
Arti�ial Compressibility Method Revisited:Theory of Asymptoti Numerial Method for theInompressible Navier-Stokes EquationsTaku OhwadaDepartment of Aeronautis and Astronautis,Graduate Shool of Engineering, Kyoto UniversityPietro AsinariDepartment of Energetis, Politenio di TorinoKey Words:Inompressible NS, Arti�ial ompressibility method, High order, Asymptoti method1 INTRODUCTIONVarious existing numerial methods for the inompressible Navier-Stokes system (INSS) employ Poisson(or Poisson type) solver, whih requires additional iteration in eah time step. Chorin's arti�ial om-pressibility method (ACM) is well-known as the INSS method that avoids this umbersome operation.ACM employs the arti�ial ontinuity equation that governs the time evolution of the pressure. Sinethe divergene free ondition is not satis�ed exatly in the time-dependent ase, ACM is widely regardedas a numerial method for obtaining steady solutions. On the other hand, the lattie Boltzmann method(LBM) is another Poisson free method for INSS. It deals with the time evolution of veloity distributionfuntion of \arti�ial" gas moleules and the solution of the time-dependent INSS is obtained from theleading term of the asymptoti solution for a kineti equation. This asymptoti method beomes a variantof ACM for a speial value of the omputational parameter, where LBM is alled LKS. This implies apotential ability of ACM as an asymptoti method for time-dependent INSS. In the present study, wereinvestigate ACM from this point of view and propose a high order Poisson free method.2 PROBLEM AND BASIC EQUATIONSINSS is expressed in the following dimensionless form:�ui�t + uj �ui�xj + �P�xi = � �2ui�x2j ; (1)�ui�xi = 0; (2)where ui and P are the (dimensionless) ow veloity and pressure and � is a onstant orresponding to theinverse of Reynolds number. In order to avoid omplexity and eluidate the essential point, we onsiderthe problem in a square or ubi domain with a suitable periodi boundary ondition. We assume that



the variation of the solution is moderate. Under suitable saling, this is equivalent toui � �ui�xj � �ui�t � O(1); P � �P�xi � �P�t � O(1): (3)3 THEORYOF ARTIFICIAL COMPRESSIBILITYMETHODFollowing Chorin, we replae Eq. (2) by the arti�ial ontinuity equation:bk �P�t + �ui�xi = 0; (4)where b and k are positive onstants. We assume b � O(1) and k � 1. We will show that the arti�ialompressibility system (ACS), Eqs. (4) and (1), yields the approximate solution of time-dependent INSS.3.1 Asymptoti analysis of arti�ial ompressibility systemWe expand ui and P with respet to k:ui = ~u(0)i + ~u(1)i k + ~u(2)i k2 + � � � ; P = ~P (0) + ~P (1)k + ~P (2)k2 + � � � : (5)We assume~u(m)i � �~u(m)i�xj � �~u(m)i�t � O(1) ~P (m) � � ~P (m)�xi � � ~P (m)�t � O(1) (m = 0; 1; 2; � � � ); (6)whih are ompatible with Eq. (3). Substituting the above expansions into ACS and equating the sameorder terms, we have the following sequene of the equation systems:�~u(0)i�t = Ni(~u(0)k ; ~P (0); �); �~u(0)i�xi = 0; (7)�~u(1)i�t = Li(~u(1)k ; ~P (1); ~u(0)k ; �); �~u(1)i�xi = �b� ~P (0)�t ; (8)�~u(2)i�t = Li(~u(2)k ; ~P (2); ~u(0)k ; �) + ~u(1)j �~u(1)i�xj ; �~u(2)i�xi = �b� ~P (1)�t ; (9)� � � � � �whereNi(uk; P ; �) � �uj �ui�xj � �P�xi + � �2ui�x2j ; Li(uk; P ; vk; �) � �vj �ui�xj � uj �vi�xj � �P�xi + � �2ui�x2j : (10)INSS appears at the leading order and Oseen-type equation systems follow. Sine the Oseen-type equationsystem for (~u(1)i ; ~P (1)) has the inhomogeneous term �b�t ~P (0), the solution does not vanish even for thehomogeneous initial data (~u(1)i ; ~P (1)) = (0; 0) unless �tP (0) � 0; ACS an yield the approximate solutionof time-dependent INSS with the error of O(k).3.2 Strategy for realization of inompressible trajetoryWe will design an expliit numerial method for ACS. Let the mesh spaing and the time step be � and �t,respetively. ACS involves the aousti mode besides the di�usive mode (INSS) shown previously.Then,the time step will be subjet to the restrition relevant to aousti wave, i.e. �t . �=Cs, besides the onerelevant to di�usion, i.e. �t . �2=�, where Cs is the sound speed in ACS and is equal to (bk)�1=2. Theformer restrition beomes severer and the error of INSS beomes smaller for smaller k. We onsider thease of k = �2 as the ompromise, sine these two restritions beome omparable in the ase of � � O(1);the aousti restrition beomes �t . �2.



