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Mesoscopic Numerical Methods for ICNS

Most of LBM models points to kinetic equations in order to solve
fluidynamic equations in continuous regime (Incompressible
Navier-Stokes – ICNS) ? Does it worth the effort ?
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Main Categories

Mesoscopic methods may be distinguished in two main
categories:

(Primitive) Numerical methods using expressions for the
numerical fluxes, derived by simplified solutions of kinetic
equations (equilibrium and/or small-deviation solutions), for
example GKS → they are not truly kinetic schemes,
because the kinetic expressions are used for
physically-based macroscopic averaging
(Kinetic) Numerical methods formulated directly in terms of
kinetic variables, for example LBM → they are truly kinetic
schemes, if and only if the adopted discretization allows to
catch the kinetic phenomena, otherwise their kinetic
content is questionable
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Lattice Boltzmann Method (LBM) in a Nutshell

number of papers on International Journals: 2,000 in the
period 1988-2007 (for comparison, 28,000 papers on
"Energy Saving"...)
number of books: 14 in the period 2000-2007
main international conferences:

International Conference on Mesoscopic Methods in
Engineering and Science, ICMMES
Discrete Simulation of Fluid Dynamics in Complex
Systems, DSFD

commercial codes: PowerFLOW (EXA, spin-off MIT)
patents: mainly in bio-fluidics for medical applications
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Simplified BGK Model Equation

In the incompressible continuum limit, the Mach number as well
as the Knudsen number is vanishingly small and the deviations
of temperature and density are vanishingly small. Then, we can
employ the simplified BGK equation, i.e.

the isothermal equilibrium distribution f∗e → fe, namely

fe =
ρ

2π/3
exp

[
−3(ξi − ui)2

2

]
, (1)

where m = 1 (since it is a constant), d = 2 (for two
dimensional case) and e = 1/3 are assumed;
and the collision frequency independent of the local state,
namely λ(ρ) → λ.
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Gaussian Quadratures

We need to accurately compute integrals such as � φ(ξ)fe �:
in particular, for the hydrodynamic conserved moments
φ = 1, ξi. The previous integrals can be expressed as

� φ(ξ)fe �=
ρ

π

∫
φ(ξ) exp

[
−(ξ∗ − u)2

]
dξ∗xdξ

∗
y , (2)

where dξ∗i = dξi
√

3/2. Let us apply a Gaussian quadrature in
order to numerically solve the previous integrals by means of N
discrete point along each direction

� φ(ξ)fe �=
N∑

i=1

N∑
j=1

(ζiζj φ fe) (ξ∗x = ξ∗i , ξ
∗
y = ξ∗j ) + EN , (3)

where ζi and ζi are proper weighting functions.
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(1) Three-point Gauss-Hermite Formula

Let us rewrite the previous expression as

� φ(ξ)fe �=
ρ

π

∫
ψ(ξ∗)exp

[
−(ξ∗)2

]
dξ∗xdξ

∗
y , (4)

where ψ(ξ∗) = φ(ξ) exp [−u · (u + 2ξ∗)]. Because of the
weighting factor, among all the Gaussian quadratures, it is
convenient to adopt the Gauss-Hermite formula. For example,
in the case of the three-point formula, the three abscissas and
the corresponding weighting functions of the quadrature are

ξ∗1 = −
√

3/2 , ξ∗2 = 0 , ξ∗3 = +
√

3/2 , (5)

and ζi = wi exp
[
(ξ∗i )2

]
respectively, where

w1 =
√
π /6 , w2 = 2

√
π /3 , w3 =

√
π /6 . (6)

Obviously three points are very few and large EN is expected.
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(2) Incompressible Limit

The low Mach number limit |u| � |ξ| allows one to expand
ψ = ψ0 +O(u3), where

ψ0(ξ∗) = φ(ξ) [1− u · (u + 2 ξ∗) + 2 (u · ξ∗)] . (7)

In the following, the truncated expansion ψ0 will be used
instead of ψ. In case of the hydrodynamic moments φ = 1, ξi,
the quadrature formula yields

� fe �= ρ

3∑
i=1

3∑
j=1

Wi j ψ0(ξ∗x = ξ∗i , ξ
∗
y = ξ∗j ) = ρ, (8)

� ξfe �= ρ
3∑

i=1

3∑
j=1

Wi j (ξ ψ0)(ξ∗x = ξ∗i , ξ
∗
y = ξ∗j ) = ρu. (9)

where Wi j = wiwj/π. In this case, the error EN is zero !!
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D2Q9 Lattice Definition

