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Mesoscopic Numerical Methods

Recently new computational methods, generally referred to
as mesoscopic methods (or equivalently particle-based
methods), have been proposed in the scientific community
in order to fill the gap between the microscopic and
macroscopic descriptions of the fluid dynamics in
multi-scale and multi-physics problems
Notable examples include:

the Lattice Gas Cellular Automata (LGCA)
the Lattice Boltzmann Method (LBM)
the Discrete Velocity Models (DVM)
the Gas Kinetic Scheme (GKS)
the Smoothed Particle Hydrodynamics (SPH)
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Main Categories

Mesoscopic methods may be distinguished in two main
categories:

(Primitive) Numerical methods using expressions for the
numerical fluxes, derived by simplified solutions of kinetic
equations (equilibrium and/or small-deviation solutions), for
example GKS → they are not truly kinetic schemes,
because the kinetic expressions are used for
physically-based macroscopic averaging
(Kinetic) Numerical methods formulated directly in terms of
kinetic variables, for example LBM → they are truly kinetic
schemes, if and only if the adopted discretization allows to
catch the kinetic phenomena, otherwise their kinetic
content is questionable
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Lattice Boltzmann Method (LBM) in a Nutshell

number of papers on International Journals: 2,000 in the
period 1988-2007 (comparison: 10,000 papers on "‘ITER
Fusion Project"’ and 28,000 papers on "‘Energy Saving"’)
number of books: 14 in the period 2000-2007
main international conferences:

International Conference on Mesoscopic Methods in
Engineering and Science, ICMMES
Discrete Simulation of Fluid Dynamics in Complex
Systems, DSFD

commercial codes: PowerFLOW (EXA, spin-off MIT)
patents: mainly in bio-fluidics for medical applications
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Playing Billiards

Most of LBM models points to kinetic equations in order to
solve fluidynamic equations in continuous regime
(Navier-Stokes system) ? Does it worth the effort ?
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In this section...

The Boltzmann equation is the basic equation in kinetic
theory of gases and describes the time evolution of the
distribution function of gas molecules, which is the function
of time, space coordinate, and molecular velocity
Bhatnagar-Gross-Krook (BGK) model equation inherits the
main features of the full Boltzmann equation and the
fluid-dynamic description solution of BGK solution for small
Knudsen numbers is obtained in a much simpler way. It is
quite natural and advantageous to employ the BGK
equation as the basis of kinetic method for incompressible
Navier-Stokes
In particular we will employ the simplified BGK equation,
i.e. the isothermal distribution, and the collision frequency
independent of the local state
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Bhatnagar-Gross-Krook (BGK) Model Equation

BGK for single-particle distribution function f(x,v, t):
∂f

∂t̂
+ v · ∂f

∂x̂
= λ(ρ)(f∗e − f), (1)

where x̂i, t̂, and vi are the dimensionless space coordinates,
time, and molecular velocity components respectively; λ(ρ) is
the relaxation frequency (strictly positive function) and
f∗e (ρ,u, e,v, t) is the equilibrium distribution function defined as

f∗e =
ρ/m

(2π e)d/2
exp

[
−(v − u)2

2 e

]
, (2)

where the moments ρ, u and e can be expressed by means of
the operator � · �=

∫
·Πd

i=1dvi as

ρ = m� f �, ρu = m� v f �, ρe = m� 1
2
(v−u)2 f � .
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Simplified BGK Model Equation

In the incompressible continuum limit, the Mach number as well
as the Knudsen number is vanishingly small and the deviations
of temperature and density are vanishingly small. Then, we can
employ the simplified BGK equation, i.e.

the isothermal equilibrium distribution f∗e → fe, namely

fe =
ρ

2π/3
exp

[
−3(vi − ui)2

2

]
, (3)

where m = 1 (since it is a constant), d = 2 (for two
dimensional case) and e = 1/3 are assumed;
and the collision frequency independent of the local state,
namely λ(ρ) → λ.
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Boltzmann Scaling

Let us define c the particle speed, i.e. the average modulus
of the particle velocity (of the order of the sound speed)
In the previous simplified BGK equation, the so-called
Boltzmann scaling was used, i.e. the unit of space
coordinate and that of time variable were the mean free
path lc(= c Tc) and the mean collision time Tc, respectively
→ in this way |v| = O(1) and λ = O(1)
Obviously, they are not appropriate as the characteristic
scales for flow field in the continuum limit. Let the
characteristic length scale of the flow field be L and let the
characteristic flow speed be U . There are two factors in the
incompressible continuum limit:

the continuum limit means lc � L;
and the incompressible limit means U � c.
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Diffusive Scaling

