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APPENDINX A: THEOREM PROOFS

Appendix A.1l: Proof of Theorem 1

Theorem 1. Sufficient  and  necessary  condition  for
N, | = l\(}/I | for any packet transmitted in TF N;_| is that

a is an arbitrarily small time interval.

Proof. Noting that T = t + P, where t is the transmis-

sion time of a packet at node i - 1, and deriving T/- 3o
from (5), (6) can be rewritten as
Qt u —+ au
e @an
e€fg e’'f B
In order to prove Theorem 1 we need to find all the
values of a _ that satisfy (A1)
"t Ny T (N + DT (). Let
e t, = mint= N, XTI,
e t, = maxt,
e I(t) and r(t,a)be the left and the right member of
(A.1), respectively,
e A, I | such that
I, = rit,.a),"al Ay (A2)

) ! rtg.a),"al Ay
e Ay I ;| such that
fity) = rty.a)."al A,

. A3
flity) ' rty.),"al Ay (A-3)
Lemmal.ail A= A CA, is the necessary and sufficient
condition for N, | = l\% .

i-
Proof of Sufficiency. Given that I(t) and r(t,a) are mo-
notonic increasing functions of t and a, values of a that
satisfy (A.1) for both t and t,, , satisfy (A.1) also for any
intermediate valueof t, t £ t £ t,,. A isaset of solu-
tions that satisfy (A.1) for any valueof t , t £ t £ t,

Proof of Necessity. By contradiction, suppose a, I A
satisfies (A.1), i.e., I(t)= r(t a,),t" t ,t't, . In order to
be a solution for N; 9, a, must satisfy (A.Il)

"t N, >Tf,(N 1)% ),ie,alsoin t  and t,, . This
contradlcts the assumptlon a, I A. Consequently,
al A isanecessary condition for N, | = l\(}/f .

m

Theorem 1 can be derived by evaluating A, which is
done in the following. By substituting t in (A.1) we ob-
tain

(A.4)

which impliesA, = [O,ff). Let us also consider that a
packet could be sent an arbitrarily small interval J > 0

before the end of its forwarding TF N, ,, ie,
ty :(Ni_1+1)XT - J, 0<J<<T . This value, can
be substituted in (A. 1) from wh1ch we obtain

[J- Tf,J) from which it can be concluded that
Ny?II: N, ,for0£a<J,0<] <<Tf,1e a must
be an arbitrarily small positive number
m

Appendix A.2: Proof fo Theorem 2

Theorem 2. Given a guard time band of duration Q) , the neces-
sary and sufficient condition for N; | = l\(}/f | for any packet
transmitted in TE N, | isthat - £ a < §.

Proof. The proof can be carried out from Lemma 1, fol-
lowing the same steps taken for the proof of Theorem 1
and taking into account that no transmission can occur
just after the beginning and just before the end of the TF,

ie, within the guard time bands. This implies
t, = N, XT +¢§ and t, = (N,_, + )XT; - §. Spe-
cifically, Am can be obtamed by solving

¢ u +al

0y Bra (A.5)
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which, since §<<T;, provides A, =[- §,T;- §). Au is
instead devised from

AN, + DT - 932 gN;  + DT - g+ ag(Aé)
& i v« i g
€ Tr o é T 8
as Ay =1[0- T:,0).
From A CA,, it can be concluded that when a guard
time band of duration § is deployed, N, | = lﬁ/f | for
-g£a<yg.
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Appendix A.3: Proof of Theorem 3

Theorem 3. Necessary and sufficient condition on the forward-
ing delay d;_; (measured in TFs) to guarantee correct pipe-
line forwarding operation is:
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(A7)
Proof. Let Tou; denote the time at which the transmis-
sion of the first packet is scheduled at node i for a for-
warding TF N, , and Tinb, be the time at which a packet
scheduled for TF N; enters the the output buffer of node
. Since N; ><Tf is the time at which N; would begin at

i
the node if an ideal CTR were used, we can write

Tou, = t, + e (A.8)

and
Tinb =t,+e +t, +P+p+ry+Te, 0£t,<T,,(A9)

where t, T[N, T (N;+¥,) and t,I [N, T, (N, ,+DT,)
are the times at which the transmission of the packet
starts at node i and finishes! at node i - 1, respectively.
As stated by Rule1 in Section 2.1, the condition for cor-
rect pipeline forwarding operation is Tou; > Tinb, . This
has to hold for every value of latencies and inaccuracies,

and for any packet transmitted during TF N;_,, specifi-
cally for the worst case. Hence,
min_(Tou;) > max . (Tinb), (A.10)
t,=N, T, t,=(N; ,+ DT J

where J > 0 is an arbitrarily small number. Given the
definition of the involved accuracies, latencies and delays
provided in Section 4.1, the worst case condition can be
expressed as:

N ¥ - Eg>(N, +D¥,- J+E +T; +P+P+R +Te+M.

