure 1c) or greater (see Figure 1d) than three. In the 
first case, the node is called over-conditioned, while in the second 
it is called under-conditioned. In both cases, the IBBM would 
produce ill-posed problems and it cannot be applied. In the 
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following computations, ill-posed configurations are analyzed by 
the original BBM. 

Numerical implementation 
A numerical code which implements the lattice Boltzmann 

scheme discussed in the previous sections was developed. A brief 
description of the main characteristics of the code is reported here. 

In the following calculations, the collision operator in the 
discrete BGK equation (21) is assumed constant during each time 
step. This assumption introduces a second-order truncation error, 
but the only effect is a change of the effective viscosity ( νν ~→ ). 
The main advantage of this is the possibility to decouple the 
resolution of the BGK equation into two easier steps. During the 
collision step, the new discrete distribution functions are evaluated 
as follows 
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During the streaming step, the new discrete distribution functions 
are properly assigned to correct spatial locations, i.e. 
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At each time step, the operations performed by the code 

can be grouped into four phases: 
 

1. Collision. The discrete Maxwellian equilibrium distribution 
functions are evaluated by using the macroscopic quantities 
and the new values for each discrete velocity are calculated by 
means of equations (32) and stored. 

2. Streaming. The discrete distribution functions are updated 
according to equations (33). 

3. Boundary conditions. All values of unknown discrete 
distribution functions for inward-pointing links are evaluated 
by BBM. For links that refer to nodes out of the computational 
domain, the periodic boundary conditions are directly applied. 
The subclass of inward-pointing links, which belong to well-
posed configurations, are corrected according to IBBM so as 
to ensure the no-slip condition. 

4. Moments. The macroscopic quantities, which are moments of 
the distribution function, are evaluated by means of equations 
(14, 15). 

 
The main goal of the numerical code is to calculate the 

mass flow rate induced by a given pressure drop applied to a 
randomly generated porous structure, so as to evaluate the material 
resistance constant that appears in Darcy’s law. Let us define a 
hydraulic parameter  as  )( pkD ∇

ppkD ∇∇−= )(uρ   (34) 

where uρ  is the average momentum in the computational 
domain and can be considered macroscopically as a point value 
because lattice dimensions are much smaller than electrode 
thickness. Darcy’s law prescribes that the hydraulic parameter can 
be assumed to be approximately constant. 

Here, the flow in a set of randomly generated porous 
structures was analysed, thus obtaining a distribution of values for 
Darcy’s constant (kD). A typical example of the considered porous 
geometry is reported in Figure 2. 

 
 

FUEL CELL MODEL 
 
In order to evaluate the effect of different resistance 

constants on a PEM fuel cell performance, a one-dimensional 
implementation of a fuel cell model was used. Its features are 
briefly described here. 

Fluid flow was modelled using continuity, species 
conservation, and the Navier-Stokes equations, modified to take 
into account the porosity of the flow domain, i.e. continuity: 
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and momentum conservation: 
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The fluid flow was considered isothermal and motion of 
charges was modelled with Maxwell’s fourth equation for charge 
conservation: 

0)( 2 =Ω−∇∫Ω
dSϕϕ   (38) 

As the characterization of the porous media presented here 
does not take into account the effect of the presence of liquid water 
in the electrode pores, the water present in the cell was considered 
to be in the vapour phase, and the membrane was assumed to be 
fully humidified. This approach was shown to yield accurate 
predictions [12], as long as the cell operates in regions of the 
polarization curve where mass transfer losses, strictly connected 
with electrode flooding, are negligible.    

A single domain approach was followed; i.e. boundary 
conditions were applied only at the cell boundaries and not at the 
interface of each single component of the cell (such as electrodes, 
membrane, catalyst layers and gas channels). As a result, source 

 

 

 
 

