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Sommario

Il presente lavoro di tesi affronta il problema della modellazione matematica
e computazionale di fenomeni di interazione folla-struttura sulle passerelle pedonali.
In particolare, si fa riferimento al fenomeno di eccitazione laterale sincronizzata, re-
centemente portato all’attenzione della comunità scientifica internazionale in seguito
alla chiusura del Millennium Bridge di Londra il giorno della sua inaugurazione. Il
fenomeno, osservato a partire dagli anni Settanta anche su ponti stradali occasional-
mente attraversati dalla folla, può interessare qualunque ponte con frequenza laterale
prossima a quella laterale del passo (≈ 1 Hz), caricato con un sufficiente numero di
pedoni.

Il problema è stato finora affrontato con un approccio empirico, attraverso
prove di laboratorio su tapis-roulant per misurare la forzante laterale esercitata da
un pedone, attraverso prove in situ su passerelle pedonali o tramite l’osservazione di
video registrati in occasione di grande affollamento. I risultati ottenuti sono serviti a
comprendere meglio l’evoluzione del fenomeno, che è dovuto all’insorgere di due tipi
di sincronizzazione: la prima tra pedoni, in presenza di elevata densità di folla che ne
limita la libertà di movimento; la seconda tra pedoni e struttura (lock-in), quando i pe-
doni per mantenere l’equilibrio camminano inconsciamente con la stessa frequenza di
oscillazione del ponte. Entrambi i tipi di sincronizzazione hanno l’effetto di produrre
un incremento della forzante esercitata dai pedoni, con conseguente aumento delle
oscillazioni. Il fenomeno, quindi, si autoalimenta ma, fortunatamente, è autolimitato:
infatti, quando le oscillazioni superano una certa intensità, i pedoni si fermano per
l’impossibilità di mantenere l’equilibrio. È per questo motivo che l’eccitazione late-
rale sincronizzata difficilmente implica problemi di sicurezza strutturale, ma riguarda
prevalentemente problemi di comfort per gli utenti.

I codici e le linee guida internazionali affrontano il problema principalmente
fissando dei criteri di comfort e proponendo modelli di carico da utilizzare in fase
progettuale. I modelli di forza finora proposti hanno, però, delle limitazioni: non
distinguono i due tipi di sincronizzazione sopracitati; non permettono di modellare
l’innesco del lock-in e la successiva autolimitazione della forzante; non tengono in
conto di eventuali fenomeni non-lineari di traffico dovuti alla disomogeneità della di-
stribuzione spaziale della folla.

Il presente lavoro si propone di ovviare ad alcuni dei problemi enunciati, tra-
mite la proposta di un modello accoppiato di interazione folla-struttura, che possa
descrivere il fenomeno in modo sufficientemente accurato e fornire un utile strumento
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in fase di progettazione. La complessità del problema affrontato ha richiesto un ap-
proccio multidisciplinare, che ha portato a svolgere questo lavoro in cotutela con il
Dipartimento di Matematica. Il modello proposto si basa sul disaccoppiamento del
sistema complesso in sottosistemi interagenti tra loro. Il sottosistema Folla è descritto
da un modello macroscopico basato sulla scrittura e chiusura dell’equazione di conser-
vazione della massa, sfruttando l’analogia idrodinamica. Il sottosistema Struttura è
descritto da un modello agli elementi finiti, la cui risposta nel tempo è rappresentata
dalla soluzione dell’equazione del moto. I termini di interazione sono rappresentati
da un lato dall’equazione di chiusura che lega la velocità di camminata alla densità
della folla e alle oscillazioni del ponte, e dall’altro dal modello di forzante esercitata
dai pedoni. Il modello matematico concepito è stato implementato in un codice di
calcolo utilizzato per le simulazioni computazionali.

Nel Capitolo 1 viene presentata un’introduzione al fenomeno studiato e alle
problematiche finora insolute.

Il Capitolo 2 presenta lo stato dell’arte degli studi relativi al comportamento
del singolo pedone, alla dinamica delle folle e ai fenomeni di interazione folla-struttura
dal punto di vista dell’analisi fenomenologica, dei modelli e delle normative interna-
zionali.