The previous unexpected result is valid for all φ up to
second order with regards to the particle velocities: higher
order moments show the limits of the poor quadrature
formula in terms of its symmetry properties and the
numerical calculation is not exact any more
Let us rearrange the velocities of the quadrature formula
{(ξ∗x = ξ∗i , ξ

∗
y = ξ∗j )|i, j = 1, 2, 3} in a finite set of Q = 9

particle velocities, called D2Q9 lattice, i.e. equivalently
{ξq|0 ≤ q ≤ (Q− 1)}, and let us collect the velocity
components in a second order tensor V , i.e.
V = [ξ0, ξ1, · · · ξ(Q−1)]T . The result is very simple, namely

V T =
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (10)
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(3) Local Equilibrium Definition

Let us introduce a new definition of local equilibrium for the
considered lattice as a vector of polynomials fe ∈ R9,
defined in such a way that the generic component q is

(fe)q = ρWq ψ0(ξx = Vq 1, ξy = Vq 2). (11)

Moreover let us introduce the following discrete operator
< ·, · >, which involves a sum on the lattice discrete
velocities, namely

< Ai j ··· q, Bm n ··· q >=
Q∑

q=0

Ai j ··· q Bm n ··· q = Ci j m n ···.

Hence the previous results can be expressed as
� fe �=< 1,fe >= ρ and � ξfe �=< V ,fe >= ρu
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(4) Method of Characteristics (MOC)

In the discretization of the lattice BGK equation, let us
apply the method of characteristics (MOC) → Let us
consider the streamlines defined by the condition
Vq i = dx̂i/dt̂, i.e. x̂∗i (t̂) = Vq i (t̂− t̂0) + x̂∗i 0, where x̂∗i 0 is a
proper constant
Along these streamlines, the following notation holds

∂fq

∂t̂
+Vq 1

∂fq

∂x̂1
+Vq 2

∂fq

∂x̂2
=

∑
α∈A

∂fq

∂α̂

dα̂

dt̂
=
Dfq

Dt̂
= λ(fe q−fq),

(12)
where A = {t̂, x̂1, x̂2}.
The theory of characteristics for this case is extremely
simplified, because V is made of constants, and in
particular |Vq i| = 0, 1 for ∀q, i
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Forward Euler Time Integration Formula

Let us introduce an homogeneous space discretization
with δx̂ spacing and let x̂∗i 0 be a discretization grid node
If the time discretization step is assumed δt̂ = δx̂, then
moving along the previously defined characteristic yields
x̂∗i (n) = nhVq i + x̂∗i 0 and, taking into account that
|Vq i| = 0, 1 for ∀q, i, then x̂∗i (n) is again a discretization grid
node at any discrete time
During an elementary time step, the particles jump to the
neighboring nodes according to their discrete velocity
Applying the forward Euler time integration formula to the
discrete BGK equation and taking δt̂ = 1 yields the
simplest LBM scheme

fq(t̂+1, x̂i) = fq(t̂, x̂i−Vq i)+λ (fe q−fq)(t̂, x̂i−Vq i). (13)
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Concentration measures

The mass concentration is defined as

xσ = ρσ/ρ, (14)

where ρσ is the single species density, while ρ =
∑

ς ρς is
the total mixture density.
The molar density as

nσ = ρσ/mσ, (15)

where mσ is the molecular weight, i.e. the weight of one
mole of molecules.
Consequently the molar concentration as

yσ = nσ/n, (16)

where n =
∑

ς nς is the total mixture molar density.
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Mixture velocities

The mass-averaged mixture velocity is defined as

u =
∑

ς

xςuς , (17)

where uς is the single species velocity. Since the mass
concentrations where used, the previous quantity is also
called barycentric (mixture) velocity.
Similarly, by means of the molar concentrations, it is
possible to define a mole-averaged mixture velocity,
namely

v =
∑

ς

yςuς . (18)

Since the molar concentrations where used, the previous
quantity is also called molar (mixture) velocity.
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Diffusion fluxes

It is possible to define a specific mass diffusion flux for
each species σ as

jσ = ρσwσ, (19)

where wσ = uσ − u is the mass diffusion velocity and
clearly

∑
ς jς = 0.

