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Technological application Solid Oxide Fuel Cells (SOFC)

Solid Oxide Fuel Cells (SOFC)
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Technological application Solid Oxide Fuel Cells (SOFC)

Electron Microscopy for analyzing material structure
Scanning Electron Microscopy (SEM) together with Energy Dispersion Spectrometry
(EDS) for catching different solid phases in SOFC electrodes (anode is showed)
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Technological application Solid Oxide Fuel Cells (SOFC)

3D Reconstruction by CHIMERA R©
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Technological application Solid Oxide Fuel Cells (SOFC)

Spatial dependence of effective diffusivity
Direct numerical calculation obtained by Lattice Boltzmann scheme

Additional details are reported in Asinari et al., J. Power Sources, 2007
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Lattice Boltzmann scheme
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Lattice Boltzmann scheme Simplified AAP model

Multiple–relaxation–time AAP model on D2Q9 lattice

Let us consider the LBM–AAP model [Andries, Aoki, and
Perthame, JSP 106, 2002; Asinari, PRE 77, 056706, 2008] for
mixture modeling, namely

∂fσ

∂t̂
+ Vi

∂fσ
∂x̂i

= Aσ
[
fσ(∗)(ρσ,u

∗
σ)− fσ

]
+ dσ, (1)

where Vi is a list of i-th components of the velocities in the
considered lattice (for simplicity, let us consider D2Q9)

V1 =
[

0 1 0 −1 0 1 −1 −1 1
]T
, (2)

V2 =
[

0 0 1 0 −1 1 1 −1 −1
]T
, (3)

f = fσ(∗), fσ is a list of discrete distribution functions and dσ is a
proper forcing term.
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Lattice Boltzmann scheme Simplified AAP model

Properties of target velocity in AAP model

The target velocity can be expressed as

u∗σ = u +
∑
ς

(
m2

mσmς

Bσς
Bmm

− 1
)
xς(uς − uσ). (4)

If mσ = m for any σ, then (Property 1, which is the key for
satisfying the Indifferentiability Principle)

u∗σ = u +
∑
ς

(
m2

mm

Bmm
Bmm

− 1
)
xς(uς − uσ) = u. (5)

Multiplying Eq. (4) by mass concentration xσ and summing over
all the component yields (Property 2)∑

σ

xσu
∗
σ = u +

∑
σ

∑
ς

(
m2

mσmς

Bσς
Bmm

− 1
)
xσxς(uς − uσ) = u.

(6)
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Lattice Boltzmann scheme (1) Equilibrium, (2) collisional matrix and (3) forcing

(1) Discrete local equilibrium

Let us consider a matrix

M = [1; V1; V2; V 2
1 ; V 2

2 ; V1V2; V1(V2)2; (V1)2V2; (V1)2(V2)2]T ,

then the discrete local equilibrium is defined as

Mfσ(∗) =



Π∗0
Π∗1
Π∗2
Π∗11

Π∗22

Π∗12

Π∗221

Π∗112

Π∗1122


=



ρσ
ρσu

∗
σ1

ρσu
∗
σ2

pσ + ρσ(u∗σ1)2

pσ + ρσ(u∗σ2)2

ρσu
∗
σ1u
∗
σ2

ρσu
∗
σ1/3

ρσu
∗
σ2/3

pσ/3 + ρσ(u∗σ1)2/3 + ρσ(u∗σ2)2/3


. (7)
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Lattice Boltzmann scheme (1) Equilibrium, (2) collisional matrix and (3) forcing

(2) Multiple–relaxation–time collisional matrix

The collisional matrix is Aσ = M−1ΛσM and

Λσ =



0 0 0 0 0 0 0 0 0
0 λδσ 0 0 0 0 0 0 0
0 0 λδσ 0 0 0 0 0 0
0 0 0 ∇+ ∇− 0 0 0 0
0 0 0 ∇− ∇+ 0 0 0 0
0 0 0 0 0 λνσ 0 0 0
0 0 0 0 0 0 λδσ 0 0
0 0 0 0 0 0 0 λδσ 0
0 0 0 0 0 0 0 0 ∇+


, (8)

where λδσ = pBmm/ρ = pB(m,m)/ρ, ∇+ = (λξσ + λνσ)/2,
∇− = (λξσ − λνσ)/2, λνσ = λν = 1/(3 ν) and
λξσ = λξ(2− ϕσ) = (2− ϕσ)/(3 ξ) (where pσ = ϕσρσ/3).
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Lattice Boltzmann scheme (1) Equilibrium, (2) collisional matrix and (3) forcing