Nel Capitolo 3 viene fornita una descrizione dettagliata del modello matema-
tico proposto in tutte le sue componenti.

Il Capitolo 4 è dedicato all’approccio computazionale utilizzato per risolvere
numericamente le equazioni che governano i sottosistemi Folla e Struttura.

Il Capitolo 5 riporta i risultati delle simulazioni computazionali condotte. Le
prime sono relative alla sola dinamica della folla per studiare le proprietà dell’equazione
di chiusura adottata. Successivamente viene presentata un’applicazione del solo mo-
dello di forza a due casi studio e i risultati sono confrontati con quelli ottenuti da
modelli in letteratura. Infine, il modello completo di interazione viene applicato alla
simulazione di un evento reale occorso sul T-bridge in Giappone e lo stesso caso studio
è utilizzato per condurre uno studio parametrico sulle diverse componenti del modello.

Le conclusioni e le prospettive di ricerca sono infine discusse nel Capitolo 6.

Gli aspetti originali di questo lavoro possono essere cos̀ı sintetizzati:

• il modello matematico del sistema accoppiato folla-struttura si basa su un fra-
mework generale che può essere caratterizzato nelle singole componenti per si-
mulare problemi specifici di interazione;

• la folla non è intesa semplicemente come un carico ma viene modellata come un
sistema dinamico che evolve in spazio e tempo e interagisce con la struttura;

• il modello di forza proposto permette di tenere conto dei diversi tipi di sincro-
nizzazione, dell’innesco del lock-in e dell’autolimitazione della forzante;
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• il codice di calcolo sviluppato permette di valutare la risposta della struttura
simulando casi reali o ipotizzando diversi scenari di comportamento e distribu-
zione della folla.
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Summary

The topic of this work is the mathematical and computational modelling of
crowd-structure interaction phenomena in lively footbridges. The problem of syn-

chronous lateral excitation is addressed. This phenomenon has recently attracted sci-
entific attention after the Millennium Bridge in London was closed the day it opened
(June 2000), but it has been observed from the Seventies, even on road bridges that
are occasionally crossed by crowds and it can occurr on any footbridge that has a
natural frequency close to the lateral walking frequency (≈ 1 Hz) and which is loaded
with a sufficient number of pedestrians.

The problem has so far been tackled with an empirical approach, by means of
laboratory tests on treadmills to measure the lateral force exerted by one pedestrian,
in situ tests on footbridges or the observation of videos recorded during crowd events.
The obtained results have permitted the phenomenon to be better understood. The
lateral vibrations are due to two kinds of synchronization: the first among pedestrians,
when free walking is constrained by high crowd density; the second between pedestri-
ans and the structure (lock-in), when pedestrians unconsciously walk with the same
frequency as the structure in order to maintain balance. As a consequence, the force
exerted by pedestrians increases, and in turn the vibrations grow. The phenomenon
is therefore self-sustained, but fortunately it is also self-limited, that is, when the vi-
brations exceed a threshold value, pedestrians stop walking causing the vibrations to
diminish. For this reason, synchronous lateral excitation has never caused structural
failure, but only discomfort for the users.

International codes and guidelines treat the problem of human-induced lateral
vibrations by proposing comfort requirements and load models. The latter have so
far experienced some difficulties in taking into account some important features: the
existence of two kinds of synchronization, triggering of the lock-in and its self-limited
nature, modelling of non-linear traffic phenomena due to inhomogeneous distribution
of the crowd density.

The aim of this work is to propose a coupled crowd-structure interaction model,
which is able to take some of the aforementioned features of the phenomenon into ac-
count. The model aims at describing the problem with sufficient accuracy and proving
a useful tool for footbridge designers. The complexity of the topic has required a mul-
tidisciplinary approach, and has been tackled with the support of the Department of
Mathematics. The proposed model is based on the partitioning of the complex sys-
tem into interacting subsystems. The Crowd subsystem is described by a macroscopic
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model based on the derivation and closure of the mass conservation equation, in anal-
ogy to the principles of fluid dynamics. The Structure subsystem is described by a
finite element model and its dynamic response is given by the solution of the equation
of motion. The interacting terms are represented, on one hand, by the closure equation
that links the walking velocity to the crowd density and deck lateral motion and, on
the other hand, by the load model of the pedestrian lateral force. The mathematical
model has been implemented in a code in order to perform computational simulations.