Similarly, it is possible to define a specific molar diffusion
flux for each species σ as

kσ = nσzσ, (20)

where zσ = uσ − v is the molar diffusion velocity and
clearly

∑
ς kς = 0.
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Maxwell-Stefan model

In case of more than two species, the diffusion fluxes can
be described macroscopically by the Maxwell-Stefan
model, namely

∇yσ =
∑

ς

Bσςyσyς(uς − uσ) =
1
n

∑
ς

Bσς(yσkς − yςkσ),

(21)
where Bσς = B(mσ,mς) is the binary Maxwell-Stefan
diffusion resistance coefficient. An important comment is
that the previous parameter only depends (according to the
results of the kinetic theory) on the molecular weights of
considered species and on the total pressure and (total)
temperature (thermodynamic variables identifying the
mixture equilibrium state).
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Full Boltzmann equations

The simultaneous Boltzmann equations for a mixture
without external force can be written as:

∂t̂fσ + ξ ·∇̂fσ = Qσ, (22)

where Qσ =
∑

ς Qσς and Qσς = Qςσ, ς 6= σ, is the cross
collision term for two different species σ and ς. Obviously,
for an N -component system, there will be N such
equations. In general, the collision term is

Qσς =
∫
dξςdΘdεB(Θ, ‖ξσς‖)[f ′σf ′ς − fσfς ], (23)

where f ′σ (f ′ς ) and fσ (fς ) denote the post-collision and
pre-collision state of the particle of species σ (ς),
respectively, ξσς = ξ − ξς .
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Momentum transfer among the species

Clearly the momentum of the single species is not
conserved, because the species are interacting each other
by transferring momentum, in such a way that the total
mixture momentum is conserved.
Hence it is worth the effort to compute the following
integral, which describes the momentum transfer
prescribed by full Boltzmann equations, namely∫

ξQσdξ = p
∑

ς

Bσςyσyς(uς − uσ), (24)

where now the Maxwell-Stefan diffusion resistance
coefficient Bσς can be interpreted as macroscopic
consequence of the interaction potential between species
σ and ς.
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Simplified AAP model

Let us consider a simplified version of the AAP model
[Andries, Aoki, and Perthame 2002], which is based on
only one global (i.e., taking into account all the species ς)
operator for each species σ, namely

∂t̂fσ + ξ ·∇̂fσ = λσ

[
fσ(∗) − fσ

]
, (25)

where

fσ(∗) =
ρσ

(2πϕσ/3)
exp

[
−3 (ξ − u∗

σ)2

2ϕσ

]
, (26)

and

u∗
σ = uσ +

∑
ς

m2

mσmς

Bσς

Bσσ
xς(uς − uσ). (27)
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Properties of simplified AAP model

The target velocity can be easily recasted as

u∗
σ = u +

∑
ς

(
m2

mσmς

Bσς

Bσσ
− 1

)
xς(uς − uσ). (28)

If mσ = m for ∀σ, then (Property 1)

u∗
σ = u +

∑
ς

(
m2

mm

Bmm

Bmm
− 1

)
xσxς(uς − uσ) = u. (29)

Clearly (Property 2)

∑
σ

xσu∗
σ = u+

∑
σ

∑
ς

(
m2

mσmς

Bσς

Bσσ
− 1

)
xσxς(uς − uσ) = u.

(30)
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Asymptotic analysis of AAP model

Let us consider a regular (Hilbert) expansion of the
previous model. Collecting the leading terms of the
momentum equation yields

λσρ
(0)
σ [u∗(1)

σ − u(1)
σ ] = ∇p(0)

σ , (31)

where p(k)
σ = ϕσρ

(k)
σ /3.

If λσ is selected as λσ = pBσσ/ρ, then the previous
expression becomes

1/p(0)∇p(0)
σ =

∑
ς

Bσς yσyς [u(1)
ς − u(1)

σ ], (32)

which clearly proves that the leading terms of the
macroscopic equations recovered by means of the AAP
model are consistent with Maxwell-Stefan model
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Indifferentiability Principle

If mσ = m for ∀σ, then u∗
σ = u (Property 1) and, according

to the selected tuning strategy, λσ = λ = pBmm/ρ.
Hence summing over all the species yields

∂tf + ξ ·∇f = λ
[
f(m) − f

]
, (33)

where f =
∑

σ fσ and f(m) is defined by

f(m) =
ρ

(2πϕ/3)
exp

[
−3 (ξ − u)2

2ϕ

]
. (34)

This clearly proves that the AAP model satisfies the
Indifferentiability Principle.
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Continuous equilibrium moments

Let us introduce the following function

fe(ρ, ϕ, u1, u2) =
ρ

(2πϕ/3)
exp

[
−3 (ξ − u)2

2ϕ

]
. (35)

Let us define � · �=
∫ +∞
−∞ · dξ1dξ2 and the generic

moment mpq =� fe ξ
p
1ξ

q
2 �.

