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What is the Lattice Boltzmann Method?

“The lattice Boltzmann method (LBM) is used for the numerical
simulation of physical phenomena and serves as an alternative to
classical solvers of partial differential equations (PDEs)”
[www.lbmethod.org/]. The main unknown is the discrete
distribution function, from which all relevant macroscopic
quantities (satisfying some target PDEs) can be derived.
The operative formula consists of the (a) advection process and
(b) the relaxation process

f(x̂ + v, t̂+ 1)− f(x̂, t̂) = −ω
[
f(x̂, t̂)− fEQ(x̂, t̂)

]
, (1)

while the computer implementation consists of the streaming and
the collision step, defined as follows:

f(x̂ + v, t̂+ 1) = f∗(x̂, t̂+ 1), (2)

f∗(x̂, t̂+ 1) = f(x̂, t̂)− ω
[
f(x̂, t̂)− fEQ(x̂, t̂)

]
. (3)
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The backstage: not so simple... or even simpler?

Diligent student :(
The advection process requires to understand the concept of
scaling for properly interpreting the numerical results: in particular,
the Boltzmann scaling, which is useful for coding, and the diffusive
scaling, which is useful for dealing with low Mach number flows.
The relaxation process can be generalized by the concept of
quasi-equilibrium (QE), i.e. an intermediate state ruling the
dynamics of the discrete distribution function towards the
equilibrium (EQ), leading to the Generalized Local Equilibrium
(GE=QE+EQ).

Lazy student :)
Both previous concepts are difficult! Can we avoid them?
As far as the incompressible regime of the continuum description
(based on Navier-Stokes equations) is concerned, an alternative is
provided by the (revisited) Artificial Compressibility Method (ACM).
Stay tuned on the lecture by Professor Ohwada later today!
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Advection process

In this section, we discuss the advection process

The advection process requires to understand the concept of
scaling for properly interpreting the numerical results: in particular,
the Boltzmann scaling, which is useful for coding, and the diffusive
scaling, which is useful for dealing with low Mach number flows.
For sake of simplicity, let us consider the following approximation
(it will be removed soon, when introducing the lattice)

f(x̂ + v, t̂+ 1)− f(x̂, t̂) ≈ ∂f

∂t̂
+ v · ∂f

∂x̂
. (4)

In this notes, we will not discuss the Method of Characteristics
(MOC), even though this is fundamental for understanding the
on-lattice dynamics of the discrete distribution function.
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Advection process Some relevant scalings

Basics of Kinetic Theory

The Boltzmann equation is the basic equation in kinetic theory of
gases and describes the time evolution of the distribution function
of gas molecules, which is the function of time, space coordinate,
and molecular velocity
Bhatnagar-Gross-Krook (BGK) model equation inherits the main
features of the full Boltzmann equation and the fluid-dynamic
description solution of BGK solution for small Knudsen numbers is
obtained in a much simpler way. It is quite natural and
advantageous to employ the BGK equation as the basis of kinetic
method for incompressible Navier-Stokes
In particular we will employ the simplified BGK equation, i.e. the
isothermal distribution, and the collision frequency independent of
the local state
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Advection process Some relevant scalings

Bhatnagar-Gross-Krook (BGK) Model Equation

BGK for single-particle distribution function f(x,v, t):

∂f

∂t̂
+ v · ∂f

∂x̂
= ω(ρ)(ftEQ − f), (5)

where x̂i, t̂, and vi are the dimensionless space coordinates, time, and
molecular velocity components respectively; ω(ρ) is the relaxation
frequency (strictly positive function) and ftEQ(ρ,u, e,v, t) is the
equilibrium distribution function defined as

ftEQ =
ρ/m

(2π e)d/2
exp

[
−(v − u)2

2 e

]
, (6)

where the moments ρ, u and e can be expressed by means of the
operator 〈〈·〉〉 =

∫
·Πd

i=1dvi as

ρ = m〈〈f〉〉, ρu = m〈〈v f〉〉, ρe = m〈〈1
2

(v − u)2 f〉〉.
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Advection process Some relevant scalings

Simplified BGK Model Equation

In the incompressible continuum limit, the Mach number as well as the
Knudsen number is vanishingly small and the deviations of
temperature and density are vanishingly small. Then, we can employ
the simplified BGK equation, i.e.

the isothermal equilibrium distribution ftEQ → fEQ, namely

fEQ =
ρ

2π/3
exp

[
−3(vi − ui)2

2

]
, (7)

where m = 1 (since it is a constant), d = 2 (for two dimensional
case) and e = 1/3 are assumed;
and the collision frequency independent of the local state, namely
ω(ρ)→ ω.
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Advection process Some relevant scalings

Boltzmann Scaling

Let us define c the particle speed, i.e. the average modulus of the
particle velocity (of the order of the sound speed)
In the previous simplified BGK equation, the so-called Boltzmann
scaling was used, i.e. the unit of space coordinate and that of time
variable were the mean free path lc(= c Tc) and the mean collision
time Tc, respectively→ in this way |v| = O(1) and ω = O(1)

Obviously, they are not appropriate as the characteristic scales for
flow field in the continuum limit. Let the characteristic length scale
of the flow field be L and let the characteristic flow speed be U .
There are two factors in the incompressible continuum limit:

the continuum limit means lc � L;
and the incompressible limit means U � c.
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Advection process Some relevant scalings

Diffusive Scaling

In the following asymptotic analysis, we introduce the other
dimensionless variables, defined by

xi = (lc/L) x̂i, t = (UTc/L) t̂. (8)

