Entropic multiple-relaxation-time lattice Boltzmann models

Pietro Asinari, PhD

Dipartimento di Energetica, Politecnico di Torino, Torino, Italy, e-mail: pietro.asinari@polito.it, home page: http://staff.polito.it/pietro.asinari

joint work with Ilya V. Karlin, PhD

Institute of Energy Technology, ETH Zurich, Switzerland School of Engineering Sciences, University of Southampton, UK

《曰》 《圖》 《글》 《글》 글날

1/32

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 Dec. 2008

Outline of this talk

Preliminaries

- Motivation and notation
- The Maxwellian state
- The key results
 - The generalized Maxwellian state
 - The constrained Maxwellian state

Derivation of kinetic models

- Entropic model with blended pressure tensor (EMRT)
- Entropic model with blended population (EQE)

Numerical validation

- Taylor–Green vortex flow
- Lid driven cavity

B N A B N B

2/32

Outline Compass

Preliminaries

- Motivation and notation
- The Maxwellian state
- 2 The key results
 - The generalized Maxwellian state
 - The constrained Maxwellian state

3 Derivation of kinetic models

- Entropic model with blended pressure tensor (EMRT)
- Entropic model with blended population (EQE)

Numerical validation

- Taylor–Green vortex flow
- Lid driven cavity

4 E > 4 E > E

3/32

Motivation

- The goal is to improve the stability of the Lattice Boltzmann (LB) schemes with regards to rough meshes, but preserving the required level of accuracy.
- In recent years, two approaches have been developed for the previous goal:
 - the multiple-relaxation-time (MRT) schemes with tunable bulk viscosity, which is a free parameter to dump the compressibility error, when searching for the incompressible limit;
 - the entropic (ELB) schemes, which admit analytical equilibria ensuring the existence of the <u>H</u>-theorem by construction.
- There are some controversies (!!) about the previous schemes: in order to settle them, the idea is to develop a new class of MRT schemes with both tunable bulk viscosity and *H*-theorem.
- The key result, which makes this possible, is a brand new analytical generalized Maxwellian for discrete lattices.

Notation

- Let us consider the D2Q9 lattice: $v_0 = (0, 0)$, $v_\alpha = (\pm c, 0)$ and $(0, \pm c)$ for $\alpha = 1-4$, and $v_\alpha = (\pm c, \pm c)$ for $\alpha = 5-8$, where c is the lattice spacing.
- The D2Q9 lattice derives from the three-point Gauss-Hermite formula, with the following weights w(-1) = 1/6, w(0) = 2/3 and w(+1) = 1/6.
- Let us arrange in the list v_x (v_y) all the components of the lattice velocities along the x-axis (y-axis) and in the list f all the populations f_α. Algebraic operations for the lists are always assumed component-wise.
- The sum of all the elements of the list p is denoted by $\langle p \rangle = \sum_{i=0}^{Q-1} p_i$. The dimensionless density ρ , the flow velocity u and the pressure tensor Π are defined by $\rho = \langle f \rangle$, $\rho u_i = \langle v_i f \rangle$ and $\rho \Pi_{ij} = \langle v_i v_j f \rangle$ respectively.

Local equilibrium: Maxwellian state

• The convex entropy function (*H*-function) for this lattice is [1]

Preliminaries

$$H(f) = \left\langle f \ln \left(f/W \right) \right\rangle, \tag{1}$$

The Maxwellian state

where $W = w(v_x) w(v_y)$ and the equilibrium population list is

Definition of Maxwellian state (f_M)

 $f_M = \min_{f \in \mathsf{P}_M} H(f)$, where P_M is the set of functions such that $\mathsf{P}_M = \{f > 0 : \langle f \rangle = \rho, \ \langle \boldsymbol{v}f \rangle = \rho \boldsymbol{u} \}$

• Minimization of the *H*-function under the constraints of mass and momentum conservation yields [2]

$$f_M = \rho \prod_{i=x,y} w(v_i) \left(2 - \varphi(u_i/c)\right) \left(\frac{2(u_i/c) + \varphi(u_i/c)}{1 - (u_i/c)}\right)^{v_i/c}, \quad (2)$$

where $\varphi(z) = \sqrt{3z^2 + 1}$. In order to ensure the positivity of f_M , the low Mach number limit must be considered, i.e. $|u_i| < c$.

