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Playing billiards...

Some of the LBM models point to kinetic equations in order to
solve fluidynamic equations in continuous regime. Does it
worth the effort to do so ?
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Motivation of this work

The lattice Boltzmann method (LBM) for the
incompressible Navier-Stokes (NS) equations and the gas
kinetic scheme (GKS) for the compressible NS equations
are based on kinetic theory of gases. In the latter case,
however, it is clearly shown that the kinetic formulation is
necessary only in the discontinuous reconstruction of
fluid-dynamic variables for shock capturing.
LBM yields solution of ICNS in the asymptotic passage for
small Knudsen number and low Mach number (diffusion
scaling). On the other hand, GKS for compressible NS
does not require any asymptotic passage.
Then, what is the key of the employment of kinetic theory
in the incompressible computation? These schemes
recover solutions of ICNS only asymptotically.
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The key idea of LKS

By means of the tensorial notation, a simple lattice
Boltzmann scheme can be expressed as

f(t̂ + 1, X̂) = λ fe(t̂, X̂ − V̂ ) + (1− λ)f(t̂, X̂ − V̂ ), (1)

where X̂ = 1⊗ x̂T and 1 ∈ R9.
If the dimensionless relaxation frequency λ in the simple
LBM with the BGK model is set to unity, the macroscopic
variables can be calculated without the velocity distribution
function, and the scheme becomes very similar to the
kinetic schemes, leading to Lattice Kinetic Scheme — LKS
[Junk & Rao 1999, Inamuro 2002].
Clearly it is possible to express LKS in terms of purely
finite difference (FD) formulas on a compact stencil,
without any reference to kinetic theory and this would be
perfectly equivalent to the original scheme.

Pietro Asinari, Taku Ohwada Equivalence between kinetic and finite-difference scheme



FD Lattice Kinetic Scheme (FD-LKS)
FD Lattice Boltzmann Method (FD-LBM)
Artificial Compressibility Method (ACM)

Basic FD-LKS
Improvements to FD-LKS
Numerical results

Operative formulas in FD-LKS: pressure update p+

In this case, the updating rule becomes

fLKS(t̂c + 1, X̂c) = fe(t̂c, X̂c − V̂ ). (2)

Taking the hydrodynamic moments of Eq. (2) yields, for the
pressure update in time,

p+ = p− δt c2

3

[
δxux + δyuy +

δx2

6
(δ2

xδyuy + δxδ2
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]
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[
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Pietro Asinari, Taku Ohwada Equivalence between kinetic and finite-difference scheme



FD Lattice Kinetic Scheme (FD-LKS)
FD Lattice Boltzmann Method (FD-LBM)
Artificial Compressibility Method (ACM)

Basic FD-LKS
Improvements to FD-LKS
Numerical results

Operative formulas in FD-LKS: velocity update u+
x

and, for the velocity update in time,

u+
x = ux + δt

[
−δxp− δx(u2

x)− δy(uxuy)

+
c2 δt

6
(3 δ2

xux + 2 δxδyuy + δ2
yux) +

c2 δt δx2

12
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yux

]
−δt δx2

[
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δxδ2
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x + u2
y) +

1
2

δ2
xδy(uxuy)

]
, (4)

where δm
x δn

y are pure FD formulas defined on compact stencils
(D2Q9 and D3Q27). Actually there are some analogies with the
high-order compact finite difference schemes [Spotz, 1995].
The previous formulas are exact (!!), in the sense that they can
be used instead of the original LKS.
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Improvements to FD-LKS: tunable viscosity FD-LKSν

The viscosity in original LKS is fixed and it depends on the
discretization. In order to overcome this shortcoming, it is
possible to modify the definition of the local equilibrium in
order to include terms coming from Chapman-Enskog
expansion and to compute them by means of FD formulas
on a larger stencil [Inamuro, 2002].
Actually it is possible to implement the same idea on the
original compact stencil too. In fact, the added terms to the
local equilibrium, namely

f∗e = fe −
ε

λ
V̂ · ∇̂f (1)

e + O(ε3), (5)

involve only first order derivatives, which can be computed
with second order accuracy by usual stencils (D2Q9 and
D3Q27).
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Improvements to FD-LKS: semi-implicit FD-LKSν

In the original LKS, the pressure and velocity updates are
done at the same time, by means of the distribution
function. However splitting of these steps in FD-LKS may
lead to some advantages.
Let us simplify the previous pressure update formula
p → P , namely

P+ = P − δt c2

3

[
δxux + δyuy +

δx2

6
(δ2

xδyuy + δxδ2
yux)

]
.