Similar to the previous subsetion, we assume that the numerial solution is expressed as the powerseries of k(= �2 � �t). The equation systems for (u(m)i ; P (m)) (m = 0; 1; 2; � � � ) in the previous subsetionare subjet to the orretion beause of the disretization error. When the �rst order aurate timeintegration method is employed, the equation system form � 1 are altered. Here, the spatial disretizationerror is not taken into aount. If the disretization error is O(�2), then it appears in the equation systemsfor m � 1. However, the equation system (7) is not altered. The (u(m)i ; P (m)) for m � 1 are the errorof numerial solution. Thus, we an onstrut an expliit sheme for time-dependent INSS whih is�rst order aurate in time and seond order aurate in spae. The solution of Oseen-type equationsystem (8) yields the intrinsi error of the asymptoti approah. By making use of the linearity of thesolution with respet to b, we an anel out this part fortunately. We notie that the numerial solutionsatis�es Eqs. (7) and (8) if the time integration is seond order aurate and the spatial disretization isfourth order aurate. These requirements are ful�lled if appropriate omputational gadgets, suh as theseond order Runge-Kutta method and �ve point entral �nite-di�erene formulas, are employed. Theintrinsi error is aneled out in a linear ombination of two numerial solutions for di�erent values of bunder the same resolution. Thus, we an onstrut the method whih is seond order aurate in timeand fourth order aurate in spae. One the expliit numerial method for the time integration andspatial disretization are spei�ed, the legitimay of the above strategy of high order Poisson free methodis on�rmed theoretially by arrying out the asymptoti analysis of the resulting numerial methodaording to the reipe given in Ref. [1℄.We briey mention the initial data for ACS. A divergene free veloity �eld and the solution of theorresponding Poisson equation are employed as the initial ondition for INSS. However, this is notappropriate when ACS is employed. The divergene free veloity �eld means that the time derivative ofP is zero in ACS and the inompatible initial ondition ativates the aousti mode of ACS. In order tolaunh the solution of ACS along the trajetory of INSS smoothly, speial initial data for the error term(u(m)i ; P (m)) (m = 1; 2; � � � ) should be hosen. For example, the initial data for u(1)i should satisfy theseond equation in (8), whih requires the information of time derivative of pressure for INSS.4 NUMRICAL VALIDATIONWe have on�rmed the validity of the above strategy for high order asymptoti omputation of INSS inthe problem of 2D Taylor-Green test problem. We arried the omputation for the ase where the exatsolution is given byu1 = � os(�x3 ) sin(�y3 ) exp(�2�2�t9 ); u2 = os(�y3 ) sin(�x3 ) exp(�2�2�t9 ); (11)P = �14[os(2�x3 ) + 1℄ os(2�y3 ) exp(�4�2�t9 ): (12)Figures 1 and 2 show the time evolution of L1 error of the numerial solution for the ase of � = 0:2(� = 1=12 and �t = �2=8). It is seen from these �gures that the error is nearly proportional to b. Theaousti mode is ativated by the initial impat and is seen as small osillations in these �gures. Theonvergene rate of the numerial solution is shown in Figs. 3 and 4. The symbols 4 and � indiatethe results for b = 4 and b = 8, respetively. The symbol � indiate the result generated as the linearombination of these two ases. The solid line indiates the fourth order onvergene rate and thedashed line indiates the seond order one. The onvergene rate for the veloity is nearly seond order.However, lear seond order onvergene rate is not observed for P . This is onsidered to be due tothe abovementioned osillations. The anellation of the leading error of O(�2) by ombining the twonumerial soluions is not demonstrated learly beause of the osillations, although a great improvementof the auray is learly on�rmed.



Referenes[1℄ M. Junk and Z. Yang, \Asymptoti analysis of �nite di�erene method," Appl. Math. Comput. 158,267-301 (2004).
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Figure 1: The time evolution of L1error for u1: The solid line indiatesthe ase of b = 4 and the dash-dotline indiates the ase of b = 8.
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Figure 2: The time evolution of L1error for P : The solid line indiatesthe ase of b = 4 and the dash-dotline indiates the ase of b = 8.
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Figure 3: The onvergene rate foru1. ε
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Figure 4: The onvergene rate forP .