In the following asymptotic analysis, we introduce the other
dimensionless variables, defined by

xi = (lc/L) x̂i, t = (UTc/L) t̂. (4)

Defining the small parameter ε as ε = lc/L, which corresponds
to the Knudsen number, we have xi = ε x̂i. Furthermore,
assuming

U/c = ε, (5)

which is the key of derivation of the incompressible limit (Sone),
we have t = ε2 t̂. Then, BGK equation is rewritten as

ε2
∂f

∂t
+ ε vi

∂f

∂xi
= λ (fe − f) . (6)

In this new scaling, we can assume ∂αf = ∂f/∂α = O(f) and
∂αM = ∂M/∂α = O(M), where α = t, xi and M = ρ, ui.
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Regular Expansion

Clearly the solution of the BGK equation depends on ε. The
solution for small ε is investigated in the form of the asymptotic
regular expansion

f = f (0) + εf (1) + ε2f (2) + · · · . (7)

ρ and ui are also expanded:

ρ = 1 + ερ(1) + ε2ρ(2) + · · · , (8)

ui = εu
(1)
i + ε2u

(2)
i + · · · , (9)

since the Mach number is O(ε), the perturbations of ui starts
from the order of ε. Consequently

qi = ρui = εq
(1)
i + ε2q

(2)
i + · · · = εu

(1)
i + ε2[u(2)

i + ρ(1)u
(1)
i ] + · · · .

Regular expansion means ∂αf
(k) = O(1) and ∂αM

(k) = O(1).
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Expansion of Local Equilibrium

Introducing the previous expansions in fe and applying Taylor
expansion yields:

fe = f (0)
e + εf (1)

e + ε2f (2)
e + · · · , (10)

where f (k)
e (k = 1, 2, · · · ) are known polynomial functions of the

hydrodynamic moments. Substituting the above expansions
into BGK equation and equating the terms of the same order of
power of ε, we have

0 = λ(f (1)
e − f (1)), (11)

∂f (k−2)

∂t
+ vi

∂f (k−1)

∂xi
= λ(f (k)

e − f (k)) (k ≥ 2). (12)

The above equations give the functional forms of f (k) as the
functions of lower moments.

P. Asinari Mesoscopic Numerical Methods



Considered Physical Model
Microscopic Velocity Discretization

Space and Time Discretization
Applications and Conclusions

Kinetic Model Equations
Proper Scaling
Regular Expansion
PDE Systems for Coefficients

Orthogonality Conditions

Since ρ =� f �=� fe � and ρu =� vf �=� vfe �, then
� fe − f �=� vi(fe − f) �= 0. Consequently the left hand
sides of the previous equations must satisfy the orthogonality
conditions

� φ(
∂f (k−2)

∂t
+ vi

∂f (k−1)

∂xi
) �= 0 (k ≥ 2), (13)

where φ = 1, vj .
From the above orthogonality conditions, we have the PDE
systems for ρ(k) and u(k)

i

Once these PDE systems are solved under appropriate
boundary condition and initial data, the asymptotic solution
for the simplified BGK equation is determined
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Incompressible Navier-Stokes System for u(1) and p(2)

The equations for the leading coefficients u(1) and p(2) are
given by the incompressible Navier-Stokes (ICNS) system of
equations, namely

∇ · u(1) = 0, (14)

∂tu
(1) +∇u(1)u(1) +∇p(2) = ν∇2u(1), (15)

where the kinematic viscosity is ν = τ/3 and τ = 1/λ, i.e. the
relaxation time. This means that, in addition to what we want to
solve, some additional terms exist, which are due to
higher-order kinetic effects. It is possible to combine the
previous equations in the Poisson equation, namely

∇ · [∇u(1)u(1)] +∇2p(2) = 0. (16)
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Homogeneous Oseen system for u(2) and p(3)

The next PDE system for coefficients u(2) and p(3) is given by
the homogeneous (linear) Oseen system, namely

∇ · u(2) = 0, (17)

∂tu
(2) +∇u(2)u(1) +∇u(1)u(2) +∇p(3) = ν∇2u(2). (18)

Clearly, if proper initial data and boundary conditions are
considered, the previous system of equations admits the null
solution and its dynamics is irrelevant for the considered
simplified model, namely u(2) = 0 and p(3) = 0 → This result is
general in the sense that an odd/even decomposition exists for
the hydrodynamic moments, i.e. only odd terms appear in the
expansion of u and even terms in that of p (Junk).
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Burnett-like System for q(3) and p(4)

Finally the Burnett-like system is recovered

∂tρ
(2) +∇ · q(3) = 0, (19)

