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 method1 INTRODUCTIONVarious existing numeri
al methods for the in
ompressible Navier-Stokes system (INSS) employ Poisson(or Poisson type) solver, whi
h requires additional iteration in ea
h time step. Chorin's arti�
ial 
om-pressibility method (ACM) is well-known as the INSS method that avoids this 
umbersome operation.ACM employs the arti�
ial 
ontinuity equation that governs the time evolution of the pressure. Sin
ethe divergen
e free 
ondition is not satis�ed exa
tly in the time-dependent 
ase, ACM is widely regardedas a numeri
al method for obtaining steady solutions. On the other hand, the latti
e Boltzmann method(LBM) is another Poisson free method for INSS. It deals with the time evolution of velo
ity distributionfun
tion of \arti�
ial" gas mole
ules and the solution of the time-dependent INSS is obtained from theleading term of the asymptoti
 solution for a kineti
 equation. This asymptoti
 method be
omes a variantof ACM for a spe
ial value of the 
omputational parameter, where LBM is 
alled LKS. This implies apotential ability of ACM as an asymptoti
 method for time-dependent INSS. In the present study, wereinvestigate ACM from this point of view and propose a high order Poisson free method.2 PROBLEM AND BASIC EQUATIONSINSS is expressed in the following dimensionless form:�ui�t + uj �ui�xj + �P�xi = � �2ui�x2j ; (1)�ui�xi = 0; (2)where ui and P are the (dimensionless) 
ow velo
ity and pressure and � is a 
onstant 
orresponding to theinverse of Reynolds number. In order to avoid 
omplexity and elu
idate the essential point, we 
onsiderthe problem in a square or 
ubi
 domain with a suitable periodi
 boundary 
ondition. We assume that



the variation of the solution is moderate. Under suitable s
aling, this is equivalent toui � �ui�xj � �ui�t � O(1); P � �P�xi � �P�t � O(1): (3)3 THEORYOF ARTIFICIAL COMPRESSIBILITYMETHODFollowing Chorin, we repla
e Eq. (2) by the arti�
ial 
ontinuity equation:bk �P�t + �ui�xi = 0; (4)where b and k are positive 
onstants. We assume b � O(1) and k � 1. We will show that the arti�
ial
ompressibility system (ACS), Eqs. (4) and (1), yields the approximate solution of time-dependent INSS.3.1 Asymptoti
 analysis of arti�
ial 
ompressibility systemWe expand ui and P with respe
t to k:ui = ~u(0)i + ~u(1)i k + ~u(2)i k2 + � � � ; P = ~P (0) + ~P (1)k + ~P (2)k2 + � � � : (5)We assume~u(m)i � �~u(m)i�xj � �~u(m)i�t � O(1) ~P (m) � � ~P (m)�xi � � ~P (m)�t � O(1) (m = 0; 1; 2; � � � ); (6)whi
h are 
ompatible with Eq. (3). Substituting the above expansions into ACS and equating the sameorder terms, we have the following sequen
e of the equation systems:�~u(0)i�t = Ni(~u(0)k ; ~P (0); �); �~u(0)i�xi = 0; (7)�~u(1)i�t = Li(~u(1)k ; ~P (1); ~u(0)k ; �); �~u(1)i�xi = �b� ~P (0)�t ; (8)�~u(2)i�t = Li(~u(2)k ; ~P (2); ~u(0)k ; �) + ~u(1)j �~u(1)i�xj ; �~u(2)i�xi = �b� ~P (1)�t ; (9)� � � � � �whereNi(uk; P ; �) � �uj �ui�xj � �P�xi + � �2ui�x2j ; Li(uk; P ; vk; �) � �vj �ui�xj � uj �vi�xj � �P�xi + � �2ui�x2j : (10)INSS appears at the leading order and Oseen-type equation systems follow. Sin
e the Oseen-type equationsystem for (~u(1)i ; ~P (1)) has the inhomogeneous term �b�t ~P (0), the solution does not vanish even for thehomogeneous initial data (~u(1)i ; ~P (1)) = (0; 0) unless �tP (0) � 0; ACS 
an yield the approximate solutionof time-dependent INSS with the error of O(k).3.2 Strategy for realization of in
ompressible traje
toryWe will design an expli
it numeri
al method for ACS. Let the mesh spa
ing and the time step be � and �t,respe
tively. ACS involves the a
ousti
 mode besides the di�usive mode (INSS) shown previously.Then,the time step will be subje
t to the restri
tion relevant to a
ousti
 wave, i.e. �t . �=Cs, besides the onerelevant to di�usion, i.e. �t . �2=�, where Cs is the sound speed in ACS and is equal to (bk)�1=2. Theformer restri
tion be
omes severer and the error of INSS be
omes smaller for smaller k. We 
onsider the
ase of k = �2 as the 
ompromise, sin
e these two restri
tions be
ome 
omparable in the 
ase of � � O(1);the a
ousti
 restri
tion be
omes �t . �2.