(3) External forcing

The external source dσ is designed in moment space as

dσ = M−1

[
0, ρ̂σ ĉσ1, ρ̂σ ĉσ2,

∂(ρ̂σ ĉσ1)
∂x̂1

,
∂(ρ̂σ ĉσ2)
∂x̂2

, 0, 0, 0, 0
]T
,

(9)
where ĉσi = âi + b̂σi and âi is the acceleration due to an external
field acting on all the components in same way (for example, the
gravitational acceleration), while b̂σi is the acceleration due to a
second external field discriminating the nature of the component
particles (for example, the electrical acceleration). As it will be
clarified later on by the asymptotic expansion, the additional terms
affecting the stress tensor components must be considered in
order to compensate the deficiencies (in terms of symmetry
properties) of the considered lattice.
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Lattice Boltzmann scheme Implementation by variable transformation

Discrete operative formula

Eq. (1) is formulated for discrete velocities, but it is still continuous
in both space and time.
Since the streaming velocities are constant, the Method of
Characteristics is the most convenient way to discretize space and
time (simplest formulation of the LBM scheme).
Applying the second-order Crank–Nicolson yields (let us consider
the BGK case for sake of simplicity)

f+
σ = fσ + (1− θ)λσ

[
fσ(∗) − fσ

]
+ θ λ+

σ

[
f+
σ(∗) − f

+
σ

]
, (10)

where θ = 1/2.
The previous formula would force one to consider quite
complicated integration procedures [Asinari, PRE 2006]. A simple
variable transformation has been already proposed in order to
simplify this task [He et al., JCP 1998].
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Lattice Boltzmann scheme Implementation by variable transformation

Variable transformation

(Step 1) Let us apply the transformation fσ → gσ defined by

gσ = fσ − θ λσ
[
fσ(∗) − fσ

]
. (assuming dσ = 0) (11)

(Step 2) Let us compute the collision and streaming step leading
to gσ → g+

σ by means of the modified updating equation

g+
σ = gσ + λ′σ

[
fσ(∗) − gσ

]
, (12)

where λ′σ = λσ/(1 + θλσ).
(Step 3) Finally let us come back to the original discrete
distribution function g+

σ → f+
σ by means of

f+
σ =

g+
σ + θ λ+

σ f
+
σ(∗)

1 + θ λ+
σ

. (13)
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Model analysis Diffusive scaling

Diffusive scaling

In the following asymptotic analysis [Junk et al., 2005], we
introduce the dimensionless variables, defined by

xi = (lc/L) x̂i, t = (UTc/L) t̂. (14)

Defining the small parameter ε as ε = lc/L, which corresponds to
the Knudsen number, we have xi = ε x̂i.
Furthermore, assuming U/c = ε, which is the key of derivation of
the incompressible limit [Sone, 1971], we have t = ε2 t̂. Then, AAP
model is rewritten as

ε2
∂fσ
∂t

+ ε Vi
∂fσ
∂xi

= Aσ

[
fσ(∗) +A†σdσ − fσ

]
. (15)

In this new scaling, we can assume ∂αfσ = ∂fσ/∂α = O(fσ) and
∂αM = ∂M/∂α = O(M), where α = t, xi and M = ρ̂σ, q̂σi where
q̂σi = ρ̂σûσi.
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Model analysis Grad moment expansion

Single species macroscopic equations

Grad moment method can be applied to recover the single
species macroscopic equations [Asinari & Ohwada, Comput.
Math. Appl., in press], namely

∂ρσ
∂t

+
∂(ρσuσi)
∂xi

= 0, (16)

∂yσ
∂xi

=
∑
ς

Bσς yσyς(uςi − uσi) +
ρσbσi
p

, (
∑
σ

ρσbσi = 0) (17)

∂(ρσuσi)
∂t

+
∂

∂xj
(ρσu∗σiu

∗
σj) +

∂p′σ
∂xi

=
1

3λν
∂2(ρσu∗σi)
∂x2

j

+
1

3λξ

∂2(ρσu∗σk)
∂xi∂xk

+ ρσai. (18)
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Model analysis Grad moment expansion

Mixture macroscopic equations

Summing over the components [Asinari, PRE 77, 056706, 2008]

∂ui
∂t

+
∂

∂xj

∑
σ

(xσu∗σiu
∗
σj) +

1
ρ

∂p′

∂xi
= ν

∂2ui
∂x2

j

+ ai. (19)

Clearly the previous equation is not completely consistent with the
canonical Navier–Stokes system of equations for the barycentric
velocity ui. The same result would be obtained by using the
Hilbert expansion [Asinari, PRE 2006].
If and only if the component particles have similar masses, i.e.
mσ
∼= m for any σ, then u∗σi ∼= ui and

