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Politecnico di Torino

Preliminaries

The Politecnico has 26,000 students, 
890 lecturers and researchers, and 
around 800 administration staff. 
There are 6 Schools, 1 Graduate 
School, 18 Departments and 7 
Interdepartmental Centres. The 
income in the 2005 balance was 223 
million Euros (53 % from the State).
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Outline

� (1) Simplified Kinetic Model Equations for 
Multi–species Single–phase Mixtures

� (2) Numerical LBM Scheme and Practical 
Details

� (3) Diffusion Process at Macroscopic Level
� (4) Semi–implicit Discretization Strategies
� (5) Application: 

– Direct Numerical Simulation (DNS) of 
Decaying Homogenous Isotropic 
Turbulence (DHIT)

Preliminaries
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Simplified Kinetic 
Model Equations for 

Multi–species 
Single–phase Mixtures

Kinetic Model Equations



5/50

MRT – LB Schemes for Mixture Modeling

Preliminary Snapshot

� There is considerably more latitude in the choice of a 
linearization procedure in the case of a mixture than for 
a pure gas (Stewart Harris, 1971)…

Kinetic Model Equations
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Possible Linearizations

� In particular considering the target macroscopic velocity
(only athermal LB models will be discussed here), some 
reasonable linearizations are...

Kinetic Model Equations
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(1) Gross & Krook Model

� Single – Fluid Approach: the total effects due to 
both self and cross collisions are modeled by a BGK–
like operator involving a Maxwellian centered on the 
mass weighted velocity (selected for ensuring the 
same momentum relaxation equation due to the full 
Boltzmann equations, i.e. Morse’s procedure)

� Lattice Boltzmann version has been proposed (Shan 
& Chen, PRE 1993; Shan & Doolen, JSP 1995)

Kinetic Model Equations
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Gross & Krook Model: (Some) Limits
� The relaxation frequencies must be selected for 

ensuring the macroscopic barycentric momentum 
conservation for the mixture

� From the macroscopic point of view, the kinematic 
viscosity of each species, the mutual diffusivity and the 
mixture kinematic viscosity are coupled to each other

� Models consistent with this approach usually involve an 
interaction pseudo-potential or a long-range coupling 
force for recovering the desired diffusion equations by 
an additional momentum exchange among particles

Kinetic Model Equations
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Consistency for BGK-Type Models

� Basic consistency constraints (Aoki et al., JSP 2002)
in the design of simplified kinetic models for mixture 
modeling (LB model):
1. the ‘‘Indifferentiability Principle’’ holds (??);
2. the same relaxation equations for momentum and 

temperature derived by means of the full 
Boltzmann equations hold (~OK);

3. the equilibrium distributions are Maxwellians with 
common velocities and internal energies (~OK);

4. the non-negativity of densities is satisfied (NO);
5. the H theorem holds (NO).

Kinetic Model Equations
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Indifferentiability Principle

� The Indifferentiability Principle (dos Santos et al.,
Phys. Fluids A 1989) prescribes that, if a BGK-like 
equation for each species is assumed, this set of 
equations should reduce to a single BGK-like 
equation, when mechanically identical components 
are considered (microscopic formulation, µIP)

� This essentially means that, when all the species are 
identical, one should recover at macroscopic levels 
the equations governing the single component gas 
dynamics (macroscopic formulation, MIP)

� This property is satisfied by the bilinearity of the 
collision operator in the full Boltzmann equations

Kinetic Model Equations
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Gross & Krook Model Does Not Satisfy µµµµIP

� Even though all the masses are identical, i.e.

the total distribution does not satisfy a single BGK-like 
equation � the Gross & Krook Model does not satisfy 
the Indifferentiability Principle (the previous proof refers 
to the microscopic formulation µIP)

Kinetic Model Equations
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(2) Corrected Gross & Krook Model
� For satisfying the Indifferentiability Principle is enough 

to consider the barycentric (density weighted) velocity
in the target Maxwellian (Lattice Boltzmann version by 
Sofonea & Sekerka, Physica A 2001)

� Selecting the same relaxation frequency ensures the 
macroscopic barycentric momentum conservation for 
the mixture, as well as that the Indifferentiability 
Principle holds, when all the same masses are 
considered (self evident !)