The key results

Outline Compass

- Preliminaries
 - Motivation and notation
 - The Maxwellian state

The key results

- The generalized Maxwellian state
- The constrained Maxwellian state

Derivation of kinetic models

- Entropic model with blended pressure tensor (EMRT)
- Entropic model with blended population (EQE)

Numerical validation

- Taylor–Green vortex flow
- Lid driven cavity

4 E > 4 E > E

Local quasi-equilibrium: generalized Maxwellian state

The generalized Maxwellian state

The key results

 Let us introduce a novel quasi–equilibrium [3, 4, 5] population list, by requiring, in addition, that the diagonal components of the pressure tensor Π have some prescribed values, namely

Definition of generalized Maxwellian state (f_G)

$$\begin{split} f_G &= \min_{f \in \mathsf{P}_G} H(f) \text{, where } \mathsf{P}_G \subset \mathsf{P}_M \text{ is the set of functions such that} \\ \mathsf{P}_G &= \big\{ f > 0 : \langle f \rangle = \rho, \; \langle \boldsymbol{v} f \rangle = \rho \boldsymbol{u}, \; \langle v_i^2 f \rangle = \rho \Pi_{ii} \big\}. \end{split}$$

 In other words, minimization of the *H*-function under the constraints of mass and momentum conservation and prescribed diagonal components of the pressure tensor yields

$$f_G = \rho \prod_{i=x,y} w(v_i) \frac{3(c^2 - \Pi_{ii})}{2c^2} \left(\sqrt{\frac{\Pi_{ii} + c \, u_i}{\Pi_{ii} - c \, u_i}} \right)^{v_i/c} \left(\frac{2\sqrt{\Pi_{ii}^2 - c^2 \, u_i^2}}{c^2 - \Pi_{ii}} \right)^{v_i^*/c^2}$$

물 제 제 물 제 드림님

212

(3)

The plane of parameters

• In order to ensure the positivity of f_G , we use $\Pi = (\Pi_{xx}, \Pi_{yy}) \in \Omega$ for a generic point on the two-dimensional plane of parameters $\Omega = \{\Pi : c | u_x | < \Pi_{xx} < c^2, \ c | u_y | < \Pi_{yy} < c^2 \}.$

Pietro Asinari, PhD (Politecnico di Torino)

Entropic MRT Lattice Boltzmann Models

 ▲
 ■
 ▲
 ■
 ▲
 ■
 >
 ■
 ■
 >
 ●

 0
 0

 Cemagref (Fr), 5 Dec. 2008
 9 / 32

The H-function in the generalized Maxwell states

The key results

• It is possible to evaluate explicitly the *H*-function in the generalized Maxwell states (3), $H_G = H(f_G)$, the result is written

$$H_G = \rho \ln \rho + \rho \sum_{i=x,y} \sum_{k=-,0,+} w_k a_k(\Pi_{ii}) \ln (a_k(\Pi_{ii})), \quad (4)$$

The constrained Maxwellian state

where $w_{\pm} = w(\pm 1)$, $w_0 = w(0)$, $a_{\pm}(\Pi_{ii}) = 3 (\Pi_{ii} \pm c u_i)/c^2$ and $a_0(\Pi_{ii}) = 3 (c^2 - \Pi_{ii})/(2 c^2)$.

• Generalizing the result [6], let us derive a constrained equilibrium f_C which brings the *H*-function to a minimum among all the population lists with a prescribed trace $T(\mathbf{\Pi}) = \Pi_{xx} + \Pi_{yy}$, namely

Definition of constrained Maxwellian state (f_C)

Given $\{f_G\}$ the set of generalized Maxwellian states with trace T, then $f_C \in \{f_G\}$ is such that $[(\partial H_G/\partial \Pi_{xx}) - (\partial H_G/\partial \Pi_{yy})]_{(\Pi_{xx}+\Pi_{yy}=T)} = 0.$

The constrained Maxwellian state

The key results

• The solution to the latter problem exists and yields a cubic equation in terms of the normal stress difference $N = \prod_{xx}^{C} - \prod_{yy}^{C}$.