All the equilibrium moments appearing in the Euler system
of equations are the following m00, m10, m01, m20, m02,
m11. Unfortunately this set is made of 6 elements, but the
dimension of the considered lattice (for symmetry reasons)
is 9. Hence other 3 (=9-6) target equilibrium moments are
missing. Arbitrarily they are selected as m21, m12 and m22.
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Simplified continuous equilibrium moments

Collecting the previous results yields

m̄c(ρ, ϕ, u1, u2) = ρ [1, u1, u2,

u2
1 + ϕ/3, u2

2 + ϕ/3, u1u2,

u1 u
2
2 + u1ϕ/3, u2

1 u2 + u2ϕ/3,
ϕ (u2

1u
2
2 + u2

1ϕ/3 + u2
2ϕ/3 + ϕ/9)]T .

The previous analytical results involve high order terms
(like u1 u

2
2) which are not strictly required, in order to

recover the macroscopic equations we are interested in.

mc(ρ, ϕ, u1, u2) = ρ [1, u1, u2,

u2
1 + ϕ/3, u2

2 + ϕ/3, u1u2,

u1/3, u2/3,
(u2

1 + u2
2)/3 + ϕ/9]T
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(3) Design of discrete local equilibrium

On the selected lattice, the discrete integrals mσ(∗),
corresponding to the previous continuous ones, can be
computed by means of simple linear combinations of the
discrete equilibrium distribution function fσ(∗) (still
unknown), namely mσ(∗) = Mfσ(∗) where M is a matrix
defined as

M = [1, V1, V2, V
2
1 , V

2
2 , V1V2, V1V

2
2 , V

2
1 V2, V

2
1 V

2
2 ]T . (36)

We design the discrete local equilibrium such as
mσ(∗) = mc(ρσ, ϕσ, u

∗
σ1, u

∗
σ2), or equivalently

fσ(∗) = M−1mc(ρσ, ϕσ, u
∗
σ1, u

∗
σ2). In particular the latter

provides the operative formula for defining the local
equilibrium and consequently the scheme.
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Asymptotic analysis of LBM scheme

Let us consider a regular (Hilbert) expansion of the
previous model. Collecting the leading terms of the
continuity equation yields

∂tρ
(0)
σ + ∇ · [ρ(0)

σ u∗(1)
σ ] = ωσ ∇2p(0)

σ , (37)

and applying the flux definition yields

∂tρ
(0)
σ + ∇ · [ρ(0)

σ u(1)
σ ] = (ωσ − τσ)∇2p(0)

σ = −1/2∇2p(0)
σ 6= 0.

(38)
The simple scheme does not preserve the mass continuity
for the single species. Clearly this is due to the low
accuracy of the forward Euler integration rule.
The problem can be fixed by means of a variable
transformation fσ → f̄σ which is equivalent to apply the
Crack-Nicholson integration rule.
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Passive scalar (no barycentric dynamics)
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Fick model (with barycentric dynamics)
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Maxwell-Stefan model (with barycentric dynamics)
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Results due to Fick and Maxwell-Stefan are similar

Actually it seems as there is no much qualitative difference
between truly Fick model and Maxwell-Stefan model.
Let us compare directly the two models, namely

(∇yσ)F =
yσ

Dσ
(v − uσ) =

∑
ς

yσyς

Dσ
(uς − uσ), (39)

(∇yσ)MS =
∑

ς

Bσςyσyς(uς − uσ). (40)

The difference is not in the structure of the expressions,
but only in the transport coefficients: Dσ depends only on
species σ, while Bσς depends on the interacting couple.
Passive scalar approach reduces a lot the potentiality of
Fick model, by simplifying the connection among species.
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Conclusions: why mesoscopic methods

Mesoscopic numerical methods inherit the (conceptual)
simplicity of kinetic formulation:

1 they involve simple transport equations because the
microscopic velocities are constrained on a lattice;

2 in the pseudo-kinetic equations of these schemes, only
linear differential operators appear;

3 the non-linearities are concentrated in the definition of the
local equilibrium.

By improving the accuracy of the numerical discretization,
it is possible to tune locally the scheme in order to realize
hybrid (kinetic –fluidynamic) solvers.
Numerical error preserves some flavors of the high-order
kinetic dynamics → this makes the error somehow more
predictable because it is physically based.
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