∂tq
(3) +∇ · [u(1) ⊗ q(3)] +∇ · [q(3) ⊗ u(1)] +∇p(4) =

ν∇2q(3) + ν∇∇ · q(3) + i3, (20)

where i3 is a forcing term, defined as

i3 = τ∇
[
ν∇2u(1) −∇u(1)u(1) −∇p(2)

]
u(1)

+τ∇u(1)
[
ν∇2u(1) −∇u(1)u(1) −∇p(2)

]
+τ∇ · ∇ ·

[
u(1) ⊗ u(1) ⊗ u(1)

]
+ τ2∇2∇p(2)

−τ2/3∇2
[
∇u(1)u(1)

]
+ τ3/9∇2∇2u(1). (21)
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Kinetic-like Effects

Since in general the forcing term i3 is not null, then the
kinetic-like effects are of the order of Kn2, namely

u− εu(1)

ε
∼ O(ε2),

p− [1 + ε2p(2)]
ε2

∼ O(ε2). (22)

The previous effects must be defined kinetic-like and not
truly kinetic, because the original simplified kinetic model
cannot be considered completely reliable up to any order,
because of the original simplifications (isothermal flow and
relaxation frequency independent of the local conditions)
For this reason, the higher-order terms should be regarded
as an error due to the adopted simplified model
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In this section...

As far as the regular expansion of the solution holds, i.e.
the system is close to the local equilibrium, the previous
section showed that all the macroscopic equations up to
any order involve only the statistical moments of the
equilibrium distribution function
First of all, the accuracy in computing these moments by
means of a finite set of particle velocities will determine the
success or not of the numerical scheme
Secondly the number of discrete particle velocities should
be as small as possible in order to reduce the
computational demand
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Gaussian Quadratures

We need to accurately compute integrals such as � φ(v)fe �:
in particular, for the hydrodynamic conserved moments
φ = 1, vi. The previous integrals can be expressed as

� φ(v)fe �=
ρ

π

∫
φ(v) exp

[
−(v∗ − u)2

]
dv∗xdv

∗
y , (23)

where dv∗i = dvi

√
3/2. Let us apply a Gaussian quadrature in

order to numerically solve the previous integrals by means of N
discrete point along each direction

� φ(v)fe �=
N∑

i=1

N∑
j=1

(ζiζj φ fe) (v∗x = v∗i , v
∗
y = v∗j ) + EN , (24)

where ζi and ζi are proper weighting functions.
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Three-point Gauss-Hermite Formula

Let us rewrite the previous expression as

� φ(v)fe �=
ρ

π

∫
ψ(v∗)exp

[
−(v∗)2

]
dv∗xdv

∗
y , (25)

where ψ(v∗) = φ(v) exp [−u · (u + 2v∗)]. Because of the
weighting factor, among all the Gaussian quadratures, it is
convenient to adopt the Gauss-Hermite formula. For example,
in the case of the three-point formula, the three abscissas and
the corresponding weighting functions of the quadrature are

v∗1 = −
√

3/2 , v∗2 = 0 , v∗3 = +
√

3/2 , (26)

and ζi = wi exp
[
(v∗i )

2
]

respectively, where

w1 =
√
π /6 , w2 = 2

√
π /3 , w3 =

√
π /6 . (27)

Obviously three points are very few and large EN is expected.
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Incompressible Limit

The low Mach number limit |u| � |v| allows one to expand
ψ = ψ0 +O(u3), where

ψ0(v∗) = φ(v) [1− u · (u + 2 v∗) + 2 (u · v∗)] . (28)

In the following, the truncated expansion ψ0 will be used
instead of ψ. In case of the hydrodynamic moments φ = 1, vi,
the quadrature formula yields

� fe �= ρ

3∑
i=1

3∑
j=1

Wi j ψ0(v∗x = v∗i , v
∗
y = v∗j ) = ρ, (29)

� vfe �= ρ
3∑

i=1

3∑
j=1

Wi j (v ψ0)(v∗x = v∗i , v
∗
y = v∗j ) = ρu. (30)

where Wi j = wiwj/π. In this case, the error EN is zero !!
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D2Q9 Lattice Definition

The previous unexpected result is valid for all φ up to
second order with regards to the particle velocities: higher
order moments show the limits of the poor quadrature
formula in terms of its symmetry properties and the
numerical calculation is not exact any more
Let us rearrange the velocities of the quadrature formula
{(v∗x = v∗i , v