$$N^{3} + a N^{2} + b N + d = 0,$$

$$a = -\frac{1}{2} (u_{x}^{2} - u_{y}^{2}), \ b = (2 c^{2} - T) (T - u^{2}),$$

$$d = -\frac{1}{2} (u_{x}^{2} - u_{y}^{2}) (2 c^{2} - T)^{2}.$$
(5)

The constrained Maxwellian state

• Let us define $p = -a^2/3 + b$, $q = 2a^3/27 - ab/3 + d$ and $\Delta = (q/2)^2 + (p/3)^3$. For $\Delta \ge 0$, the Cardano formula implies

$$\Pi_{xx}^{C} = \frac{T}{2} + \frac{1}{2} \left(r - \frac{p}{3r} - \frac{a}{3} \right), \ r = \sqrt[3]{-\frac{q}{2} + \sqrt{\Delta}}, \tag{6}$$

while $\Pi_{yy}^C = T - \Pi_{xx}^C$. Thus, substituting (6) into (3), we find

$$f_C = f_G(\rho, \boldsymbol{u}, \Pi_{xx}^C(\boldsymbol{u}, T), \Pi_{yy}^C(\boldsymbol{u}, T)).$$
(7)

11/32

Outline Compass

- Preliminaries
 - Motivation and notation
 - The Maxwellian state
- 2 The key results
 - The generalized Maxwellian state
 - The constrained Maxwellian state

Derivation of kinetic models

- Entropic model with blended pressure tensor (EMRT)
- Entropic model with blended population (EQE)

Numerical validation

- Taylor–Green vortex flow
- Lid driven cavity

4 E > 4 E > E

-

Entropic model with blended pressure tensor (EMRT)

• By means of the usual equilibrium M and the newly found constrained equilibrium C, let us define the generalized equilibrium $E(\beta) = (\Pi^E_{xx}(\beta), \Pi^E_{yy}(\beta))$ as a linear interpolation between the points M and C on the Ω plane

$$E(\beta) = \beta M + (1 - \beta) C,$$
(8)

Entropic model with blended pressure tensor (EMRT)

where β is a free parameter (see next for its admissible range).

Thus, the generalized equilibrium list is defined as

Derivation of kinetic models

$$f_{GE}(\beta) = f_G(\rho, \boldsymbol{u}, \Pi_{xx}^E(\beta), \Pi_{yy}^E(\beta)).$$
(9)

• Considering kinetic equation of the form, $\partial_t f + v \cdot \partial_x f = J(f)$, let us define the following collision operator

$$J(f) = \lambda \left[f_{GE} \left(\beta \right) - f \right], \tag{10}$$

where $\lambda > 0$ is a parameter, ruling the relaxation toward the generalized equilibrium. In the continuum limit, λ is related to the kinematic viscosity.

Entropic model with blended pressure tensor (EMRT)

Proof of the *H*-theorem for EMRT model

H-theorem for EMRT model

The production σ due to the relaxation term (10), where $\sigma = \langle \ln(f/W) J(f) \rangle$, is non-positive and it annihilates at the equilibrium, i.e. $\sigma(f_M) = 0$, if $0 < \beta \leq \beta^*$ where $\beta^*(f)$.

Proof [part 1 of 2]

Because of the convexity of the *H*-function and because $f_G(\Pi_{xx}, \Pi_{yy})$ minimizes *H* among all the lists with the moments (Π_{xx}, Π_{yy})

$$\frac{\sigma}{\lambda} \le H_{GE}\left(\beta\right) - H(f) \le H_{GE}\left(\beta\right) - H_G(\Pi),\tag{11}$$

where $H_{GE}(\beta) = H_G(\Pi_{xx}^E(\beta), \Pi_{yy}^E(\beta))$. Recalling that $\Pi(f_{GE}(0))$ and $\Pi(f_G(\Pi_{xx}, \Pi_{yy}))$ have the same trace, inequality (11) can be rewritten

$$\frac{\sigma}{\lambda} \le H_{GE}\left(\beta\right) - H_{GE}\left(0\right) + H_{GE}\left(0\right) - H_{G}(\Pi) \le H_{GE}\left(\beta\right) - H_{GE}\left(0\right).$$

Proof of the *H*-theorem for EMRT model

Proof [part 2 of 2]

