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1 INTRODUCTION

Various existing numerical methods for the incompressible Navier-Stokes system (INSS) employ Poisson
(or Poisson type) solver, which requires additional iteration in each time step. Chorin’s artificial com-
pressibility method (ACM) is well-known as the INSS method that avoids this cumbersome operation.
ACM employs the artificial continuity equation that governs the time evolution of the pressure. Since
the divergence free condition is not satisfied exactly in the time-dependent case, ACM is widely regarded
as a numerical method for obtaining steady solutions. On the other hand, the lattice Boltzmann method
(LBM) is another Poisson free method for INSS. It deals with the time evolution of velocity distribution
function of “artificial” gas molecules and the solution of the time-dependent INSS is obtained from the
leading term of the asymptotic solution for a kinetic equation. This asymptotic method becomes a variant
of ACM for a special value of the computational parameter, where LBM is called LKS. This implies a
potential ability of ACM as an asymptotic method for time-dependent INSS. In the present study, we
reinvestigate ACM from this point of view and propose a high order Poisson free method.

2 PROBLEM AND BASIC EQUATIONS

INSS is expressed in the following dimensionless form:
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where u; and P are the (dimensionless) flow velocity and pressure and v is a constant corresponding to the
inverse of Reynolds number. In order to avoid complexity and elucidate the essential point, we consider
the problem in a square or cubic domain with a suitable periodic boundary condition. We assume that




the variation of the solution is moderate. Under suitable scaling, this is equivalent to
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3 THEORY OF ARTIFICIAL COMPRESSIBILITY METHOD

Following Chorin, we replace Eq. (2) by the artificial continuity equation:
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where b and k are positive constants. We assume b ~ O(1) and k£ < 1. We will show that the artificial

compressibility system (ACS), Eqgs. (4) and (1), yields the approximate solution of time-dependent INSS.
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3.1 Asymptotic analysis of artificial compressibility system

We expand u; and P with respect to k:
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which are compatible with Eq. (3). Substituting the above expansions into ACS and equating the same
order terms, we have the following sequence of the equation systems:
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INSS appears at the leading order and Oseen-type equation systems follow. Since the Oseen-type equation
system for (dgl),P(l)) has the inhomogeneous term —bd; P(?), the solution does not vanish even for the
homogeneous initial data (@), P() = (0,0) unless 8, P(® = 0; ACS can yield the approximate solution
of time-dependent INSS with the error of O(k).

3.2 Strategy for realization of incompressible trajectory

We will design an explicit numerical method for ACS. Let the mesh spacing and the time step be € and At,
respectively. ACS involves the acoustic mode besides the diffusive mode (INSS) shown previously.Then,
the time step will be subject to the restriction relevant to acoustic wave, i.e. At < ¢€/Cs, besides the one
relevant to diffusion, i.e. At < €?/v, where C, is the sound speed in ACS and is equal to (bk)~'/2. The
former restriction becomes severer and the error of INSS becomes smaller for smaller k. We consider the
case of k = €2 as the compromise, since these two restrictions become comparable in the case of v ~ O(1);
the acoustic restriction becomes At < €.



Similar to the previous subsection, we assume that the numerical solution is expressed as the power
series of k(= €2 ~ At). The equation systems for (uﬁ’”), P(™) (m =0,1,2,---) in the previous subsection
are subject to the correction because of the discretization error. When the first order accurate time
integration method is employed, the equation system for m > 1 are altered. Here, the spatial discretization
error is not taken into account. If the discretization error is O(e?), then it appears in the equation systems
for m > 1. However, the equation system (7) is not altered. The (ugm),P(m)) for m > 1 are the error
of numerical solution. Thus, we can construct an explicit scheme for time-dependent INSS which is
first order accurate in time and second order accurate in space. The solution of Oseen-type equation
system (8) yields the intrinsic error of the asymptotic approach. By making use of the linearity of the
solution with respect to b, we can cancel out this part fortunately. We notice that the numerical solution
satisfies Egs. (7) and (8) if the time integration is second order accurate and the spatial discretization is
fourth order accurate. These requirements are fulfilled if appropriate computational gadgets, such as the
second order Runge-Kutta method and five point central finite-difference formulas, are employed. The
intrinsic error is canceled out in a linear combination of two numerical solutions for different values of b
under the same resolution. Thus, we can construct the method which is second order accurate in time
and fourth order accurate in space. Once the explicit numerical method for the time integration and
spatial discretization are specified, the legitimacy of the above strategy of high order Poisson free method
is confirmed theoretically by carrying out the asymptotic analysis of the resulting numerical method
according to the recipe given in Ref. [1].

We briefly mention the initial data for ACS. A divergence free velocity field and the solution of the
corresponding Poisson equation are employed as the initial condition for INSS. However, this is not
appropriate when ACS is employed. The divergence free velocity field means that the time derivative of
P is zero in ACS and the incompatible initial condition activates the acoustic mode of ACS. In order to
launch the solution of ACS along the trajectory of INSS smoothly, special initial data for the error term
(ugm), P(™)) (m = 1,2,---) should be chosen. For example, the initial data for ugl) should satisfy the
second equation in (8), which requires the information of time derivative of pressure for INSS.

4 NUMRICAL VALIDATION

We have confirmed the validity of the above strategy for high order asymptotic computation of INSS in
the problem of 2D Taylor-Green test problem. We carried the computation for the case where the exact
solution is given by
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Figures 1 and 2 show the time evolution of L; error of the numerical solution for the case of v = 0.2
(e = 1/12 and At = €?/8). It is seen from these figures that the error is nearly proportional to b. The
acoustic mode is activated by the initial impact and is seen as small oscillations in these figures. The
convergence rate of the numerical solution is shown in Figs. 3 and 4. The symbols A and [0 indicate
the results for b = 4 and b = 8, respectively. The symbol e indicate the result generated as the linear
combination of these two cases. The solid line indicates the fourth order convergence rate and the
dashed line indicates the second order one. The convergence rate for the velocity is nearly second order.
However, clear second order convergence rate is not observed for P. This is considered to be due to
the abovementioned oscillations. The cancellation of the leading error of O(e?) by combining the two
numerical soluions is not demonstrated clearly because of the osillations, although a great improvement
of the accuracy is clearly confirmed.
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Figure 1: The time evolution of L, Figure 2: The time evolution of L,
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Figure 3: The convergence rate for Figure 4: The convergence rate for
Uuq. P.