∗
y = v∗j )|i, j = 1, 2, 3} in a finite set of Q = 9

particle velocities, called D2Q9 lattice, i.e. equivalently
{vq|0 ≤ q ≤ (Q− 1)}, and let us collect the velocity
components in a second order tensor V , i.e.
V = [v0,v1, · · ·v(Q−1)]T . The result is very simple, namely

V T =
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (31)
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Local Equilibrium Definition

Let us introduce a new definition of local equilibrium for the
considered lattice as a vector of polynomials fe ∈ R9,
defined in such a way that the generic component q is

(fe)q = ρWq ψ0(vx = Vq 1, vy = Vq 2). (32)

Moreover let us introduce the following discrete operator
< ·, · >, which involves a sum on the lattice discrete
velocities, namely

< Ai j ··· q, Bm n ··· q >=
Q∑

q=0

Ai j ··· q Bm n ··· q = Ci j m n ···.

Hence the previous results can be expressed as
� fe �=< 1,fe >= ρ and � vfe �=< V ,fe >= ρu
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Simplified BGK Equation with Discrete Velocities

Consequently it is possible to imagine a fictitious world,
where the particles can assume only the few discrete
velocities, prescribed by the considered lattice → In this
world, the proper statistical tool to describe the system is
given by the vector f ∈ R9, collecting the discrete
distribution functions referring to the lattice velocities
A simplified BGK equation with discrete velocities can be
defined as

∂f

∂t̂
+ V · ∇̂f = λ(fe − f), (33)

where fe(ρ,u,V , t) is a known vector of polynomials and
the macroscopic quantities are defined as ρ =< 1,fe >
and ρu =< V ,fe >.
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In this section...

Method of Characteristics in order to discretize space and
time in the most convenient way and to recover the
simplest formulation of the Lattice Boltzmann Method
(LBM) for ICNS
Asymptotic analysis of the LBM scheme by taking into
account the discrete effects due to poor time integration
formula, lack of symmetry properties, and truncated
definition of the local equilibrium
Comparison between the governing equations of the LBM
scheme and those due to the original physical model
Boundary conditions
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Method of Characteristics (MOC)

In the discretization of the lattice BGK equation, let us
apply the method of characteristics (MOC) → Let us
consider the streamlines defined by the condition
Vq i = dx̂i/dt̂, i.e. x̂∗i (t̂) = Vq i (t̂− t̂0) + x̂∗i 0, where x̂∗i 0 is a
proper constant
Along these streamlines, the following notation holds

∂fq

∂t̂
+Vq 1

∂fq

∂x̂1
+Vq 2

∂fq

∂x̂2
=

∑
α∈A

∂fq

∂α̂

dα̂

dt̂
=
Dfq

Dt̂
= λ(fe q−fq),

(34)
where A = {t̂, x̂1, x̂2}.
The theory of characteristics for this case is extremely
simplified, because V is made of constants, and in
particular |Vq i| = 0, 1 for ∀q, i
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Forward Euler Time Integration Formula

Let us introduce an homogeneous space discretization
with δx̂ spacing and let x̂∗i 0 be a discretization grid node
If the time discretization step is assumed δt̂ = δx̂, then
moving along the previously defined characteristic yields
x̂∗i (n) = nhVq i + x̂∗i 0 and, taking into account that
|Vq i| = 0, 1 for ∀q, i, then x̂∗i (n) is again a discretization grid
node at any discrete time
During an elementary time step, the particles jump to the
neighboring nodes according to their discrete velocity
Applying the forward Euler time integration formula to the
discrete BGK equation and taking δt̂ = 1 yields the
simplest LBM scheme

fq(t̂+1, x̂i) = fq(t̂, x̂i−Vq i)+λ (fe q−fq)(t̂, x̂i−Vq i). (35)
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Differences with the Original Model

The previous numerical scheme is discrete in two aspects
first all, only few discrete particle velocities are considered
(truncated symmetry of the local equilibrium definition),
secondly, space and time are discretized according to the
simple forward Euler time integration rule.

Both these discretizations introduce errors, which affect
the reliability of the results in comparison with the original
simplified kinetic model, even though, the latter itself
cannot be considered completely reliable up to any order,
because of the original simplifications (isothermal flow and
relaxation frequency independent of the local conditions)
These simplifications are reasonable as far as the ICNS
system is concerned, however terms beyond fluid dynamic
description are not reliable
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Convenient Tensorial Notation

We need to generalize our notation: up to now f(t̂, x̂) was
the discrete distribution function in the point x̂ at time t̂
From now on, the vector f will be considered as a function
of the location tensor, i.e. f(t̂, L̂) where L̂ ∈ R9×2 groups
the coordinates of the points considered in the
corresponding components of the discrete distribution
function
In this way, f may collect components of the discrete
distribution functions belonging to different points