Defining the small parameter ε as ε = lc/L, which corresponds to the
Knudsen number, we have xi = ε x̂i. Furthermore, assuming

U/c = ε, (9)

which is the key of derivation of the incompressible limit (Sone), we
have t = ε2 t̂. Then, BGK equation is rewritten as

ε2
∂f

∂t
+ ε vi

∂f

∂xi
= ω (fEQ − f) . (10)

In this new scaling, we can assume ∂αf = ∂f/∂α = O(f) and
∂αM = ∂M/∂α = O(M), where α = t, xi and M = ρ, ui.
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Advection process Asymptotic analysis

Regular Expansion

Clearly the solution of the BGK equation depends on ε. The solution for
small ε is investigated in the form of the asymptotic regular expansion

f = f (0) + εf (1) + ε2f (2) + · · · . (11)

ρ and ui are also expanded:

ρ = 1 + ερ(1) + ε2ρ(2) + · · · , (12)

ui = εu
(1)
i + ε2u

(2)
i + · · · , (13)

since the Mach number is O(ε), the perturbations of ui starts from the
order of ε. Consequently

qi = ρui = εq
(1)
i + ε2q

(2)
i + · · · = εu

(1)
i + ε2[u

(2)
i + ρ(1)u

(1)
i ] + · · · .

Regular expansion means ∂αf (k) = O(1) and ∂αM (k) = O(1).
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Advection process Asymptotic analysis

Expansion of Local Equilibrium

Introducing the previous expansions in fEQ and applying Taylor
expansion yields:

fEQ = f
(0)
EQ + εf

(1)
EQ + ε2f

(2)
EQ + · · · , (14)

where f (k)
EQ (k = 1, 2, · · · ) are known polynomial functions of the

hydrodynamic moments. Substituting the above expansions into BGK
equation and equating the terms of the same order of power of ε, we
have

0 = ω(f
(1)
EQ − f

(1)), (15)

∂f (k−2)

∂t
+ vi

∂f (k−1)

∂xi
= ω(f

(k)
EQ − f

(k)) (k ≥ 2). (16)

The above equations give the functional forms of f (k) as the functions
of lower moments.

Pietro Asinari, PhD (Politecnico di Torino) Generalized Local Equilibrium CSRC (Cn), 4th May 2011 13 / 73



Advection process Asymptotic analysis

Orthogonality Conditions

Since ρ = 〈〈f〉〉 = 〈〈fEQ〉〉 and ρu = 〈〈vf〉〉 = 〈〈vfEQ〉〉, then
〈〈fEQ − f〉〉 = 〈〈vi(fEQ − f)〉〉 = 0. Consequently the left hand sides of
the previous equations must satisfy the orthogonality conditions

〈〈φ(
∂f (k−2)

∂t
+ vi

∂f (k−1)

∂xi
)〉〉 = 0 (k ≥ 2), (17)

where φ = 1, vj .
From the above orthogonality conditions, we have the PDE
systems for ρ(k) and u(k)

i

Once these PDE systems are solved under appropriate boundary
condition and initial data, the asymptotic solution for the simplified
BGK equation is determined
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Advection process Asymptotic analysis

Incompressible Navier-Stokes System for u(1) and p(2)

The equations for the leading coefficients u(1) and p(2) are given by the
incompressible Navier-Stokes (ICNS) system of equations, namely

∇ · u(1) = 0, (18)

∂tu
(1) +∇u(1)u(1) +∇p(2) = ν∇2u(1), (19)

where the kinematic viscosity is ν = τ/3 and τ = 1/ω, i.e. the
relaxation time. This means that, in addition to what we want to solve,
some additional terms exist, which are due to higher-order kinetic
effects. It is possible to combine the previous equations in the Poisson
equation, namely

∇ · [∇u(1)u(1)] +∇2p(2) = 0. (20)
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Advection process Asymptotic analysis

Homogeneous Oseen system for u(2) and p(3)

The next PDE system for coefficients u(2) and p(3) is given by the
homogeneous (linear) Oseen system, namely

∇ · u(2) = 0, (21)

∂tu
(2) +∇u(2)u(1) +∇u(1)u(2) +∇p(3) = ν∇2u(2). (22)

Clearly, if proper initial data and boundary conditions are considered,
the previous system of equations admits the null solution and its
dynamics is irrelevant for the considered simplified model, namely
u(2) = 0 and p(3) = 0→ This result is general in the sense that an
odd/even decomposition exists for the hydrodynamic moments, i.e.
only odd terms appear in the expansion of u and even terms in that of
p (Junk).
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Advection process Asymptotic analysis

Burnett-like System for q(3) and p(4)

Finally the Burnett-like system is recovered

∂tρ
(2) +∇ · q(3) = 0, (23)

∂tq
(3) +∇ · [u(1) ⊗ q(3)] +∇ · [q(3) ⊗ u(1)] +∇p(4) =

ν∇2q(3) + ν∇∇ · q(3) + i3, (24)

where i3 is a forcing term [1], defined as

i3 = τ∇
[
ν∇2u(1) −∇u(1)u(1) −∇p(2)

]
u(1)

+τ∇u(1)
[
ν∇2u(1) −∇u(1)u(1) −∇p(2)

]
+τ∇ · ∇ ·

[
u(1) ⊗ u(1) ⊗ u(1)

]
+ τ2∇2∇p(2)

−τ2/3∇2
[
∇u(1)u(1)

]
+ τ3/9∇2∇2u(1). (25)
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Advection process Asymptotic analysis