- What remains to estimate is the range of β such that $H_{GE}(\beta) \leq H_{GE}(0)$. Clearly, since M = E(1) is the absolute minimum of H_G , and because $H_{GE}(\beta)$ is a convex function, σ is non-positive if $0 < \beta \leq 1$.
- In order to extend the proof to β > 1, let us consider the entropy estimate [1]:

$$H_{GE}(\beta^*) = H_{GE}(0).$$
 (12)

Thanks to the convexity of $H_{GE}(\beta)$, the non-trivial solution $\beta^* > 1$ to this equation is unique when it exists. In the opposite case, we need to take care of the boundary of the positivity domain Ω . In both cases, for $0 < \beta \leq \beta^*$, it holds $H_{GE}(\beta) \leq H_{GE}(0)$ and thus the entropy production is non-positive, $\sigma \leq 0$.

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 D

Graphical interpretation of the H-theorem

Pietro Asinari, PhD (Politecnico di Torino)

Entropic MRT Lattice Boltzmann Models

Cemagref (Fr), 5 Dec. 2008

16/32

Switching the interpolation strategy

Introducing a linear mapping for computing the moments, namely

$$M = \begin{bmatrix} 1, v_x, v_y, v_x^2, v_y^2, v_x v_y, v_x^2 v_y, v_x v_y^2, v_x^2 v_y^2 \end{bmatrix}^T,$$
(13)

and recalling that

$$m_G = M \cdot f_G = \rho [1, \, u_x, \, u_y, \, \Pi_x, \, \Pi_y, \, u_x u_y, \, u_y \Pi_x, \, u_x \Pi_y, \, \Pi_x \Pi_y]^T,$$

it is possible to realize that the moments m_G of the generalized Maxwellian state f_G are linear with regards to the prescribed pressure components up to the third order.

• Hence the previous linear interpolation of the pressure tensor components between the points *M* and *C*, namely

$$\Pi_{ii}(\beta) = \beta \, \Pi_{ii}^M + (1 - \beta) \, \Pi_{ii}^C, \qquad \text{for } i = x, y, \tag{14}$$

is equivalent to a linear interpolation of the population lists

$$f_{QE}(\beta) = \beta f_M(\rho, u) + (1 - \beta) f_C(\rho, u, \Pi_{xx} + \Pi_{yy}),$$
 (15)

up to the third order included.

イロト 不得 トイヨト イヨト 正言 ろくの

Derivation of kinetic models Entropic model with blended population (EQE)

Entropic model with blended population (EQE)

• Let us define the following new collision operator

$$J_Q(f) = \lambda \left[f_{QE}\left(\beta\right) - f \right],\tag{16}$$

or equivalently, introducing $\tau_f=1/\lambda$ and $\tau_s=\tau_f/\beta$,

$$J_Q(f) = -\frac{1}{\tau_f} (f - f_C) - \frac{1}{\tau_s} (f_C - f_M).$$
 (17)

- In the previous model, the relaxation to the equilibrium is split in two steps. In the first step, the population list *f* relaxes to the constrained equilibrium *f*_C with the relaxation time τ_f (fast mode). In the second step, the constrained equilibrium relaxes to the equilibrium with the second relaxation time τ_s (slow mode) [7].
- The previous model can also be expressed as

.

$$J_Q(f) = -\frac{1}{\tau_s} (f - f_M) - \frac{\tau_s - \tau_f}{\tau_f \tau_s} (f - f_C).$$
 (18)

イロト 不得 トイヨト イヨト 正言 ろくの

Entropic model with blended population (EQE)

Proof of the *H*-theorem for EQE model

H-theorem for EQE model

The production σ_Q due to the relaxation term (17), where $\sigma_Q = \langle \ln(f/W) J_Q(f) \rangle$, is non-positive and it annihilates at the equilibrium, i.e. $\sigma_Q(f_M) = 0$, if $0 < \tau_f \le \tau_s$ (same as $0 < \beta \le 1$).