Kinetic Model Equations



13/50

MRT – LB Schemes for Mixture Modeling

Corrected G&K Model : Peculiarities

� Since both transport coefficients depend on the only 
relaxation frequency, the model implies a fixed Schmidt 
number (Sc = ν/D)

� The momentum relaxation equation derived by the 
model is not the same obtained by the full Boltzmann 
equations, i.e. Morse condition does not apply: are we 
really increasing the consistency of the model ?

� As it will be showed later on, as far as the macroscopic 
description is the main concern (as it happens usually 
for LB schemes) and only one property can be satisfied, 
the Indifferentiability Principle must be preferred 

Kinetic Model Equations
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(3) Sirovich Model

� Multi – Fluid Approach with Force Coupling: each 
species evolves according to the specific properties 
� a proper coupling must be introduced for modeling 
the diffusivity � theoretical background given by 
Sirovich model for β=0 � Luo & Girimaji, PRE 2003 
(~) and A. Xu, Europhys. Letters 2005

� Actually selecting β=1/2 (central difference 
approximation) ensures the maximum accuracy with 
regards to the original bilinear operator

Kinetic Model Equations
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Sirovich Model: Limits

� Mixture viscosity is decoupled by the diffusion transport 
coefficient � (moderately) tunable Schmidt number �
for modeling large Schmidt number (i.e. phenomena 
ruled by small diffusion) a large forcing term is needed.

� The Sirovich model does not satisfy the 
Indifferentiability Principle (even for β=1)

Kinetic Model Equations
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(4) Hamel Model
� Complete Multi – Fluid Approach: cross collisions 

are described by an independent BGK–like  collisional 
operator (similar to self collisions) � theoretical 
background given by Hamel model (Asinari, POF 
2005).

� Improved modeling of cross collisions which effect 
both the mixture viscosity and the diffusivity (as they 
actually do in reality !)

� The Hamel model does not satisfy the 
Indifferentiability Principle (analogously to the 
Sirovich model for β=1)

Kinetic Model Equations
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Numerical LBM Scheme 
and Practical Details 

Lattice Boltzmann Model
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� Single-relaxation-time (SRT) formulation limits:
– tuning lattice energy levels can lead the algorithm to 

diverge for large mass ratios;
– relaxation time constant for cross collisions must be 

tuned in order to recover EITHER the diffusivity OR 
the mixture viscosity.

� Multiple-relaxation-time (MRT) formulation patches:
– over–relaxing the non–conserved modes, without 

effecting the main transport coefficients, can partially 
avoid instability;

– relaxing differently the cross collisional modes can 
decouple diffusivity and mixture viscosity.

SRT vs. MRT

Lattice Boltzmann Model
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MRT Hamel Model
� Introducing a proper lattice with Q components…

� This implies a large set of additional degrees of 
freedom which can be tuned in the model for improving 
the reliability at macroscopic level with regards to the 
transport coefficients

Lattice Boltzmann Model
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Compact MRT Hamel Model
� Since all the collision terms in the MRT Hamel model are 

linear with regards to the probability distribution 
functions, it is possible to rewrite this model for showing 
that is essentially implies a different equilibrium function

� Far from the Boltzmann equations for mixtures !!

(?!)

Lattice Boltzmann Model
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Asymptotic Analysis
� Applying the diffusive scaling, the macroscopic 

equations can be recovered by means of the 
asymptotic analysis for LBM (Junk et al., JCP 2005)

Lattice Boltzmann Model
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Consistency at Macroscopic Level: MIP
� MIP: summing the governing equations for the single 

species should yield the mixture equations governing the 
total density and the barycentric velocity

� It is clear from the previous example that MIP ⊂ µIP � In 
fact the macroscopic formulation of the Indifferentiability 
Principle refers only to the hydrodynamic moments

Lattice Boltzmann Model
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MRT Gross & Krook Model
� Dropping out the first collisional operator, we find 

AGAIN the corrected Gross & Krook model (CGK), 
BUT powered by the MRT flexibility � This model This model 
satisfies the Indifferentiability Principle !!!satisfies the Indifferentiability Principle !!!