Kinetic-like Effects

Since in general the forcing term i3 is not null, then the kinetic-like
effects are of the order of Kn2, namely

u− εu(1)

ε
∼ O(ε2),

p− [1 + ε2p(2)]

ε2
∼ O(ε2). (26)

The previous effects must be defined kinetic-like and not truly
kinetic, because the original simplified kinetic model cannot be
considered completely reliable up to any order, because of the
original simplifications (isothermal flow and relaxation frequency
independent of the local conditions)
For this reason, the higher-order terms should be regarded as an
error due to the adopted simplified model
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Advection process Asymptotic analysis

The Lattice, i.e. the finite set of discrete velocities

Let us assume that v belongs to a finite set of discrete velocities
{vα}, i.e. a lattice (for distinguishing it from the spatial mesh),
namely

vα ∈ {v}, (27)

fα(x̂, t̂) = f(x̂,vα, t̂) ∈ {f}. (28)

Clearly, the lattice is usually selected such that if x̂ is a point of the
spatial mesh than also x̂ + vα belongs to the same mesh.
Let us denote 〈·〉 a sum over the discrete velocity index (in the
following, this symbol alone means that the argument is a proper
vector defined on the considered lattice without further
specifications, namely 〈{f}〉 = 〈f〉).
Let f and g be the lists defined by f = [f0, f1, f2, · · · , fQ−1]T and
g = [g0, g1, g2, · · · , gQ−1]T . Then, fg is the list defined by
[f0g0, f1g1, f2g2, · · · , fQ−1gQ−1]T .
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Advection process Asymptotic analysis

Two dimensional example: D2Q9

Let us consider the D2Q9 lattice: v0 = (0, 0), vα = (±c, 0) and
(0, ±c) for α = 1–4, and vα = (±c, ±c) for α = 5–8, where c is the
lattice spacing.
The D2Q9 lattice derives from the three–point Gauss–Hermite
formula, with the following weights w(−1) = 1/6, w(0) = 2/3 and
w(+1) = 1/6.
Let us arrange in the list vx (vy) all the components of the lattice
velocities along the x–axis (y–axis) and in the list f all the
populations fα. Algebraic operations for the lists are always
assumed component-wise.
The sum of all the elements of the list p is denoted by
〈p〉 =

∑Q−1
α=0 pα. The dimensionless density ρ, the flow velocity u

and the pressure tensor Π are defined by ρ = 〈f〉, ρui = 〈vif〉 and
ρΠij = 〈vi vjf〉 respectively.
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Advection process Asymptotic analysis

Taylor Expansion

The ratio h between the grid spacing and the characteristic length
of the flow can be expressed as h = ε δx̂ = ε, i.e. the
dimensionless grid spacing is equal to the Knudsen number→
This proves that the Knudsen number for the present scheme
does not have a pure physical meaning
The nodal values in the numerical scheme can be expressed by
means of a Taylor expansion, recalling that t̂ = t/ε2 and x̂ = x/ε,
namely

{f}(x, t+ ε2) =

∞∑
k=0

ε2k

k!
(∂/∂t)k {f}(x, t), (29)

{f}(x + ε {v}, t) =

∞∑
k=0

εk

k!
(∂S)k {f}(x, t), (30)

where ∂S = {v} · ∇ (while ∂s = v · ∇ in the continuous case).

Pietro Asinari, PhD (Politecnico di Torino) Generalized Local Equilibrium CSRC (Cn), 4th May 2011 21 / 73



Advection process Asymptotic analysis

Discrete Effects in the Coefficients of f (k)

Since the grid spacing is expressed in terms of the Knudsen number, it
is possible for the LBM scheme to repeat the asymptotic analysis
taking into account the discrete effects→ First of all, the expansion
coefficients f (k) change, namely

{f (1)} = {f (1)
EQ}, {f (2)} = {f (2)

EQ} − τ∂S{f
(1)
EQ}, (31)

{f (3)} = {f (3)
EQ} − τ

(
∂t{f (1)

EQ}+ ∂S{f (2)
EQ} − τ̃1∂

2
S{f

(1)
EQ}

)
, (32)

where τ̃1 = τ − 1/2, instead of

f (1) = f
(1)
EQ, f (2) = f

(2)
EQ − τ∂sf

(1)
EQ, (33)

f (3) = f
(3)
EQ − τ

[
∂tf

(1)
EQ + ∂sf

(2)
EQ − τ∂

2
sf

(1)
EQ

]
. (34)
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Advection process Asymptotic analysis

Discrete Effects in the High-Order Moments

The few discrete velocities and consequently the truncated local
equilibrium show their limits in the high-order moments, because of

the lack of some terms, which are tensors of the macroscopic
velocity with order higher than the second;

〈{v} · ∂2
S{f

(3)
EQ}〉 = 1/3∇2q(3) + 2/3∇∇ · q(3),

〈〈v ∂2
sf

(3)
EQ〉〉 = 1/3∇2q(3) + 2/3∇∇ · q(3)

+∇ · ∇ · [u(1) ⊗ u(1) ⊗ u(1)],

the inadequate symmetry properties producing terms, which
cannot be expressed in tensorial form.