Fig. 2: Example of the porous structure (void fraction 50 %). 
The black regions are solid obstructions. The fluid regions are 
marked by grey scale according to velocity magnitude.  
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terms were added to modify the aforementioned equations to take 
into account particular phenomena occurring in some of the 
domain sub-regions. For example, proton production occurs in the 
anode catalyst layer, hence a sink term  
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is added to the hydrogen species equation. 
Oxygen destruction and water production occur in the 

cathode catalyst layer, where the terms 
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are added. 
Source terms in the momentum equation are used to 

account for additional body forces, namely Darcy’s drag and 
electro-osmotic drag. As a result, the source term becomes 

uRS LBu −=..,     (42) 

in the electrode backing layers, and  

mff
h

LMLCu Fcz
k
kRS Φ∇+−= Φu...,.,

  (43) 

in the catalyst layers and membrane. 
The source term for the charge conservation equation 

differs from zero only in the catalyst layers, as charge flows out of 
the anode, through the electric circuit, and back into the cathode. It 
can be easily determined, as it is strictly linked to the cell electric 
current density, i.e. 

eff
mC
jS −=ϕ    (44) 

where the membrane conductance varies according to water 
content and temperature, as found by Springer et. al. [3] 

The cell electric potential can be defined as the difference 
between the maximum (reversible) cell voltage and all the voltage 
losses inside the cell such that 

∑−Φ=Φ irevcell ϕ   (45) 

where: 

 

 
 

 

 
 

Fig. 3: Calculated values for Darcy’s constant 
(error bars define the range [ σσ +− DD kk , ]) 

Fig. 4: Calculated mass flow rates 

(error bars define the range [ ]σσ +− DD kk , ) 

 

 
 

 

 
 

Fig. 5: Effect of Darcy’s constant on polarization. Fig. 6: Effect of Darcy’s constant on cell voltage. 
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Reaction activation losses can be represented by an 
“activation” voltage loss [16]. Reaction kinetics and activation 
voltage loss are strictly related, as described by the Butler-Volmer 
equation namely, 
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Other losses that need to be taken into account are ohmic 
losses in the electrodes. Under the hypothesis of homogeneous and 
isotropic electrode porosity, the electrode conductance can be 
considered constant, and the ohmic losses can be described by a 
particular case of Ohm’s Law given by the more general equation 
(38). The ohmic losses are, thus 

C
I

=Ωϕ     (48) 

Combining all the losses, equation (45) becomes: 
cactcccactaactrevcell ,,,,, ϕϕϕϕϕ −−−−−Φ=Φ ΩΩ  (49) 

To close the model two further equations must be provided. 
The first one allows the calculation of the nitrogen partial density 
without solving a transport equation for this species, applying the 
constraint: 
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while the second one allows the correlation of cell voltage and 
current via the external load connected to the cell stack, providing 
a feedback relation to equation (45). Thus, 

cell

cellcell
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j Φ

=
Φ

=    (51) 

Finally, Dirichlet boundary conditions for velocity at inlet 
and pressure at outlets were applied. Inlet gas velocities were 
calculated according to the stoichiometry of the reactions, using 
the reference cell current density value of 1.2 A/cm2. 

Neumann no-flux boundary conditions for all the variables 
were applied elsewhere in the domain. 

 
 

RESULTS AND DISCUSSION 
 
A two-dimension Lattice Boltzmann model using a nine-

velocities computational molecule was used to solve for the flow 
field in randomly generated porous structures with different 
porosities. The final purpose was to evaluate the possible 
dependence of the hydraulic constant upon the porous structure 
geometry, when varying the macroscopic void fraction and the 
applied pressure gradient.  

The operating conditions of a real fuel cell cathode were 
used to characterize a physical computational domain, which 
represents a square two-dimensional portion of porous medium 
with a 0.8 µm side. Some test configurations were generated by 
considering different values of porosity (40%, 45% and 50%) and a 
set of pressure gradients (ten values in the range 3 to 243 MPa/m). 
The analysis of each configuration was repeated for a statistically 
significant number (thirty) of porous structures. The related flow 
field was obtained, thus giving a distribution of hydraulic constants 
for each porosity value and pressure gradient (figure 3). The mean 
value of the predicted mass flow rate and the related error bar, 
were reported in figure 4. 

The data obtained from the previous analyses was used in a 
one dimensional fuel cell model in order to evaluate the effect of 

Darcy’s constant on the prediction of the cell polarization curve 
and working point. For each load condition three simulations were 
carried out, using the mean value of the calculated Darcy constant 
plus the standard deviation, the mean value, and the mean value 
minus the standard deviation. Figures 5, 6 and 7 show the results of 
this analysis for a void fraction of 45 %. 