An introduction to the problem is presented in Chapter 1.
Chapter 2 is devoted to a review of the state-of-the-art concerning the be-

haviour of one pedestrian, the crowd dynamics and the crowd-structure interaction
phenomena, as far as the phenomenological analysis, the models and the international
codes are concerned.

A detailed analysis of the mathematical model in each of its parts is given in
Chapter 3.

Chapter 4 is devoted to the computational approach used to solve the equa-
tions governing the two subsystems.

Chapter 5 illustrates the results of the performed computational simulations.
The first ones only concern the crowd dynamics, in order to study the properties of
the adopted closure equation. Then, the load model is applied to two case studies
and the results are compared to those obtained with force models found in literature.
Finally, the complete interaction model is applied to a real event that occurred on the
T-bridge in Japan and the same benchmark is used to perform a sensitivity study on
the model parameters.

Finally, the conclusions and research perspectives are discussed in Chapter 6.

The original features of this work can be summarized as follows:

• the mathematical model of the coupled system is based on a general framework
that can be characterized by its components in order to simulate a specific
interaction problem;

• the crowd is not simply viewed as a load, but is modelled as a dynamical system
which evolves in space and time and interacts with the structure;

• the proposed force model allows the two kinds of synchronization, triggering of
the lock-in and self-limitation of the force to be taken into account;

• the developed code allows the structural response to be calculated either through
the simulation of actual cases or due to different scenarios of crowd behaviour
and density.



Nomenclature

A cross-section area
B width of the footbridge road deck
C structural damping
d forward distance among walking pedestrians
d0 body depth of a motionless pedestrian
dc characteristic dimension of a cluster of pedestrians
ds sensory distance
E modulus of elasticity
F lateral force exerted by pedestrians
Fpp lateral force component due to pedestrians synchronized among each other
Fps lateral force component due to pedestrians synchronized with the structure
Frms root mean square value of F (t)
Fs lateral force component due to uncorrelated pedestrians
F̄s lateral force exerted by a single pedestrian on motionless deck
fp step frequency
fpl lateral step frequency
fr frequency ratio fpl/fs

fs structural natural frequency of interest
g corrective factor that sensitises v to the deck motion
Iy, Iz cross section moments of inertia
K structural stiffness
L length of the footbridge span
lp step length
M mass of the crowd-structure system
Mc crowd mass
Ms structural mass
n total number of pedestrians
npp number of pedestrians synchronised to each other
nps number of pedestrians synchronised to the structure
ns number of uncorrelated pedestrians
q crowd flow
qca capacity flow
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S area occupied by a walking pedestrian
S0 area occupied by a motionless pedestrian
Spp coefficient of synchronization among pedestrians
Sps coefficient of synchronization between the pedestrians and the structure
s, ṡ, s̈ structural displacements, velocities and accelerations
T axial force in cables
Tc crowd characteristic time
Ts period of the structural mode
t time
tr time at which pedestrians stop because of excessive deck vibrations
u crowd density
uc critical density, upper limit for unconstrained free walking
uca capacity density
uM jam density
usync crowd density corresponding to complete synchronization among pedestrians
v pedestrian velocity
vM free speed
v̄M average free speed
w lateral width occupied by a walking pedestrian
w0 lateral width occupied by a motionless pedestrian
x space coordinate along the footbridge length
z, ż, z̈ deck lateral displacement, velocity and acceleration
żc, z̈c thresholds of motion perception
żM , z̈M maximum values of the deck lateral velocity and acceleration
żs, z̈s serviceability limits on the deck lateral velocity and acceleration
αG, αT coefficients of geography and travel affecting vM

βG, βT coefficients of geography and travel affecting S
∆tr stop-and-go time interval
δ space dislocation in the closure equation
γ parameter of travel purpose in the Kladek closure equation
ν envelope of ż(t)
ρ mass density
τ time delay
ζ envelope of z̈(t)
ξ damping ratio
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Chapter 1