〈{v} · ∂3
S{f

(2)
EQ}〉 = ∇ · ∇∇ · u(1) ⊗ u(1) −D(D∇)3u(1) ⊗ u(1),

〈〈v ∂3
sf

(2)
EQ〉〉 = ∇ · ∇∇ · u(1) ⊗ u(1).
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Advection process Bad news and good news

BAD NEWS from Asymptotic Analysis

The leading error term consists of four factors which degrade the real
Burnett to Burnett-like phenomena, namely

1 the isothermal flow condition imposed at kinetic level (continuous
too);

2 the relaxation frequency assumed independent of the local
conditions (continuous too);

3 the dissatisfaction of the rotation symmetry for higher order
moments due to the velocity discretization;

4 the assumed truncated definition of the local equilibrium.
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Advection process Bad news and good news

GOOD NEWS from Asymptotic Analysis

1 Let us multiply Eq. (23) by ε2 and let us sum to it Eq. (18), namely

ε2∂tρ
(2) +∇ · (u(1) + ε2q(3)) = 0. (35)

2 Taking into account that ρ(2) = 3p(2), defining u′ = u(1) + ε2q(3)

and p′ = p(2) yield
3ε2∂tp

′ +∇ · u′ = 0, (36)

and consequently Eq. (19) becomes

∂tu
′ +∇u′u′ +∇p′ = ν∇2u′ +O(ε2). (37)

3 Neglecting the last term in the previous equation leads to the
Artificial Compressibility Method (ACM), which is also second
order accurate in solving the incompressible Navier-Stokes
equations. This method is a re-visitation of Chorin’s method for
steady solutions because ACM works also for transient solutions,
since the term ε2 is proportional to the discrete time step [2].
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Relaxation process

In this section, we discuss the relaxation process

The relaxation process can be generalized by the concept of
quasi-equilibrium (QE), i.e. an intermediate state ruling the
dynamics of the discrete distribution function towards the
equilibrium (EQ), leading to the Generalized Local Equilibrium
(GE=QE+EQ).
The relaxation process is described by the collisional operator,
namely

J = −ω
[
f(x̂, t̂)− fEQ(x̂, t̂)

]
, (38)

which drives the discrete distribution function towards the local
equilibrium.
The local equilibrium is a function of the conserved moments,
namely ρ = 〈f〉 = 〈fEQ〉 and ρu = 〈vf〉 = 〈vfEQ〉, and it can be
derived by means of a constrained optimization problem (the
so-called “MaxEnt” problem).
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Relaxation process Local equilibrium (EQ)

Lyapunov function

Entropy S is a concave Lyapunov function with non-degenerated
Hessian. Any Lyapunov function may be used.
Nevertheless, most of famous entropies, like the relative
Boltzmann-Gibbs-Shannon entropy, the Reńyi entropy, the Burg
entropy, the Cressie-Read and the Tsallis entropies (a) do not
depend on kinetic coefficients for Markov chains and (b) satisfy
some natural additivity conditions.
The entropy function S = −H, where H is the H–function, for the
D2Q9 lattice is [3]

S(f) = −H(f) = −
〈
f ln (f/W )

〉
, (39)

where W = w(vx)w(vy) and the equilibrium population list is

Definition of Local Equilibrium (fEQ)

fEQ = minf∈PEQ
H(f), where PEQ is the set of functions such that

PEQ =
{
f > 0 : 〈f〉 = ρ, 〈vf〉 = ρu

}
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Relaxation process Local equilibrium (EQ)

Lagrange multipliers

The method of Lagrange multipliers provides a strategy for finding
the previous constrained minimum.

Definition of Lagrange function (ΛEQ)

ΛEQ =
〈
f ln (f/W )

〉
+ λρ (〈f〉 − ρ) + λu · (〈vf〉 − ρu)

In particular, it is easy to prove that the minimization of the
Lagrange function leads to

ln (fEQ) = ln (ρA) +
∑
i=x,y

(vi/c) ln (Bi), (40)

or equivalently

fEQ = ρA
∏
i=x,y

B
vi/c
i . (41)
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Relaxation process Local equilibrium (EQ)

Local Equilibrium (Maxwellian state)

The convex entropy function (H–function) for this lattice is [3]

H(f) =
〈
f ln (f/W )

〉
, (42)

where W = w(vx)w(vy) and the equilibrium population list is

Definition of Local Equilibrium (fEQ)

fEQ = minf∈PEQ
H(f), where PEQ is the set of functions such that

PEQ =
{
f > 0 : 〈f〉 = ρ, 〈vf〉 = ρu

}
Minimization of the H–function under the constraints of mass and
momentum conservation yields [5]

fEQ = ρ
∏
i=x,y

w(vi) (2− ϕ(ui/c))

(
2(ui/c) + ϕ(ui/c)

1− (ui/c)

)vi/c
, (43)

where ϕ(z) =
√

3z2 + 1. In order to ensure the positivity of fM , the
low Mach number limit must be considered, i.e. |ui| < c.
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Relaxation process Generalized Local Equilibrium (GE)

Motivation for going beyond simple BGK

The easiest way to relax the discrete distribution function towards
the equilibrium is given by the Bhatnagar-Gross-Krook (BGK)
model, namely J = ω (fEQ − f).
However, the basic idea for going beyond BGK is to improve the
stability of the LBM schemes with regards to rough meshes, but
preserving the required level of accuracy.
In recent years, many approaches have been developed for the
previous goal (see the lecture by Professor Luo at the end of the
week!):

1 the multiple–relaxation–time (MRT) schemes with tunable bulk
viscosity, which is a free parameter to dump the compressibility
error, when searching for the incompressible limit [6, 7, 8];

2 the entropic (ELB) schemes, which use equilibria derived by a
constrained optimization problem based on the H–function.