� It is possible to tune independently the kinematic 
viscosity ν and the diffusion coefficient D (i.e. to tune 
the Schmidt number Sc = ν / D) (Asinari, PRE 2006)

Lattice Boltzmann Model
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Different Particle Masses: Velocity Space

� Particles with different molecular weights move at 
different lattice speeds when at the same 
temperature � Different streaming distances are 
employed for species with different molecular weights 
(Abraham & McCracken, PRE 2005)

� Computational expensive because of the additional 
interpolations due to managing multiple meshes

Lattice Boltzmann Model
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Different Particle Masses: Moment Space
� Design of the equilibrium distribution function in the 

velocity space for tuning the speed of sound is not very 
successful (Abraham & McCracken, PRE 2005)

� Direct design of the equilibrium distribution function in 
the moment space is better (particle mass effects the 
pressure only and not the other moments)

Lattice Boltzmann Model
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Physical Interpretation of Direct Design 1

Multi-Lattice Approach: 
the heavier particles are 
characterized by a 
slower dynamics and 
they need a finer mesh

Lattice Boltzmann Model

Single-Lattice Approach: 
all the species move on 
the same lattice but the 
moving heavier particles 
are fewer
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Physical Interpretation of Direct Design 2
� The correction factor is simply proportional to the ratio 

between the number of moving particles and the total 
number of particles in equilibrium conditions

� For stability reasons, it is better not to increase this ratio 
more than the usual definition � The unique lattice 
must match the dynamics of the fastest species � All 
the species diffuse according to molecular weight

Lattice Boltzmann Model
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Dealing with High Schmidt Number

� Similarly dealing with the concentration driven diffusion 
term, the discrete effect can be constructively used

� An important feature of LBM is that it allows us to model 
high Reynolds number flows by means of relaxation 
frequencies which imply moderate round-off errors

Lattice Boltzmann Model
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Consistency in Mixture Diffusion
� Any (multi–fluid) numerical scheme for mixture 

modeling must ensure the same diffusion coefficient in 
BOTH the concentration equation and the diffusive flux 
definition � otherwise the continuity is not satisfied �

� It is not possible to hide additional terms due to 
discrete errors of the numerical scheme in the 
concentration equation, without changing accordingly 
the diffusive flux definition as well

Lattice Boltzmann Model
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Species Velocity Correction
� A proper correction of the single species velocity is 

required for ensuring that the correct continuity 
equation and the desired flux definition are recovered

Lattice Boltzmann Model
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Diffusion Process at 
Macroscopic Level 

Macroscopic Diffusion Process
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Macroscopic Diffusion Model
� The proposed model is consistent with the 

macroscopic diffusion model of Stefan–Maxwell in the 
continuous regime

� This models correctly takes into account the effects 
due to both concentration and total pressure gradients
(the acceleration effects are neglected here)

� It can be considered an extension of the Fick model

Macroscopic Diffusion Process
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Simple Test Case: Fick Model
� Binary mixture made of water 

and hydrogen (MA/MB=9/1).
� Barycentric velocity dynamics 

is neglected � no baroclinic 
back coupling.

Macroscopic Diffusion Process
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Simple Test Case: Maxwell-Stefan Model
� Baroclinic back coupling

induces an additional drag 
effect.

� Small concentration 
overshoots driven by fast 
perturbations appear.

Macroscopic Diffusion Process
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Approaches to Mixing Modeling
� Mixing phenomena can be classified in different 

categories, according to the interaction between 
transported quantities and main flow dynamics 
(Dimotakis, Annu. Rev. Fluid Mech. 2005): 
� Passive Scalar (PS), meaning that such mixing does 

not couple back on the flow dynamics (density-
matched gasses, trace markers, …);

� Active Scalar (AS), meaning that such mixing is 
actively effecting the flow dynamics (baroclinic 
effect, concentration-driven viscous coupling…);

� Reactive Active Scalar (RAS), which means that 
such mixing produces changes in the nature of the 
fluids (combustion, thermonuclear, …).

Macroscopic Diffusion Process
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Baroclinic Effect
� Baroclinic effect derives from misalignments between 

pressure and density gradients or, equivalently, mass 
concentration and/or temperature gradients in the flow.  

� The barycentric Φ is no more a constant (like it 
happens for the single species) � The gradient of Φ
depends on the single species dynamics (baroclinic
back coupling – BBC). 