Introduction

The problem of lateral vibrations induced by pedestrians who walk on crowded foot-
bridges has attracted increasing public attention in the last few decades (Živanović
et al., 2005) from the earliest cases in the nineties (Fujino et al., 1993) up to the
well-known case of the London Millennium Bridge which was opened on 10 June 2000
(Dallard et al., 2001). The growing frequency of occurrence of these phenomena is
primarily due to the increasing strength of new structural materials and the longer
spans of new footbridges, accompanied by aesthetic requirements for greater slender-
ness. Up to date, such kinds of dynamic lateral loads have never involved structural
failure, but have often caused discomfort for the users and the temporary closure of
the footbridges. Neverthless, this reduced serviceability represents a severe problem
for its economic and social outcomes, bearing in mind that these structures often
represent a ”visiting card” of the town where they are built and that large crowds
generally gather during the opening day of a structure. The aforementioned reasons
have motivated recent and intense research activities, to date mainly developed in the
field of civil engineering and structural dynamics. The extensive scientific literature
published in recent years, and recently reviewed by Živanović et al. (2005), testifies
this effort and provides a useful background to comment on the approaches that are
actually employed and to introduce the one proposed in this work.

The problem has generally been tackled using an empirical approach. The stud-
ies can roughly be classified according to the addressed scales of the phenomenological
observation of the system: the small scale (i.e. the behaviour of the single pedestrian)
and the large scale (i.e. the crowd-structure interaction and the structural response).

The measurements of the forces exerted by one pedestrian walking on a fixed
or moving platform belong to the first class of studies. Walking forces on motionless
platforms have been extensively studied in the field of biomechanics together with
that of footbridge dynamics (e.g. Andriacchi et al., 1997).
Laboratory tests involving a single pedestrian walking on platforms or treadmills
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forced to move laterally (e.g. in Dallard et al. 2001, McRobie et al. 2003, Pizzi-
menti and Ricciardelli 2005) allow important data about the relationship between
the platform motion and the lateral force component to be obtained. In an attempt
to maintain body balance on the laterally moving platform, the pedestrian adapts
his step frequency to that of the platform (lock-in) and he walks with his legs more
widespread. Hence, the lateral motion of the upper part of the torso increases and
the resulting force in turn grows. The same tests point out that different pedestrians
can show different sensitivities to platform motion, so that a factor is introduced to
describe the degree of synchronization, i.e. to estimate the mean probability that
individuals will synchronise their footfall rates to the swaying rate of the platform
(Dallard et al., 2001).

As far as the second class of studies is concerned, observation of videos recorded
during crowd events has made it possible to qualitatively point out the great complex-
ity of the overall mechanical system, mainly due to the two-way interaction between
the crowd and the structure and to the non homogeneous crowd distribution along
the deck (density, velocity). In particular, the motion of each pedestrian is affected
by the presence of the surrounding people, especially by the flow of the pedestrians
in front. The higher the crowd density, the more likely it is that pedestrians can see
each other, walk shoulder-to-shoulder and subconsciously synchronize their pacing
rate. Hence, a second kind of synchronization takes place, apart from the one be-
tween each pedestrian and the structure. An attempt to take into account the effects
of the crowd density on synchronization among pedestrians was made by Grundmann
et al. (1993): three human-induced force models, which correspond to different but
spatially homogeneous pedestrian densities and that have to be separately considered,
were proposed. Hence, the problem of actual non homogeneous crowd still remains
open.

According to the author, the models proposed so far encountered some diffi-
culties in taking some important aspects of the problem into account, i.e. the self-
organization effects that occur in pedestrian flow. These effects could be induced due
to the features of the deck (e.g. shape, slope, presence of obstacles) or to the deck
vibrations. They may involve discontinuities of the crowd density and velocity along
the deck up to obstructions, traffic jams or stop-and-go phenomena. From this point
of view, pedestrians cannot be simply described by means of a given force model but
need to be directly modelled as a part of the complex dynamic system.