Proof

Recalling Eq. (18) yields

$$\sigma_Q = -\frac{1}{\tau_s} \left\langle \ln\left(f/f_M\right) \left(f - f_M\right) \right\rangle - \frac{\tau_s - \tau_f}{\tau_f \tau_s} \left\langle \ln\left(f/f_C\right) \left(f - f_C\right) \right\rangle,$$
(19)

which is non-positive and semi-definite provided that relaxation times satisfy the condition

$$\tau_f \leq \tau_s.$$

Outline Compass

- Preliminaries
 - Motivation and notation
 - The Maxwellian state
- 2 The key results
 - The generalized Maxwellian state
 - The constrained Maxwellian state
- 3 Derivation of kinetic models
 - Entropic model with blended pressure tensor (EMRT)
 - Entropic model with blended population (EQE)

Numerical validation

- Taylor–Green vortex flow
- Lid driven cavity

-

Numerical validation

Numerical implementation

• Applying the following variable transformation, namely

$$f \to g = f - \delta t \, J_Q/2,\tag{20}$$

(δt is the time step) to the EQE discrete velocity model yields

$$g(\boldsymbol{x} + \boldsymbol{c}\delta t, t + \delta t) = (1 - \boldsymbol{\omega}_{\boldsymbol{f}})g(\boldsymbol{x}, t) + \boldsymbol{\omega}_{\boldsymbol{f}}f_{QE}(\rho, \boldsymbol{u}, T'), \quad (21)$$

where $1/\omega_f = \tau_f/\delta t + 1/2$, where as usual $\rho = \langle g \rangle$ and $\rho u_i = \langle c_i g \rangle$, but, since the trance is not conserved,

$$T' = (1 - \omega_s/2) T(g) + \omega_s T_M(g)/2,$$

where $1/\omega_s = \tau_s/\delta t + 1/2$ and

$$T(g) = \langle (c_x^2 + c_y^2)g \rangle, \qquad T_M(g) = 2/3 \left[\varphi(u_x/c) + \varphi(u_y/c) - 1 \right].$$

• By means of asymptotic analysis, it is possible to prove that the previous EQE model recovers the Navier–Stokes equations up to the second order w.r.t. $\delta x = c \, \delta t$, with a kinematic viscosity $\nu = \tau_f/3$ and a bulk viscosity $\xi = \tau_s/3$.

Taylor-Green vortex flow

• First of all, let us verify the transport coefficients by means of the analytical solution for the Taylor–Green vortex flow.

	ξ/ u	ν	Measured ν	Error [%]
BGK	1	0.001	0.00102065	2.06
EQE	10	0.001	0.00102071	2.07
EQE	100	0.001	0.00102106	2.11
BGK	1	0.010	0.00998509	-0.15
EQE	10	0.010	0.00998555	-0.14
EQE	100	0.010	0.00998654	-0.13
BGK	1	0.100	0.09977323	-0.23
EQE	10	0.100	0.09977355	-0.23
EQE	100	0.100	0.09977230	-0.23

 In the low Mach limit, the slow relaxation frequency τ_s, controlling the bulk viscosity, does not effect the leading part of the solution.

22/32

Numerical validation Lid driven cavity at Re = 1000: streamlines

Lid driven cavity

Pietro Asinari, PhD (Politecnico di Torino)

Entropic MRT Lattice Boltzmann Models

23/32 Cemagref (Fr), 5 Dec. 2008

Numerical validation Lid dri

Lid driven cavity

Lid driven cavity at Re = 1000: pressure contours

Pietro Asinari, PhD (Politecnico di Torino)

Entropic MRT Lattice Boltzmann Models

Cemagref (Fr), 5 Dec. 2008

24/32

Lid driven cavity: stability enhancement

Numerical validation

• Let us assume $\xi = 10 \nu$ for enhancing the stability of EQE.

		В	GK	EQE $\xi = 10 \nu$		
Re	u	$\min\left(N\right)$	$\max\left(\text{Ma}\right)$	$\min\left(N\right)$	$\max\left(Ma\right)$	
1000	$1.0 imes 10^{-3}$	50	0.2	25	0.4	
2000	5.0×10^{-4}	100	0.2	50	0.4	
3000	3.3×10^{-4}	150	0.2	75	0.4	
4000	2.5×10^{-4}	200	0.2	100	0.4	
5000	$2.0 imes 10^{-4}$	250	0.2	125	0.4	

Lid driven cavity

- Effectively this choice allows one to perform calculations with rougher meshes $N \times N$ or (equivalently) higher Mach numbers (Ma = 0.01 Re Kn was adopted).
- However the previous consideration does not lead automatically to a performance improvement, because the accuracy must be considered as well.