(6)
In order to enhance the stability, it is possible to consider a
semi-implicit formulation, namely

u+ = u + · · ·
p+ = p− δt c2/3∇ · u+
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Taylor-Green vortex flow test case

We have confirmed the validity of the above formulas for high
order asymptotic computation of ICNS in the problem of 2D
Taylor-Green test problem. We carried the computation for the
case where the exact solution is given by

ux = − cos(
πx

3
) sin(

πy

3
) exp(−2π2νt

9
), (7)

uy = cos(
πy

3
) sin(

πx

3
) exp(−2π2νt

9
), (8)

P = −1
4
[cos(

2πx

3
) + 1] cos(

2πy

3
) exp(−4π2νt

9
). (9)
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Taylor-Green vortex flow test case:
advantages of semi-implicit formulation for FD-LKSν
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Asymptotic analysis of LBM

The solution of LBM for small ε (both Knudsen and Mach
number in diffusive scaling) is investigated in the form of an
asymptotic regular expansion. Concerning the coefficients of
the expansions for the macroscopic moments,...

1 the leading coefficients u(1) and p(2) are given by the
incompressible Navier-Stokes (ICNS) system of equations,

∇ · u(1) = 0, (10)

∂tu
(1) +∇u(1)u(1) +∇p(2) = ω1/3∇2u(1); (11)

2 the next PDE system for coefficients for u(2) and p(3) is
given by the homogeneous (linear) Oseen system, which
admits null solutions, if proper initial and boundary
conditions are considered;

3 then the next PDE system for coefficients q(3) and p(4) is
given by the Burnett-like system...
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Recovered macroscopic equations

Let us define the following approximation f [k] =
∑k

i=0 εif (i).
According to the selected regular expansion, by definition
f − f [k] = O(εk+1).
Then we use the previous approximations in order to
derive macroscopic equations approximating the behavior
of the numerical scheme, namely

< (f [k] − f [k]
e ) >= ∂t̂ρ̂

[k] + Eq[k]
ρ̂ (ρ[k]) = 0, (12)

< V̂ (f [k] − f [k]
e ) >= ∂t̂û

[k] + Eq[k]
u (û[k]) = 0, (13)

where < · > means the discrete moment computing.
It is possible to prove that ∂t̂ρ̂ + Eq[k]

ρ (ρ̂) = O(εk+3) and
∂t̂û + Eq[k]

u (û) = O(εk+2), if ρ and u are numerical
solutions of LBM scheme.
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Basic idea of FD-LBM

Passing to the macroscopic scaling yields

∂tρ + Eq[5]
ρ (ρ) = O(ε4) → 0, (14)

∂tu + Eq[5]
u (u) = O(ε4) → 0, (15)

This means that consistency at least up to fifth order, i.e. at
least an approximation f [5], is required in order to solve the
same equations for both the leading physical quantities
and the leading error (FD-LKSν is an approximation of
LBM based on f [3] only).
We define FD-LBM the FD approximation of LBM based on
f [5], which requires a larger stencil (D2Q25 and D3Q125)
Unfortunately FD-LBM is usually quite unstable and this
proves that there is no point in proceeding further in
searching a FD approximation of LBM.

Pietro Asinari, Taku Ohwada Equivalence between kinetic and finite-difference scheme



FD Lattice Kinetic Scheme (FD-LKS)
FD Lattice Boltzmann Method (FD-LBM)
Artificial Compressibility Method (ACM)

Basic theory
Numerical results

Outline Compass

1 FD Lattice Kinetic Scheme (FD-LKS)
Basic FD-LKS
Improvements to FD-LKS
Numerical results

2 FD Lattice Boltzmann Method (FD-LBM)
Operative approximations of LBM
Numerical results

3 Artificial Compressibility Method (ACM)
Basic theory
Numerical results

Pietro Asinari, Taku Ohwada Equivalence between kinetic and finite-difference scheme



FD Lattice Kinetic Scheme (FD-LKS)
FD Lattice Boltzmann Method (FD-LBM)
Artificial Compressibility Method (ACM)

Basic theory
Numerical results

Artificial compressibility method revisited

In the discussion of semi-implicit FD-LKSν, we derived a
simplified version of the operative formula for the pressure
update P+, namely Eq. (6), where the time rate of change
of the pressure is ruled by the divergence of the numerical
velocity field (nearly incompressible).
Let us introduce the Artificial Compressibility System
(ACS):

bk
∂P

∂t
+

∂ui

∂xi
= 0, (16)

∂ui

∂t
+ uj

∂ui

∂xj
+

∂P

∂xi
= ν

∂2ui

∂x2
j

, (17)

where b and k are positive constants b ∼ O(1) and k � 1.
ACS involves the acoustic mode and the sound speed Cs

is given by (bk)−1/2.
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Diffusive mode: part 1

ACS involves the diffusive mode, where

ui ∼
∂ui

∂xj
∼ ∂ui

∂t
∼ O(1), P ∼ ∂P

∂xi
∼ ∂P

∂t
∼ O(1). (18)

Regular asymptotic analysis yields

ui = ũ
(0)
i +ũ

(1)
i k+ũ

(2)
i k2+· · · , P = P̃ (0)+P̃ (1)k+P̃ (2)k2+· · · ,

∂ũ
(0)
i

∂t
= Ni(ũ

(0)
k , P̃ (0); ν);