By means of the new notation, the LBM scheme can be
expressed in tensorial form, namely

f(t̂+ 1, X̂) = f(t̂, X̂ − V̂ ) + λ (fe − f)(t̂, X̂ − V̂ ), (36)

where X̂ = 1⊗ x̂T and 1 ∈ R9.
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Taylor Expansion

The ratio h between the grid spacing and the characteristic
length of the flow can be expressed as h = ε δx̂ = ε, i.e.
the dimensionless grid spacing is equal to the Knudsen
number → This proves that the Knudsen number for the
present scheme does not have a pure physical meaning
The nodal values in the numerical scheme can be
expressed by means of a Taylor expansion, namely

f(t+ ε2,X) =
∞∑

k=0

ε2k

k!
(∂/∂t)k f(t,X), (37)

f(t,X − εV ) =
∞∑

k=0

(−ε)k

k!
(∂S)k f(t,X), (38)

where ∂S = V · ∇ (while ∂s = v · ∇ in the continuous case)
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Discrete Effects in the Coefficients of f (k)

Since the grid spacing is expressed in terms of the Knudsen
number, it is possible for the LBM scheme to repeat the
asymptotic analysis taking into account the discrete effects →
First of all, the expansion coefficients f (k) change, namely

f (1) = f (1)
e , f (2) = f (2)

e − τ∂Sf (1)
e , (39)

f (3) = f (3)
e − τ

[
∂tf

(1)
e + ∂Sf (2)

e − ω1∂
2
Sf (1)

e

]
, (40)

where ω1 = τ − 1/2, instead of

f (1) = f (1)
e , f (2) = f (2)

e − τ∂sf
(1)
e , (41)

f (3) = f (3)
e − τ

[
∂tf

(1)
e + ∂sf

(2)
e − τ∂2

sf
(1)
e

]
. (42)
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Discrete Effects in the High-Order Moments

The few discrete velocities and consequently the truncated
local equilibrium show their limits in the high-order moments,
because of

the lack of some terms, which are tensors of the
macroscopic velocity with order higher than the second;

< V , ∂2
Sf (3)

e > = 1/3∇2q(3) + 2/3∇∇ · q(3),

� v ∂2
sf

(3)
e � = 1/3∇2q(3) + 2/3∇∇ · q(3)

+∇ · ∇ · [u(1) ⊗ u(1) ⊗ u(1)],

the inadequate symmetry properties producing terms,
which cannot be expressed in tensorial form.

< V , ∂3
Sf (2)

e > = ∇ · ∇∇ · u(1) ⊗ u(1) −D(D∇)3u(1) ⊗ u(1),

� v ∂3
sf

(2)
e � = ∇ · ∇∇ · u(1) ⊗ u(1).
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Key Result of LBM Asymptotic Analysis

The leading error term consists of four factors which degrade
the real Burnett to Burnett-like phenomena, namely

1 the isothermal flow condition imposed at kinetic level
(continuous too);

2 the relaxation frequency assumed independent of the local
conditions (continuous too);

3 the dissatisfaction of the rotation symmetry for higher order
moments due to the velocity discretization;

4 the assumed truncated definition of the local equilibrium.
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Second Order Boundary Conditions
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In this section...

Direct numerical calculation of effective tortuosity in the
flow of reactive mixtures in Solid Oxide Fuel Cells (SOFCs)
As long as the local optimization of the materials is not an
issue, the macroscopic description does not need to get
involved in so many details
However, the optimization of the microscopic flow paths
produces an increase in macroscopic performance: for
example, the numerical simulations show that the
reconstructed portion of the porous medium has a high
reactive core surrounded by less reactive portions
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Solid Oxide Fuel Cells
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Reconstructed Domain by Granulometry

P. Asinari Mesoscopic Numerical Methods



Considered Physical Model
Microscopic Velocity Discretization

Space and Time Discretization
Applications and Conclusions

Two-point Statistics
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Fluid Flow at the Bottom of the Computation Domain
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Spatial Dependence of Tortuosity
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Finally, why Mesoscopic Methods ?

Even in the rougher solvers, the numerical error preserves
some flavors of the high-order kinetic dynamics → this
makes the error more predictable because its physically
based
By improving the accuracy of the numerical discretization,
the truly kinetic effects appear, even though the considered
equation is the same → it is possible to tune locally the
discretization in order to realize hybrid (kinetic-fluidynamic)
solvers
By using highly accurate numerical discretization, these
schemes become economical kinetic solvers (minimum
number of microscopic velocities)
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