However almost all previous approaches can be expressed by
means of the Generalized Local Equilibrium (GE).
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Generalized Local Equilibrium

A simple way to go beyond the BGK model, namely
J = ω (fEQ − f), is to consider a two-parametric family of LB
models based on an intermediate quasi-equilibrium (QE) state of
relaxation fQE ,

JQ(f) = ωs (fEQ − fQE) + ωf (fQE − f) , (44)

where ωs = 1/τs is the slow relaxation frequency and ωf = 1/τf is
the fast relaxation frequency.
Formally, the above equation can always be recast in the form of a
standard BGK, relaxing to a Generalized Local Equilibrium (GE),
namely

JQ(f) = ωf (fGE − f) , (45)

where
fGE = ωs/ωf fEQ + (1− ωs/ωf ) fQE . (46)
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How do we define the Local Quasi-equilibrium (QE)?

The local quasi-equilibrium is the key ingredient for deriving the
Generalized Equilibrium (GE) and consequently the collisional
operator of the model.
In the following, we will discuss three examples:

1 Example (QE-IID), it is a particular case of a more general formula
for unidirectional quasi-equilibria in any dimension and it is based
on the canonical constrained optimization;

2 Example (QE-IIT), since the previous quasi-equilibrium is a
two-dimensional manifold, it is possible to collapse even further the
quasi-equilibrium by getting closer to the equilibrium;

3 Example (QE-III), it is a degenerate case involving the third order
moments which are not fully representable on the D3Q9 lattice,
hence some pruning must be considered starting from the higher
order quasi-equilibria.
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Example (1) of Local Quasi–equilibrium (called IID)

Let us introduce a novel quasi–equilibrium [9, 10, 11] population
list, by requiring, in addition, that the diagonal components of the
pressure tensor Π have some prescribed values, namely

Definition of Local Quasi-equilibrium (f IIDQE )

f IIDQE = minf∈PQE
H(f), where PQE ⊂ PEQ is the set of functions such

that PQE =
{
f > 0 : 〈f〉 = ρ, 〈vf〉 = ρu, 〈v2

i f〉 = ρΠii

}
.

In other words, minimization of the H–function under the
constraints of mass and momentum conservation and prescribed
diagonal components of the pressure tensor yields

f IIDQE = ρ
∏
i=x,y

w(vi)
3 (c2 −Πii)

2 c2

(√
Πii + c ui
Πii − c ui

) vi
c

2
√

Π2
ii − c2 u2

i

c2 −Πii


v2i
c2

.

(47)
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The plane of parameters

In order to ensure the positivity of f IIDQE , we use
Π = (Πxx,Πyy) ∈ Ω for a generic point on the two-dimensional
plane Ω = {Π : c |ux| < Πxx < c2, c |uy| < Πyy < c2} [4].
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Quasi-equilibrium IID in the moments space

The calculation of the moments can be performed by means of a
linear mapping, namely m = Mf , where M is the non–orthogonal
transformation matrix, namely

M =
[
1, vx, vy, v

2
x, v

2
y , vxvy, (vx)2vy, vx(vy)

2, (vx)2(vy)
2
]T
, (48)

which involves proper combinations of the lattice velocity
components.
Applying this linear mapping yields mIID

QE = M · f IIDQE , where

mIID
QE = ρ

[
1, ux, uy, Πxx, Πyy, uxuy, uyΠxx, uxΠyy, ΠxxΠyy

]T
.

(49)
This clearly shows that the quasi–equilibrium moments depend
only on the constrained quantities, i.e. the conserved moments
(mass and momentum) and the prescribed diagonal components
of the second–order moment tensor (Πxx and Πyy).
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The H–function in the quasi-equilibrium states

It is possible to evaluate explicitly the H–function in the
quasi-equilibrium IID states, HIID

QE = H
(
f IIDQE

)
, the result is written

HIID
QE = ρ ln ρ+ ρ

∑
i=x, y

∑
k=−, 0,+

wk ak(Πii) ln
(
ak(Πii)

)
, (50)

where w± = w(±1), w0 = w(0), a±(Πii) = 3 (Πii ± c ui)/c2 and
a0(Πii) = 3 (c2 −Πii)/(2 c

2).
Generalizing the result [12], let us derive a new quasi-equilibrium
f IITQE which brings the H-function to a minimum among all the
population lists with a prescribed trace T = Πxx + Πyy, namely

Definition of Local Quasi-equilibrium (f IITQE )

f IITQE ∈ {f IIDQE } is the set of generalized Maxwellian states with trace T ,

such that
[
(∂HIID

QE /∂Πxx)− (∂HIID
QE /∂Πyy)

]
(Πxx+Πyy=T )

= 0.
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Example (2) of Local Quasi-equilibrium (called IIT)

The solution to the latter problem exists and yields a cubic
equation in terms of the normal stress difference
N = ΠIIT

xx −ΠIIT
yy ,

N3 + aN2 + bN + d = 0,

a = −1

2
(u2
x − u2

y), b = (2 c2 − T ) (T − u2),

d = −1

2
(u2
x − u2

y) (2 c2 − T )2.