Macroscopic Diffusion Process
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Concentration – Dependent Viscosity
� The cross collisions effect the effective kinematic 

viscosity for the mixture, which is smaller than the 
averaged viscosity based on the mass concentrations
of the components

� The kinematic viscosity for the mixture is no more a 
constant (like it happens for the single species) �
The gradient of the mixture kinematic viscosity 
depends on the single species dynamics (viscous 
back coupling – VBC) 

Macroscopic Diffusion Process
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Semi–implicit 
Discretization Strategies

Semi-implicit Discretization Strategies
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(Usual) Explicit Forward Euler
� A very popular formulation of LBM is based on the

forward Euler rule (FE) because it is very simple and 
explicit in time

� Asymptotic analysis 
suggests that the most 
complicated (non-linear) 
terms may be solved by 
a smaller accuracy (!!)

Semi-implicit Discretization Strategies
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Semi-implicit Linearized Backward Euler
� Semi-implicit linearized backward Euler (SILBE) 

formulation: the basic idea is to solve implicitly all the 
linear terms and explicitly only the quadratic term

� The data of the previous time step are used for 
computing the quadratic part only: the algorithm is 
completely local (only the neighboring cells are 
involved as usual) because the linear operators can 
be inverted once for ALL the cells � there is no need 
to solve a large linear system of equations

Semi-implicit Discretization Strategies



41/50

MRT – LB Schemes for Mixture Modeling

Crank – Nicolson Approach
� Asymptotic analysis allows us to verify that the leading 

discrete errors due to the previous schemes (FE and 
BE) differ only for the sign � It seems natural to 
combine them for achieving better performances �
parallel (with regards to time) Crank – Nicolson

� Because of the time–space coupling of LBM, in-series 
hybrid schemes force to consider refined meshes

Semi-implicit Discretization Strategies
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Is Crank – Nicolson Approach Useful ?
� Not for conventional single-species hydrodynamics: 

the (FE-)LBM is already second order accurate (in 
space) because the discrete error is included in the 
definition of the effective transport coefficient

Taylor-Green vortex

Semi-implicit Discretization Strategies
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Application:
Direct Numerical 

Simulation (DNS) of 
Decaying Homogenous 

Isotropic 
Turbulence (DHIT) 

Application: DNS of DHIT
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DNS of DHIT for a Binary Mixture
� Direct numerical simulation (DNS) of decaying 

homogenous isotropic turbulence (DHIT) for a binary 
mixture

� Divergence-free momentum fields are randomly 
generated for each species according to a given 
energy spectrum:

� Kinetic energy and dissipation function are computed 
during the decay for analysing the late time dynamics

Application: DNS of DHIT
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Asymptotic Power-Law Decay

κκκκ(t)/κκκκ(t0)~(t/ t0)-n

εεεε(t)/εεεε(t0)~(t/ t0)-n-1

Application: DNS of DHIT
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Dissipative Eddies

Application: DNS of DHIT
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Kolmogorov Length Scale

κκκκ(t)/κκκκ(t0)~(t/ t0)-n   ���� nκκκκ

εεεε(t)/εεεε(t0)~(t/ t0)-n-1 ���� nεεεε

Application: DNS of DHIT
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Baroclinic Effect on Decay Dynamics

� (1): E(k,0) = 0.038 k4 exp(-0.14 k2), k ∈ [1,4] on 633

� (2): E(k,0) = 0.608 k4 exp(-0.56 k2), k ∈ [2,4] on 633

� (3): E(k,0) = 0.494 k4 exp(-0.14 k2), k ∈ [1,8] on 1233

� As far as the low Mach number limit is concerned 
(values up to 0.1 have been considered), the baroclinic 
effect does not substantially change the decay. 

Application: DNS of DHIT
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Summary and Outlook

� The consistency of the physical model (at microscopic 
level and consequently at macroscopic level) should 
be one of the key concept leading the design process 
of LB schemes for mixture modeling

� MRT Corrected Gross & Krook (CGK) model is 
acceptably consistent, flexible (tunable Schmidt 
number) and robust (if you need more robustness �
semi-implicit or implicit schemes may be considered)

� Baroclinic and viscous back couplings (i.e. the single 
species dynamics effecting the barycentric dynamics) 
may appear in shock interactions of mixtures because 
of the large concentration gradients � This 
phenomena could be further investigated by shock 
capturing schemes (like Gas Kinetic Schemes)

Final Remarks
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