Similar to the previous subse
tion, we assume that the numeri
al solution is expressed as the powerseries of k(= �2 � �t). The equation systems for (u(m)i ; P (m)) (m = 0; 1; 2; � � � ) in the previous subse
tionare subje
t to the 
orre
tion be
ause of the dis
retization error. When the �rst order a

urate timeintegration method is employed, the equation system form � 1 are altered. Here, the spatial dis
retizationerror is not taken into a

ount. If the dis
retization error is O(�2), then it appears in the equation systemsfor m � 1. However, the equation system (7) is not altered. The (u(m)i ; P (m)) for m � 1 are the errorof numeri
al solution. Thus, we 
an 
onstru
t an expli
it s
heme for time-dependent INSS whi
h is�rst order a

urate in time and se
ond order a

urate in spa
e. The solution of Oseen-type equationsystem (8) yields the intrinsi
 error of the asymptoti
 approa
h. By making use of the linearity of thesolution with respe
t to b, we 
an 
an
el out this part fortunately. We noti
e that the numeri
al solutionsatis�es Eqs. (7) and (8) if the time integration is se
ond order a

urate and the spatial dis
retization isfourth order a

urate. These requirements are ful�lled if appropriate 
omputational gadgets, su
h as these
ond order Runge-Kutta method and �ve point 
entral �nite-di�eren
e formulas, are employed. Theintrinsi
 error is 
an
eled out in a linear 
ombination of two numeri
al solutions for di�erent values of bunder the same resolution. Thus, we 
an 
onstru
t the method whi
h is se
ond order a

urate in timeand fourth order a

urate in spa
e. On
e the expli
it numeri
al method for the time integration andspatial dis
retization are spe
i�ed, the legitima
y of the above strategy of high order Poisson free methodis 
on�rmed theoreti
ally by 
arrying out the asymptoti
 analysis of the resulting numeri
al methoda

ording to the re
ipe given in Ref. [1℄.We brie
y mention the initial data for ACS. A divergen
e free velo
ity �eld and the solution of the
orresponding Poisson equation are employed as the initial 
ondition for INSS. However, this is notappropriate when ACS is employed. The divergen
e free velo
ity �eld means that the time derivative ofP is zero in ACS and the in
ompatible initial 
ondition a
tivates the a
ousti
 mode of ACS. In order tolaun
h the solution of ACS along the traje
tory of INSS smoothly, spe
ial initial data for the error term(u(m)i ; P (m)) (m = 1; 2; � � � ) should be 
hosen. For example, the initial data for u(1)i should satisfy these
ond equation in (8), whi
h requires the information of time derivative of pressure for INSS.4 NUMRICAL VALIDATIONWe have 
on�rmed the validity of the above strategy for high order asymptoti
 
omputation of INSS inthe problem of 2D Taylor-Green test problem. We 
arried the 
omputation for the 
ase where the exa
tsolution is given byu1 = � 
os(�x3 ) sin(�y3 ) exp(�2�2�t9 ); u2 = 
os(�y3 ) sin(�x3 ) exp(�2�2�t9 ); (11)P = �14[
os(2�x3 ) + 1℄ 
os(2�y3 ) exp(�4�2�t9 ): (12)Figures 1 and 2 show the time evolution of L1 error of the numeri
al solution for the 
ase of � = 0:2(� = 1=12 and �t = �2=8). It is seen from these �gures that the error is nearly proportional to b. Thea
ousti
 mode is a
tivated by the initial impa
t and is seen as small os
illations in these �gures. The
onvergen
e rate of the numeri
al solution is shown in Figs. 3 and 4. The symbols 4 and � indi
atethe results for b = 4 and b = 8, respe
tively. The symbol � indi
ate the result generated as the linear
ombination of these two 
ases. The solid line indi
ates the fourth order 
onvergen
e rate and thedashed line indi
ates the se
ond order one. The 
onvergen
e rate for the velo
ity is nearly se
ond order.However, 
lear se
ond order 
onvergen
e rate is not observed for P . This is 
onsidered to be due tothe abovementioned os
illations. The 
an
ellation of the leading error of O(�2) by 
ombining the twonumeri
al soluions is not demonstrated 
learly be
ause of the osillations, although a great improvementof the a

ura
y is 
learly 
on�rmed.
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Figure 1: The time evolution of L1error for u1: The solid line indi
atesthe 
ase of b = 4 and the dash-dotline indi
ates the 
ase of b = 8.
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Figure 2: The time evolution of L1error for P : The solid line indi
atesthe 
ase of b = 4 and the dash-dotline indi
ates the 
ase of b = 8.
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Figure 3: The 
onvergen
e rate foru1. ε
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Figure 4: The 
onvergen
e rate forP .