∂ui
∂t

+ uj
∂ui
∂xj

+
1
ρ

∂p′

∂xi
= ν

∂2ui
∂x2

j

+ ai. (20)
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Numerical validation
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Numerical validation

Ternary mixture

In case of ternary mixture Eq. (17) reduces to

n∇y1 = B12y1k2 +B13y1k3 − (B12y2 +B13y3)k1, (21)

n∇y2 = B21y2k1 +B23y2k3 − (B21y1 +B23y3)k2, (22)

n∇y3 = B31y3k1 +B32y3k2 − (B31y1 +B32y2)k3. (23)

The molecular weights are mσ = [1, 2, 3], the homogeneous
internal energies are [eσ = 1/3, 1/6, 1/9] and consequently the
corrective factors are ϕσ = [1, 1/2, 1/3].
The theoretical Fick diffusion coefficient is Dσ = α/mσ, where
α ∈ [0.002, 0.8] and the theoretical Maxwell–Stefan diffusion
resistance is given by

Bσς = β

(
1
mσ

+
1
mς

)−1/2

, β ∈ [5, 166]. (24)
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Numerical validation (1) Non-Fickian test case: Stefan tube

(1) Non-Fickian test case: Stefan tube

It is essentially a vertical tube, open at one end, where the carrier
flow licks orthogonally the tube opening. In the bottom of the tube
is a pool of quiescent liquid. The vapor that evaporates from this
pool diffuses to the top.

p1(0, x) = p1(0, 0)
1
2

[
1− tanh

(
x− L/2
δx

)]
+ ps, (25)

p2(0, x) = p2(0, 0)
1
2

[
1− tanh

(
x− L/2
δx

)]
+ ps, (26)

p3(0, x) = [1− p3(0, 0)]
1
2

[
1 + tanh

(
x− L/2
δx

)]
+ p3(0, 0),

(27)

where the constant ps = 10−4 has been introduced for avoiding to
divide per zero.
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Numerical validation (1) Non-Fickian test case: Stefan tube

(1) Stefan tube
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Numerical validation (2) Solvent test case in a Poiseuille flow

(2) Solvent test case in a Poiseuille flow

Let us consider a ternary mixture in an infinitely long gap between
parallel plates. The initial conditions for the partial pressures are
given by

p1(0, x1, x2) = ∆p
[
1 + sin

(
2π
x1

L1

)]
+ ps, (28)

p2(0, x1, x2) = ∆p
[
1 + cos

(
2π
x1

L1

)]
+ ps, (29)

p3(0, x1, x2) = 1− p1(0, x1, x2)− p2(0, x1, x2), (30)

where ∆p = ps = 0.01.
The mixture flow is induced by a proper external force a1 = 0.001
(effecting only the mixture barycentric velocity).
In this case, the Schmidt number is Sc∗1 = ν∗/D∗1 = ν∗B∗13.
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Numerical validation (2) Solvent test case in a Poiseuille flow

(2) Solvent test case in a Poiseuille flow
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Numerical validation (2) Solvent test case in a Poiseuille flow

(2) Solvent test case in a Poiseuille flow
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How to improve the stability of the scheme

Some brand new analytical results for discrete lattices have been
recently pointed out [Asinari & Karlin, PRE, in press]: in particular,
the generalized Maxwellian state (with prescribed diagonal
components of the pressure tensor) and the constrained
Maxwellian state (with prescribed trace of the pressure tensor).
All the previously introduced equilibria for LB are found as special
cases of the previous results (!!).
Some new LB schemes, namely Entropic Quasi – Equilibrium
(EQE) and Linearized Quasi – Equilibrium (LQE) with both tunable
bulk viscosity and H–theorem have been proposed.
In case of some simple preliminary tests, the LQE model was able
to achieve the same accuracy of the usual BGK model with a
rougher mesh (approximately half), leading to a remarkable
speed–up of the run time.
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Conclusions

In the present talk, a LBM scheme for mixture modeling, which
fully recovers Maxwell–Stefan diffusion model with external force
in the continuum limit, without the restriction of the macroscopic
mixture-averaged approximation, was discussed.
As a theoretical basis for the development of the LBM scheme, a
recently proposed BGK-type kinetic model for gas mixtures
[Andries et al., JSP 2002] was considered. This essentially links
the LBM development to the recent progresses of the BGK-type
kinetic models and opens new perspectives (e.g. reactive flows).
In the reported numerical tests, the proposed scheme produces
good results on a wide range of relaxation frequencies.
For improving the current stability region, extension of recently
proposed Entropic Quasi–Equilibrium idea (based on new
analytical results) is currently under development.
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Thank you !!
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