(51)

Let us define p = −a2/3 + b, q = 2 a3/27− a b/3 + d and
∆ = (q/2)2 + (p/3)3. For ∆ ≥ 0, the Cardano formula implies

ΠIIT
xx =

T

2
+

1

2

(
r − p

3 r
− a

3

)
, r = 3

√
−q

2
+
√

∆, (52)

while ΠIIT
yy = T −ΠIIT

xx . Thus, substituting (52) into (47), we find

f IITQE = f IIDQE

(
ρ,u,ΠIIT

xx (u, T ),ΠIIT
yy (u, T )

)
. (53)
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Example (3) of Local Quasi-equilibrium (called III)

Unfortunately, we cannot perform the canonical constrained
optimization on the D2Q9 lattice by considering the third order
moments: hence some pruning must be considered.
Let us modify the moments of quasi-equilibrium IID, namely mIID

QE ,
in the following way

mIII
QE = ρ

[
1, ux, uy, ΠEQ

xx , ΠEQ
yy , uxuy, Πxxy,Πxyy, ΠEQ

xx ΠEQ
yy

]T
.

(54)
This clearly shows that the quasi–equilibrium moments depend
only on the constrained quantities, i.e. the conserved moments
(mass and momentum) and the prescribed third order moments
(Πxxy and Πxyy).
The pruned quasi-equilibrium is defined as

f IIIQE (ρ,u,Πxxy,Πxyy) = M−1 ·mIII
QE . (55)
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Model (1) with blended pressure tensor

By means of the local equilibrium fEQ and the newly found
quasi-equilibrium f IITQE , let us define the blended pressure tensor
E
(
ΠGE
xx (β),ΠGE

yy (β)
)

as a linear interpolation (function of the free
parameter β > 0) between the points M

(
ΠEQ
xx ,Π

EQ
yy

)
and

C
(
ΠIIT
xx ,ΠIIT

yy

)
on the Ω plane of parameters, namely

ΠE
ii (β) = βΠEQ

ii + (1− β) ΠIIT
ii , for i = x, y. (56)

Thus, the generalized equilibrium is defined as

f
(1)
GE(β) = f IIDQE

(
ρ,u,ΠE

xx(β),ΠE
yy(β)

)
. (57)

and consequently the kinetic model reads

J
(1)
Q (f) = ω

[
f

(1)
GE (β)− f

]
, (58)

where ω > 0 rules the relaxation toward the generalized
equilibrium.
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Graphical interpretation of the model (1)
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Proof of the H–theorem for model (1)

H–theorem for model J (1)
Q

The destruction σ due to the relaxation term (58), where
σ

(1)
Q =

〈
ln (f/W ) J

(1)
Q (f)

〉
, is non-positive and it annihilates at the

equilibrium, i.e. σ(fEQ) = 0, if 0 < β ≤ β∗ where β∗(f) > 1.

Proof [part 1 of 2]
Because the H-function is convex (f2 ln f1 ≤ f2 ln f2 + f1 − f2) and
f IIDQE (Πxx,Πyy) minimizes H among all f with the moments (Πxx,Πyy)

σ
(1)
Q /ω ≤ H(1)

GE (β)−H(f) ≤ H(1)
GE (β)−HIID

QE , (59)

where H(1)
GE(β) = HIID

QE

(
ΠE
xx(β),ΠE

yy(β)
)
. Recalling that tensors in

point O and C have the same trace, inequality (59) can be written as

σ
(1)
Q /ω ≤ H(1)

GE (β)−H(1)
GE (0) +H

(1)
GE (0)−HIID

QE ≤ H
(1)
GE (β)−H(1)

GE (0).
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Proof of the H–theorem for model (1)

Proof [part 2 of 2]
What remains to estimate is the range of β such that
H

(1)
GE (β) ≤ H(1)

GE(0). Clearly, since the equilibrium (β = 1) is the
absolute minimum of HIID

QE , and because H(1)
GE (β) is a convex

function, σ(1)
Q is non-positive if 0 < β ≤ 1.

In order to extend the proof to β > 1, let us consider the entropy
estimate [3]:

H
(1)
GE (β∗) = H

(1)
GE (0). (60)

Thanks to the convexity of H(1)
GE (β), the non-trivial solution β∗ > 1

to this equation is unique when it exists. In the opposite case, we
need to take care of the boundary of the positivity domain Ω. In
both cases, for 0 < β ≤ β∗, it holds H(1)

GE (β) ≤ H(1)
GE (0) and thus

the H-function destruction is confirmed, namely σ(1)
Q ≤ 0.

�
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Making things easier...

Recalling the previous linear mapping for computing the moments,
namely

M =
[
1, vx, vy, v

2
x, v

2
y , vxvy, v

2
xvy, vxv

2
y , v

2
xv

2
y

]T
, (61)

and recalling that

mIID
QE = ρ

[
1, ux, uy, Πx, Πy, uxuy, uyΠx, uxΠy, ΠxΠy

]T
,

it is possible to realize that the moments mIID
QE of this

quasi-equilibrium are linear with regards to the prescribed
pressure components up to the third order.
Hence the previous linear interpolation of the pressure tensor
components, namely ΠE

ii (β) = βΠEQ
ii + (1− β) ΠIIT

ii for i = x, y, is
equivalent to a linear interpolation of the population lists

f
(2)
GE(β) = β fEQ(ρ,u) + (1− β) f IITQE (ρ,u,Πxx + Πyy), (62)

up to the third order included.
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Model (2) with blended population lists (EQE)

Let us define the following new collision operator

J
(2)
Q (f) = ω

[
f

(2)
GE (β)− f

]
, (63)

or equivalently, introducing ω = ωf and β = ωs/ωf ,

J
(2)
Q (f) = −ωf

(
f − f IITQE

)
− ωs

(
f IITQE − fEQ

)
. (64)

In the previous model, the relaxation to the equilibrium is split in
two steps. In the first step, the population list f relaxes to the
quasi-equilibrium f IITQE with the relaxation frequency ωf (fast
mode). In the second step, the quasi-equilibrium relaxes to the
equilibrium with the second relaxation frequency ωs (slow mode)
[13].
The previous model can also be expressed as

J
(2)
Q (f) = −ωs (f − fEQ)− (ωf − ωs)

(
f − f IITQE

)
. (65)
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Proof of the H–theorem for model (2)

H–theorem for EQE model

The destruction σ(2)
Q due to the relaxation term (64), where

σ
(2)
Q =

〈
ln (f/W ) J

(2)
Q (f)

〉
, is non-positive and it annihilates at the

equilibrium, i.e. σ(2)
Q (fEQ) = 0, if ωf ≥ ωs > 0 (same as 0 < β ≤ 1).