∂ũ
(0)
i

∂xi
= 0, (19)

∂ũ
(1)
i

∂t
= Li(ũ

(1)
k , P̃ (1); ũ(0)

k , ν);
∂ũ

(1)
i

∂xi
= −b

∂P̃ (0)

∂t
, (20)

∂ũ
(2)
i

∂t
= Li(ũ

(2)
k , P̃ (2); ũ(0)

k , ν) + ũ
(1)
j

∂ũ
(1)
i

∂xj
;

∂ũ
(2)
i

∂xi
= −b

∂P̃ (1)

∂t
,

(21)
· · · · · ·
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Diffusive mode: part 2

where

Ni(uk, P ; ν) ≡ −uj
∂ui

∂xj
− ∂P

∂xi
+ ν

∂2ui

∂x2
j

, (22)

Li(uk, P ; vk, ν) ≡ −vj
∂ui

∂xj
− uj

∂vi

∂xj
− ∂P

∂xi
+ ν

∂2ui

∂x2
j

. (23)

The leading term O(1) is consistent with ICNS.
The inhomogeneous Oseen-type O(k) is the intrinsic error.
Since M2 ∼ k (M Mach number), there are two cases:

1 in time-dependent cases, the error is O(M2), because
inhomogeneous Oseen unchanges;

2 in steady cases, the error is O(M4), because O(k)
inhomogeneous Oseen becomes homogeneous and the
latter may admit null solutions, if proper initial and boundary
conditions are considered.
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Numerical realization of incompressible trajectory

There are two time-step restrictions in the case of explicit
schemes, namely

1 Acoustic mode: ∆t . ∆x/Cs, where Cs = (bk)−1/2;
2 Diffusive mode: ∆t . (∆x)2/ν.

Obviously smaller k (M2), more accurate results are
recovered. However, the previous constraints imply a
smaller time step.
The following compromise is suggested: ∆x = ε,
k ∼ ε2,∆t ∼ ε2, which is equivalent to LBM.
From the numerical point of view, the solution of ACS
should move along the incompressible trajectory of ICNS
as smoothly as possible.
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Asymptotic analysis of the finite-difference scheme

Asymptotic analysis of finite-difference scheme can be
done according to the recipe of Junk and Yang.
Due to the discretization error, the equation systems for
(u(m)

i , P (m)) m ≥ 1 may be altered, according to the
considered scheme.

1 1st order accurate in time: discretization error appears in
the equation system for (u(1)

i , P (1)) and the error of
numerical solution is O(k) = O(ε2).

2 2nd order accurate in time and 4th order accurate in space:
the equation system for (u(1)

i , P (1)) is NOT altered. This
means the leading error of numerical solution is linear in b.
The leading error can be canceled out by combining two
solutions for different values of b. Then, 2nd order accuracy
in time and 4th order accuracy in space are expected.
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Initialization

The initial data for ICNS are: for ui a divergence free field
and for P a solution of the Poisson equation.
However, this is not appropriate when ACS is employed.
The divergence free velocity field means that the time
derivative of P is zero in ACS and the incompatible initial
condition activates the acoustic mode of ACS.
In order to launch the solution of ACS along the trajectory
of ICNS smoothly, special initial data for the error term
(u(m)

i , P (m)) (m = 1, 2, · · · ) should be chosen. For example,
the initial data for u

(1)
i should satisfy the second equation in

(20), which requires the information of time derivative of
pressure for ICNS.
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Time evolution of L1 error

These figures show the time evolution of L1 error of the
numerical solution for the case of ν = 0.2 (ε = 1/12 and
∆t = ε2/8). It is seen from these figures that the error is nearly
proportional to b. The acoustic mode is activated by the initial
impact and is seen as small oscillations in these figures.

Pietro Asinari, Taku Ohwada Equivalence between kinetic and finite-difference scheme



FD Lattice Kinetic Scheme (FD-LKS)
FD Lattice Boltzmann Method (FD-LBM)
Artificial Compressibility Method (ACM)

Basic theory
Numerical results

Convergence rate

The symbols 4 and � indicate the results for b = 4 and b = 8,
respectively. The symbol • indicate the result generated as the
linear combination of these two cases. The solid line indicates
the fourth order convergence rate and the dashed line indicates
the second order one.
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Conclusions

1 FD methods based on asymptotic solution of LBM:
semi-implicit compact FD-LKSν is a pure FD scheme which
represents a feasible alternative of LBM on the same
compact lattice (D2Q9 and D3Q27);
proceeding further (f [k] for k ≥ 4) in searching a FD
approximation of LBM is usually hopeless in most of the
cases, because of stability issues.

2 FD methods based on an extension of artificial
compressibility method:

ACM is another feasible alternative of LBM, which
eventually allows one to achieve higher accuracies (2nd

order accuracy in time and 4th order accuracy in space) if
larger stencils (D2Q25 and D3Q27) are used and proper
linear combinations of intermediate results are considered.

3 Future work: implementation of boundary condition and
high-accuracy compact scheme.
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