Traffic dynamics have been extensively analysed and modelled for vehicular
flows in the field of applied mathematics and transportation engineering since the
beginning of the 1970s. A useful background of the field of research is provided by
Prigogine and Herman (1971), Leutzbach (1988), Bellomo et al. (2002) and Helbing
et al. (2002). Generally speaking, the models developed in literature describe the evo-
lution in time and space of the flow conditions, i.e. car density and velocity. The first
task in modelling granular traffic flows is to select the correct observation and repre-
sentation scale, the choice of which determines three different framework classes. A
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microscopic description corresponds to modelling the dynamics of each single vehicle
under the action of the surrounding vehicles. A statistical or mesoscale description, in
a framework close to the one of the kinetic theory of gases, consists of the derivation of
an evolution equation for the probability distribution function on the position and ve-
locity of a vehicle along a road. A macroscopic description, which is analogous to that
of fluid dynamics, refers to the derivation, on the basis of conservation equations and
material models, of an evolution equation for the mass density, linear momentum and
energy, regarded as macroscopic observable quantities of the flow of vehicles assumed
to be continuous. All the above mentioned approaches have been extended to the
simulation of crowd dynamics in recent years (Helbing, 2001). Macroscopic modelling
has been applied since the pioneering works of Henderson (1974). Hoogendoorn and
Bovy (2000), among others, applied the mesoscale description to pedestrian traffic.
A relevant number of models have been developed in recent years in the framework
of the microscopic description, such as the social force model (Helbing, 1991) or the
cellular automata model (Blue and Adler, 1998). In the last decade, special atten-
tion has been devoted to the microsimulation of pedestrian crowds, since it is more
flexible and may be easily applied to panic conditions and emergency evacuation. To
the best of the author’s knowledge, up to now none of the three previously mentioned
frameworks has been applied to crowd-structure interaction.

This work deals with the proposal of a mathematical model of crowd-structure
interaction and its implementation in a computational code. The model aims at rep-
resenting the complex multiphysical non-linear dynamic system to give, on one hand,
a detailed description of the crowd flow along the deck and its effects on the structural
dynamics and, on the other, to obtain synthetic results that are useful for engineers
and designers. The general modelling framework is based on the mathematical and
numerical partitioning of the coupled system into two subsystems, the Crowd and the
Structure, which interact between each other by means of suitably defined interacting
terms: the structure-to-crowd action develops through the constitutive law that links
pedestrian velocity to crowd density and deck motion; the crowd-to-structure action
takes place through the definition of a force model. Each part of the framework is
characterized in order to simulate the synchronous lateral excitation phenomenon. In
particular, the proposed force model is conceived in order to take into account both
kinds of synchronization, the triggering of the lock-in and the self-limited nature of the
pedestrian lateral force. Furthermore, the modelling of the crowd as part of the over-
all dynamical system allows the aforementioned effects of pedestrian self-organization
to be taken into account.
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Chapter 2

State-of-the-art

This chapter is not intended to be an exhaustive treatment of the great number of
studies found in literature, which belong to different research fields and to different
scales of the phenomenological observation of the system. The aim is to provide a
brief review of the main topics, addressed to the development of the work proposed
in this thesis. In order to provide a clear exposition, the chapter is organized into the
following sections:

• Phenomenological observation;

• Models;

• Design codes and guidelines.

2.1 Phenomenological observation

This section is devoted to a brief review of the studies concerning the phenomenolog-
ical description of the crowd-structure interaction phenomenon, named synchronous
lateral excitation. In the following they are roughly classified into three categories,
corresponding to the different scales of observation: the studies concerning the be-
haviour of a single pedestrian, those relative to the crowd behaviour and the ones
concerning crowd-structure interaction.

2.1.1 Single pedestrian behaviour on motionless platforms

When a pedestrian walks, he produces a dynamic time varying force which has com-
ponents in all three directions: vertical, horizontal-lateral and horizontal-longitudinal.
Many studies have focused on the measurement of the single pedestrian walking force

5



6 F. Venuti. “Crowd-Structure Interaction in lively footbridges”

Figure 2.1. Typical shapes of walking force in (a) vertical, (b) lateral and (c) longi-
tudinal direction (after Andriacchi et al., 1997)

by means of force plates or treadmills, in particular on the vertical component, which
has the highest magnitude. Since a complete review of these studies can be found in
Živanović et al. (2005), only a brief summary is made in the following, with particular
attention to those related to the lateral force component.