 

 
Fig. 7: Effect of Darcy’s constant on cell current. 

 

Some interesting conclusions can be drawn from the results 
obtained in the two analyses. As shown in figure 3, the hydraulic 
constant was found to vary considerably for different porous 
materials having the same volume porosity but different 
distributions of the solid particles in their structure. On the other 
hand, the second analysis confirmed the suitability of Darcy’s law 
for modelling fluid flow in fuel cell electrodes, as the dependence 
of velocity on the pressure gradient was found to be linear. 
However, as figure 4 shows, the dependence of the hydraulic 
constant on material geometry greatly affects the accuracy of the 
estimation of the mass flow rate flowing through the porous media 
for a given pressure gradient in the cell electrode. 

As reported in figure 5, the analysis with the fuel cell 
model showed that a significant variation in the value of Darcy’s 
constant does not affect an accurate prediction of the fuel cell 
polarization curve. 

However, a significant error was found in estimating the 
exact operating point of the cell as the value of Darcy’s constant 
was varied within the range of twice its standard deviation. Figures 
6 and 7 show how the predicted cell current and voltage vary as 
Darcy’s constant varies with respect to its mean value. Voltage 
differences of 40 to 60 mV were observed. This lack of accuracy 
can lead to a wrong estimation of cell efficiency, as this is strictly 
related to the cell voltage [29]. The analysis presented here showed 
that the different porous structures can lead to errors in efficiency 
estimation up to 3-5%. 

 
 

CONCLUSIONS  
 
The present work has dealt with the definition of a 

procedure for the evaluation of Darcy’s constant for porous 
materials, given their microstructure. Its application to fuel cell 
electrodes proved to be useful for reducing the uncertainty of 
estimation of this physical parameter required in fuel cell 
numerical models. Furthermore, variations in the predicted 
operating point showed that a parameter usually considered less 
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significant for cell performance estimation, must indeed be taken 
with greater care, if greater model accuracy is sought. 

The current two-dimensional analysis provided sufficient 
insight into the problem of material resistance constant estimation. 
Moreover, work is currently in progress to extend the code to 
analyse three-dimensional specimens of porous structures, and to 
simulate the presence of liquid water in the pores. The results that 
will follow will provide a more accurate estimate of the influence 
of Darcy’s constant on the prediction of fuel cell operation. 

The combination of the procedure described here with a 
tomography scan of the material porous structure could provide a 
precise, non destructive tool for evaluating material hydraulic 
characteristics. 
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NOMENCLATURE 
 
a : acceleration due to external field  

A : geometrical area  
B.C. : boundary condition  

C : electric conductance  
c : lattice speed or molar concentration  

D : number of spatial dimensions  
d : diameter  
f : continuous single particle distribution function  
F : Faraday’s constant  
I : electric current  
j : electric current density  

K : area porosity  
k : permeability  
L : length  
m : single particle mass  
M : molar  mass  
N : number of items  
n : surface normal vector  
p : pressure  
Q : number of discrete microscopic velocities  
R : universal gas constant  
S : source / sink term  
T : temperature  
t : time  
u : macroscopic velocity  
v : microscopic velocity  
V : volume  
Z : load impedance  
z : charge number  
ω : coefficient of quadrature  
Ω : coefficient of quadrature  
β : kinetics exponent  
δ : discrete step  
Γ : diffusion coefficient  
γ : transfer coefficient  

Φ : electric voltage  
φ : voltage loss  
Λ : shear stress tensor  
µ : dynamic viscosity  
ρ : density  
σ : standard deviation  

Σ : control volume surface  
τ : collision time  

Ω : control volume  
ω : volume porosity  

ζ  : cinematic viscosity  

 
Subscripts and superscripts 

a : anode, 
B.L. : backing layer 
C.L. : catalyst layer 

c : cathode 
D : Darcy 
e : equilibrium 

eff : effective value 
ex : exchange 

flow : available for fluid flow 
G.C. : gas channel 

h : hydraulic 
k : chemical species 

M.L. : membrane layer 
m : membrane 
u : momentum 

Φ : electrokinetic 
φ : related to the charge equation 
0 : reference value 
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