(A.11)
Devising the forwarding delay d;_y; , that is by defini-
tion the integer number of TFs between the forwarding
TFs in subsequent nodes, and considering that
x>y-JU x3 y for J> Oarbitrarily small, we ob-
tain

Eg+E; + Ty +P+P+Rp+Te+ Mp
& 3

d(i-l)i:Ni'Ni-13 T uwl-
€ f ¢!
(A.12)
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Appendix A.4: Proof of Theorem 4

Theorem 4. In a TDP node deploying the inaccuracy-tolerant
pipeline forwarding operating mode where - E; £ e £ E;
and 0 £t £ TS" (e, -E; £y £ B + TY), the
time dzﬁ‘erence between the actual TF beglnmng and ideal TF
beginning is bounded as:

DTnb et fnb

TS "n (A13)

Proof. For the sake of notation 51mplicity, we consider an
infinite sequence of TFs (i.e., {n}}_,) instead of repeating
sequences of H TFs (ie., {n modH} o )- Furthermore,

1 In Theorem 3 we assume that a packet is transmitted completely dur-
ing its forwarding TF. Pipeline forwarding operation does not impose
this and Theorem 3 can be easily generalized to encompass the case in
which the transmission of a packet ends after the end of the forwarding
TF.

let:

e T? be the time at which TF n ends if the described
inaccuracy-tolerant operating mode is used, ie., the
time at which the transmission of the packets sche-
duled during TF n finishes;

e Yy, be the overall transmitter inaccuracy affecting the

generic TF n .

The effect of the transmitter inaccuracy on the end of a
TF, hence on the beginning of the next one, is mitigated or
even compensated by the former TF not being fully uti-
lized. Consequently, the worst case from the point of
view of the difference between the actual (i.e., when
packet transmission starts) and the nominal beginning
(i-e., according to the CTR) of a TF is when it is fully uti-
lized, which is considered in this proof2. In such worst
case,

TE- TP =T,

,"n>c 0. (A.14)

In order to prove that DTb is bounded, it is first ne-
cessary to consider the relatlonshlp between the end
(T ) and the beginning (T, b) of two generic subse-
quent TFs. In the case of 1deal transmitter (i.e., when

yn = O)’

TP = T, = TP, (A.15)
Ify,' 0, T? = T + dy,, where
d :iyl_ Yo Y1~ Yo
© 3 0 otherwise
and Ty = 'fob + T, + Y, - Recursively,
n-1
TP =Te+nxT +y,+ 4 dy;, (Al6)
j=0
where
e j-1 o] J 1
y Yot & dyE ¥ >V, a dy
‘ o B (A1)
otherw1se

From (A.15), considering that "l:nb = "l:ob +n Xff and
that, by construction, y, + § ?: | dy i 3 0, we can derive

n-1
b—|rb_ bl 2
DT = |T)- T,)|= O+a dy; . (A.18)
DT is limited as there cannot exist any M such
thatDTf Yo+ & k Odyk > E% + T8, In fact, this
could be re-written as y, + § | _ 0dy « T dy, ,, where,

according to (A.17), dy
lowing Values

_, can have one of the two fol-

1 dy, ! éyo a dyy ), ie,
DTf TCtr , wh1ch conflicts with the
deflmtlon of y 1tself

2. dyn 450, which 1m§)hes that DTrTb =Yy, +
- Odyk>y0+ak oWt g,

Similarly, dy. , can have one of the two above values

and the reasoning can be iterated until either (i) a j £ m

is found such that dy_ . ' 0 and case 1 above applies,

or (ii) we obtain DTnb = Y., > E + T due to the
fact that dy. i = =0"jI [0,mM- 1], which however con-

2 This reservation also includes the bandwidth waste due to 7§ .



flicts with the definition of y itself. Consequently,
DTP = |TP- TPl £ E, + TS, "n 3 0, (A.19)
i.e, the inaccuracy in the beginning of any TF n is

bounded by E; + TS .
0