Proof
Recalling Eq. (65) yields

σ
(2)
Q = − ωs

〈
ln (f/fEQ) (f − fEQ)

〉
− (ωf − ωs)

〈
ln (f/f IITQE )

(
f − f IITQE

) 〉
,

which is non–positive and semi–definite provided that relaxation
frequencies satisfy the condition ωf ≥ ωs.

�
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Elegant numerical implementation (optional)

Applying the following variable transformation, namely

f → g = f − JQ/2, (66)

(δt̂ = 1 in Boltzmann scaling) to the kinetic model yields

g(x̂ + v, t̂+ 1) = (1− ω̃f )g(x̂, t̂) + ω̃ffGE(ρ,u, T ′)(x̂, t̂), (67)

where ω̃f = (1/ωf + 1/2)−1, where as usual ρ = 〈g〉 and
ρui = 〈vig〉, but, since the trance is not conserved,

T ′ = (1− ω̃s/2)T (g) + ω̃sTEQ(g)/2,

where ω̃s = (1/ωs + 1/2)−1 and

T (g) = 〈(v2
x + v2

y)g〉, TEQ(g) = 2/3 [ϕ(ux/c) + ϕ(uy/c)− 1] .

By means of asymptotic analysis, it is possible to prove that the
previous model recovers the Navier–Stokes equations up to the
second order w.r.t. space discretization, with a kinematic viscosity
ν = (3ωf )−1 and a bulk viscosity ξ = (3ωs)

−1.
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Taylor–Green vortex flow by model (2)

First of all, let us verify the transport coefficients by means of the
analytical solution for the Taylor–Green vortex flow.

ξ/ν ν Measured ν Error [%]
BGK 1 0.001 0.00102065 2.06
EQE 10 0.001 0.00102071 2.07
EQE 100 0.001 0.00102106 2.11
BGK 1 0.010 0.00998509 -0.15
EQE 10 0.010 0.00998555 -0.14
EQE 100 0.010 0.00998654 -0.13
BGK 1 0.100 0.09977323 -0.23
EQE 10 0.100 0.09977355 -0.23
EQE 100 0.100 0.09977230 -0.23

In the low Mach limit, the slow relaxation frequency ωs, controlling
the bulk viscosity, does not effect the leading part of the solution.
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Lid driven cavity at Re = 1000: streamlines
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Lid driven cavity at Re = 1000: pressure contours
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Lid driven cavity: stability enhancement

Let us assume ξ = 10 ν for enhancing the stability of EQE [14].

BGK EQE ξ = 10 ν
Re ν min (N) max (Ma) min (N) max (Ma)

1000 1.0× 10−3 50 0.2 25 0.4
2000 5.0× 10−4 100 0.2 50 0.4
3000 3.3× 10−4 150 0.2 75 0.4
4000 2.5× 10−4 200 0.2 100 0.4
5000 2.0× 10−4 250 0.2 125 0.4

Effectively this choice allows one to perform calculations with
rougher meshes N ×N or (equivalently) higher Mach numbers
(Ma = 0.01 Re Kn was adopted).
However the previous consideration does not lead automatically to
a performance improvement, because the accuracy must be
considered as well.
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Lid driven cavity at Re = 5000: main vortexes
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Lid driven cavity at Re = 5000: stability vs. accuracy

Let us compute the locations of the main vortexes [15, 16, 17, 18].

Run Errors on vortex locations [%]
time M-C L-L L-R U-L Mean

EQE 125× 125 0.35 1.15 12.41 1.61 1.36 4.13
EQE 150× 150 0.61 0.74 12.41 2.29 0.49 3.98
EQE 170× 170 1.00 1.20 6.93 2.29 0.63 2.76
EQE 200× 200 2.06 1.10 4.51 1.81 0.06 1.87
EQE 250× 250 4.97 1.10 2.24 2.35 0.06 1.44

ELB [19] 320× 320 ??? 0.48 6.35 2.09 0.22 2.29
BGK 250× 250 2.84 1.16 7.76 1.88 0.06 2.72

The key result is that the EQE model, with a rougher mesh
1702 ∼ 2502/2 than that used by the BGK model, can achieve the
same accuracy (2.76% ∼ 2.72%).
This gives to the EQE model an effective computational speed-up
of 2.84 times over the BGK model (!!).
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Lid driven cavity at Re = 5000: EQE vs. BGK
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Why does model (2) work better than BGK?