Numerical validation Lid driven cavity at Re = 5000: main vortexes

Lid driven cavity

Pietro Asinari, PhD (Politecnico di Torino)

Entropic MRT Lattice Boltzmann Models

Cemagref (Fr), 5 Dec. 2008 26/32

-

Numerical validation Lid driven cavity

Lid driven cavity at Re = 5000: stability vs. accuracy

• Let us compute the locations of the main vortexes [8, 9, 10, 11].

	Run	Errors on vortex locations [%]				
	time	M-C	L-L	L-R	U-L	Mean
EQE 125×125	0.35	1.15	12.41	1.61	1.36	4.13
EQE 150×150	0.61	0.74	12.41	2.29	0.49	3.98
EQE 170 × 170	1.00	1.20	6.93	2.29	0.63	2.76
EQE 200×200	2.06	1.10	4.51	1.81	0.06	1.87
EQE 250×250	4.97	1.10	2.24	2.35	0.06	1.44
ELB [12] 320 × 320	???	0.48	6.35	2.09	0.22	2.29
BGK 250×250	2.84	1.16	7.76	1.88	0.06	2.72

- The key result is that the EQE model, with a rougher mesh $170^2 \sim 250^2/2$ than that used by the BGK model, can achieve the same accuracy (2.76% \sim 2.72%).
- This gives to the EQE model an effective computational speed-up of 2.84 times over the BGK model (!!).

Numerical validation Lid dri

Lid driven cavity

Lid driven cavity at Re = 5000: EQE vs. BGK

Cemagref (Fr), 5 Dec. 2008 28 / 32

Conclusions

- Some brand new analytical results for discrete lattices have been presented: in particular, the generalized Maxwellian state f_G (with prescribed diagonal components of the pressure tensor) and the constrained Maxwellian state f_C (with prescribed trace of the pressure tensor).
- All the previously introduced equilibria for LB are found as special cases of the previous results (!!).
- Some new LB schemes (EMRT and EQE) with both tunable bulk viscosity and *H*-theorem have been reported.
- In case of lid driven cavity test, the EQE model was able to achieve the same accuracy of the usual BGK model with a rougher mesh (approximately half), leading to a remarkable speed-up of the run time (even though both codes were not optimized !!).

• Thank you !!

Pietro Asinari, PhD (Politecnico di Torino) Entropic MRT Lattice Boltzmann Models Cemagref (Fr), 5 Dec. 2008 30 / 32

(A) = (A)

1 =

References I

- I. V. Karlin, A. Ferrante, and H. C. Ottinger Europhys. Lett., 47:182, 1999.
- [2] S. Ansumali, I. V. Karlin, and H. C. Ottinger Europhys. Lett., 63:798, 2003.
- [3] A. N. Gorban, I. V. Karlin, *Physica A*, 206:401, 1994.
- [4] C. D. Levermore, J. Stat. Phys., 83:1021, 1996.
- [5] A. N. Gorban, and I. V. Karlin Invariant Manifolds for Physical and Chemical Kinetics in Lecture Notes in Physics Springer-Verlag, Berlin, 2005.
- [6] S. Ansumali, and I. V. Karlin, *Phys. Review Lett.*, 95:260605, 2005.
- [7] S. Ansumali, S. Arcidiacono, S. S. Chikatamarla, N. I. Prasianakis, A. N. Gorban, and I. V. Karlin *Eur. Phys. J. B*, 56:135, 2007.

A = A = A = A = A = A = A

References II

- [8] U. Ghia, K.N. Ghia, and C.Y. Shin J. Comput. Phys., 48:387, 1982.
- [9] R. Schreiber and H.B. Keller, J. Comput. Phys., 49:310, 1983.
- [10] S.P. Vanka J. Comput. Phys., 65:138, 1986.
- [11] S. Hou, Q. Zou, S. Chen, G. D. Doolen, and A. C. Cogley J. Comput. Phys., 118:329, 1995.
- [12] S. Ansumali, and I. V. Karlin, *Phys. Review E*, 65:056312, 2002.