A lot of research on bipedal locomotion and walking forces has been carried out
in the field of biomechanics (e.g. Andriacchi et al. 1997; Belli et al. 2001; Bauby and
Kuo 2000; Ebrahimpour and Fitts 1996; Ebrahimpour et al. 1996; Masani et al. 2002;
Vaughan 2003). For instance, Andriacchi et al. (1997) measured single step walking
forces in all three directions by means of a force plate (Fig. 2.1). They reported
that step length and peak force magnitude increase with incresing walking velocity.
A similar conclusion was also reached by Wheeler (1982), who stressed that, with
increasing step frequency, the peak amplitude, step length and velocity increase (Fig.
2.2).

The importance of establishing a relationship between the walking frequency,
velocity and step length is therefore clear. As for the walking frequency, we refer to
a vertical frequency, that is, the number of times a foot touches the ground in a time
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Figure 2.2. Dependance of stride length, velocity, peak force and contact time on
different pacing rates (after Wheeler, 1982)

unit, and a horizontal frequency, that is, the number of times the same foot touches the
ground. The lateral step frequency is therefore half the vertical frequency. A reliable
statistical description was given by Matsumoto et al. (1978), who analyzed a sample of
505 people, and concluded that the vertical frequencies follow a normal distribution,
with a mean of 2 Hz and a standard deviation of 0.173 Hz. Similar investigations
were performed by Pachi and Ji (2005), who measured the walking frequency and
velocity of 800 people walking unobserved: they found different values of step length,
speed and walking frequency depending on the kind of floor (shopping centre floors
or footbridges) and on the sex. Walking velocity is linked to the walking frequency f
and step length l by the simple relation v = fl. Bertram and Ruina (2001) obtained
different walking speed-frequency relations under different constrained circumstances
(fixed v, f or l). This result stresses the complexity of pedestrian walking behaviour
once more.

If we assume the perfect periodicity of the force, both the vertical and the
lateral component can be represented by a Fourier series , respectively:

Fv(t) = F0 +
∑

i

Fi,v(2πift − ϕi) (2.1)

Fh(t) =
∑

i

Fi,h(2πi
f

2
t − ϕi) (2.2)

Many researches have tried to quantify the Dynamic Load Factors (DLF s), i.e. the
ratio of the force amplitude to the weight of a person, of the vertical component first
harmonics, but only a few have reported results concerning the lateral component.
Among them, it is worth citing Bachmann and Ammann (1987), who measured the
first five harmonics for the lateral direction and reported a dominance of the first
and third harmonics (DLF1 = 0.039, DLF2 = 0.01, DLF3 = 0.043, DLF4 = 0.012,
DLF5 = 0.015). Sétra (2006) recommends taking into account the first four harmonics
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to achieve a loading function that is sufficiently close to the force measurements.
After the London Millennium Bridge opening, various attempts have been made to
characterize the lateral force component. One of the most recent studies in this
direction is that of Pizzimenti (2005). In his PhD thesis, Pizzimenti measured the
lateral force of a sample of 66 pedestrians walking on a treadmill, and showed that
the hypothesis of perfect periodicity is unlikely.

2.1.2 Crowd behaviour

It is widely accepted that the behaviour of a pedestrian walking within a crowd is
different from that of a pedestrian walking alone. Walking velocity is affected by crowd
density, which means that the higher the crowd density, the lower the walking velocity.
Another important aspect is that, when a pedestrian’s walking is constrained because
of high density, people tend to walk with the same frequency and a null relative
phase angle, that is, they synchronize to each other. While the latter feature has not
yet been deeply investigated or understood, many studies have been directed to the
determination of a law that links the walking velocity to the crowd density. Most of
these studies belong to the tranportation research field, with the aim of controlling the
layout and dimensions of pedestrian walking facilities (e.g. Weidmann 1993, Daamen
2004). In recent years, research has been directed to the study of crowd flow patterns
in emergency situations (e.g. Fang et al., 2003).