Intermediate quasi-equilibrium f IITQE decouples the relaxation of
the (spurious) acoustic modes from the shear modes.
Consequently the generalized local equilibrium (GE) allows one to
tune the bulk viscosity to larger values (as compared to the BGK),
which was found to help suppressing spurious acoustic modes.
Tunable bulk viscosity is a free parameter to dump the
compressibility error, when searching for the incompressible limit
of the Navier-Stokes equations.
Unfortunately there are many sources of instability and the
spurious acoustic modes represent only one trigger (see the
lecture by Professor Ohwada later today about ACM where the
same sources of instability appear and where different techniques
are designed for the fortification of the numerical method).
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Checkerboard modes driving instability

Particularly in three dimensions, another mode (so-called
checkerboard mode) is known to contaminate the BGK pressure
field, through a coupling of the pressure relaxation to the energy
flux (or, in other words, the coupling between the second-order
and the third-order moments) (Dellar [20]).
Of course, model (2), as well as all models based on
quasi-equilibria which depend only on moments up to the second
order, cannot help to fix this instability mode.
On the other hand, the so-called one-belt lattices have not enough
degrees of freedom to deal with complete quasi-equilibria
involving all third order moments: hence, in the example (3), we
discussed a pruned quasi-equilibrium involving non-unidirectional
third order moments, namely f IIIQE = M−1 ·mIII

QE where

mIII
QE = ρ

[
1, ux, uy, ΠEQ

xx , ΠEQ
yy , uxuy, Πxxy,Πxyy, ΠEQ

xx ΠEQ
yy

]T
.

(68)
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Model (3) with pruned quasi-equilibrium

Consequently it is possible to define a new generalized local
equilibrium, namely

f
(3)
GE(ωs/ωf ) = ωs/ωf fEQ(ρ,u)+(1− ωs/ωf ) f IIIQE (ρ,u,Πxxy,Πxyy),

(69)
and a kinetic model, namely

J
(3)
Q (f) = ωf

[
f

(3)
GE (ωs/ωf )− f

]
. (70)

The previous model allows one to decouple the relaxation of the
third-order moments from the relaxation of the pressure tensor.
It is interesting to note that relaxing differently the third-order
moments is equivalent to change the equilibrium definitions of the
fourth-order moments (Dellar [20]), which are known to drive the
checkerboard instability (since both pressure and fourth-order
moments belong to the so-called even/backbone moments).
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Diagonally driven cavity flow

The computational domain is discretized by a uniform collocated grid
with N3 points with N = 60. The Reynolds number is Re = 2000 and
consequently the relaxation parameter controlling the kinematic
viscosity is equal to ωs ≈ 1.9646 [8].
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Checkerboard mode degrades BGK pressure field
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Multiple-relaxation-time (MRT) collisional model
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Model (3): pressure contours

Pietro Asinari, PhD (Politecnico di Torino) Generalized Local Equilibrium CSRC (Cn), 4th May 2011 62 / 73



Kinetic models Killing checkerboard modes

Model (3): velocity vectors
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Some example numerical codes

Interested students may download two FORTRAN codes at

http://staff.polito.it/pietro.asinari/csrc11/

There are two codes:
“lbmlid.f95”: example code for 2D lid driven cavity (which is ideal for
testing the Model (2) and killing the spurious acoustic modes);
“lbmlid3d.f95”: example code for 3D diagonally driven cavity flow
(which is ideal for testing the Model (3) and killing the checkerboard
modes).
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Example code for 2D lid driven cavity: “lbmlid.f95”
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Example code for 3D lid driven cavity: “lbmlid3d.f95”
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Kinetic models Generalization: the quasi-equilibrium chain

Generalization: the quasi-equilibrium chain

Let us define the following generalized collision operator

JQN (f) =

N∑
n=1

ωn
[
fQE n − fQE (n−1)

]
. (71)

where fQE 0 = f and fQEN = fEQ.
Alternatively, JNQ(f) = ω1 (fGE − f), where

fGE =

N∑
n=2

ωn/ω1

[
fQE n − fQE (n−1)

]
+ fQE 1. (72)

Finally, another equivalent formulation is

JQN (f) =

N∑
n=1

(ωn − ωn+1) [fQE n − f ] , (73)

where ωN+1 = 0. Similarly to the proof of the H–theorem for
model (2), the previous expression allows to prove that ωn ≥ ωn+1.
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Kinetic models Generalization: the quasi-equilibrium chain

Relation with the multiple-relaxation-time (MRT)

Because of the conserved quantities and the physical symmetries,
N < Q where Q is the number of lattice velocities in the
considered lattice. However N is still the maximum number of
parameters (i.e. transport coefficients) for controlling the
dynamics.
There are clearly some analogies with the multiple-relaxation-time
(MRT) collisional operator [6, 7, 8].
However there are also important differences (e.g. hierarchical
ordered sequence of relaxation frequencies, maximum number of
tunable parameters equal to the maximum number of moments
which can be constrained...).
It is worth the effort to systematically explore the connection
between a quasi-equilibrium chain and a corresponding MRT
model (if any).
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Conclusions

Concerning the advection process, we discussed some relevant
scalings for analyzing the numerical results by asymptotic
analysis. This allows to link the LBM to other similar methods, e.g.
the Artificial Compressibility Method (ACM).
The quasi-equilibrium (QE) concept and consequently the
generalized equilibrium (GE) were discussed, also by some
specific examples on the simplest lattices. This provides a general
framework for proceeding beyond BGK relaxation in a systematic
way (at least coherent with transport theory).
Three models based on these concepts were analyzed in terms of
both (a) practical numerical implementation and (b) obtained
numerical results. The corresponding FORTRAN codes are
available for interested students.

Pietro Asinari, PhD (Politecnico di Torino) Generalized Local Equilibrium CSRC (Cn), 4th May 2011 69 / 73



Thank you for your attention !!
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