Let us consider a stationary and homogeneous pedestrian traffic flow. For each
type of flow, the so-called fundamental relation is valid:

q = uv (2.3)

where q is the flow, intended as the number of pedestrians passing a cross-section of
an area in a unit of time [ped/ms]; u is the crowd density [ped/m2]; v is the average
walking velocity [m/s]. The three variables are macroscopic characteristics of the flow:
the graphical representations of their relations are called the fundamental diagrams.
Looking at the flow-density diagram in Fig. 2.3, some relevant quantities can be
identified (Daamen, 2004):

• free speed vM : the slope of the function q(u) at the origin that corresponds to
the mean velocity if q = 0 ped/ms and u = 0 ped/m2;

• critical density uc: the lower bound for unconstrained free walking. For u < uc,
pedestrians walk with constant free speed v = vM (stable region); for u > uc,
the walking speed decreases with increasing density (unstable region);

• capacity speed vca and density uca: the speed and density when q = qca, that
is, the maximum flow. The region of density under uca is called free flow region,
while the congestion region corresponds to a higher density than the capacity
density;
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Figure 2.3. Flow-density fundamental diagram

• jam density uM : the maximum admissible density corresponding to null speed
and flow.

It is worth noting that, in the flow-density fundamental diagram, the walking speeds
can be read by evaluating the slope of the straight lines passing through the origin.

The determination of the values of the aforementioned variables is not a sim-
ple task, since walking behaviour is influenced by a great number of factors, such as
age, culture, gender, travel purpose, type of infrastructure and walking direction, as
pointed out by Weidmann (1993) and Daamen (2004). In particular, several studies
have been directed to the determination of free speeds. According to Weidmann, the
observed free walking speeds appear to follow a normal distribution with an estimated
mean of 1.34 m/s and a standard deviation of 0.37 m/s (Daamen 2004, Buchmueller
and Weidmann 2006). As an example, Table 2.1 classifies the free speeds as a function
of the travel purpose and the cultural and ratial differences, respectively.
It is worthwhile pointing out that the observed free speeds are almost always underes-
timated, since they are determined by extrapolating the found speed-density relation
to the null density area, as highlighted by Daamen and Hoogendoorn (2006).They in
fact estimated, with a new method, higher free speeds than those found in literature
(1.57 m/s istead of 1.49 m/s for unidirectional flow).

As far as the jam densities are concerned, they have been estimated to vary
between 4 and 5.4 ped/m2 (see Table 12 in Buchmueller and Weidmann, 2006). The
average human body in the world has a width of 45.6 cm and a depth of 28.2 cm (see
Table 1 in Buchmueller and Weidmann, 2006). These dimensions refer to a motionless
pedestrian. The maximum pedestrian density could be derived from the minimum
average body surface (0.13 m2): this leads to a density of 7.69 ped/m2, that is diffi-
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Table 2.1. Example of classification of free speeds [m/s] (Buchmueller and Weid-
mann 2006, Daamen 2004)

Geographic area Free speed Travel purpose Free speed

Europe 1.41 Business district 1.45 ÷ 1.61

United States 1.35 Commuters 1.34 ÷ 1.49

Australia 1.44 Shoppers 1.04 ÷ 1.16

Asia 1.24 Leisure 0.99 ÷ 1.10

cult to obtain in practice, since people can hardly move at densities over 5 ped/m2.
When pedestrians are walking they require more lateral and forward space than a
motionless person. The required lateral additional space has been estimated to be
about 62% of the average width of pedestrians. The required forward space (distance
among pedestrians d) instead depends on the walking velocity: a linear relation has
been proposed by Seyfried et al. (2005), as a fitting to experimental data (Fig. 2.4),
which is valid in the 0.1 < v < 1 m/s domain:

d = 0.36 + 1.06v. (2.4)

Figure 2.4. Relation between d and v, after (Seyfried et al., 2005)

Because of the great number of factors affecting pedestrian flows, rather dif-
ferent fundamental diagrams can be found in literature. A complete review of the
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speed-density relations proposed so far can be found in Daamen (2004) and Buch-
mueller and Weidmann (2006). They are graphically represented in Fig.s 2.5 and 2.6:
the experimental data classified with respect to the kind of pedestrian traffic (from
Oeding 1963, Fang et al. 2003, Seyfried et al. 2005) (Fig. 2.5); the linear relations
(from Daamen 2004, Buchmueller and Weidmann 2006) (Fig.2.6a); the non-linear
laws (from Weidmann, 1993, Hughes, 2002) (Fig.2.6b). The proposed relations are
also summarized in Tables 2.2 and 2.3.
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Figure 2.5. Speed-density relation: experimental data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  1  2  3  4  5  6

v [m/s]

Fruin (1971)

Lam et al. (1995)

Older (1968)

Pauls (1987)

Polus et al. (1983)

Sarkan &  Janardhan (1997)

Tanariboon et al. (1986)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 5 4 3 2 1 0 u [p/m
2
]

Virkler &  Elayadath (1994)

Weidmann (1993)

Hughes (2002)

(a) (b)
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Table 2.2. Speed-density linear relations (Buchmueller and Weidmann 2006, Daa-
men 2004)

Source Location Relation

Fruin (1971) Peak hour flow at com-
muter bus terminal

v = 1.43 − 0.35u

Lam et al. (1995) Indoor walking in Hong
Kong

v = 1.29 − 0.36u

Older (1968) Shopping streets v = 1.31 − 0.34u

Pauls (1987) Stairs in total evacuation
of office buildings

v = 1.26 − 0.33u

Polus et al. (1983) Sidewalks in central busi-
ness district in Israel

v = 1.31 − 0.27u

Sarkan & Janardhan (1997) Calcutta Metropolitan
transfer area

v = 1.46 − 0.35u

Tanariboon et al. (1986) Singapore v = 1.23 − 0.26u

Table 2.3. Speed-density non-linear relations (Buchmueller and Weidmann 2006,
Daamen 2004, Hughes 2002)

Source Location Relation

Hughes (2002) - v =











1.4 u < 0.8

1.4
√

(0.8/u) 0.8 < u < 2.8

1.4

√
5 − u
u 2.8 < u < 5

Virkler & Elaya-
dath (1994)

Pedestrian tunnel
after University of
Missouri football
games

v =

{

1.01 exp (−u/4.17) u < 1.07
0.61 ln (4.32/u) u > 1.07

Weidmann (1993) Kladek formula v = 1.34
[

1 − exp
(

−1.913
(

1
u − 1

5.4

))]

One of the first studies was developed by Oeding (1963). He proposes an in-
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teresting diagram (Fig. 2.7), recently recovered by Schlaich (2002) and FIB (2005),
which graphs the capacity of pedestrian walkways as a function of density and traffic
type. In particular he distinguishes four types of pedestrian traffic (shopping, event,
rush hour and factory traffic), corresponding to increasing walking velocity and ca-
pacity. The diagram also allows a classification of walking regimes to be outlined, that
is: free (u < 0.3 ped/m2); acceptable (0.3 < u < 0.6 ped/m2); dense (0.6 < u < 1
ped/m2); very dense (1 < u < 1.5 ped/m2); crowded (u > 1.5 ped/m2).

Figure 2.7. Relationship between bridge capacity, pedestrian density and their ve-
locity, after Oeding (1963)

Many of the studies report a linear relationship between velocity and density
(Fig. 2.6a), according to the following form:

v = vmax − αu; α > 0. (2.5)

Other authors have proposed non linear laws (e.g. Weidmann, 1993) or multi-regime
models (e.g. Hughes, 2002). The non-linear multi-regime models (e.g. Hughes, 2002)
are certainly more accurate than the linear laws, since they better capture the almost
constant speed at low densities and they have the upward concave form that better
fits the observation data. The unrealistic discontinuity in the Hughes’ diagram is of
no interest, since he observes that it would be difficult for such a flow to occur in
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practice.
Looking at the experimental data (Fig. 2.5), it is clear that the Reimer’s mea-

surements, reported by Oeding (1963), are clearly different from the other ones, since
they refer to fast pedestrian transit in train stations and the author himself refers to
them as exceptional cases: it is odd that a recent design guideline (FIB, 2005) only
reports Reimer’s diagram.

It is worthwhile pointing out that the proposed speed-density relations refer to
a one-directional flow. In a bi-directional flow, the effects due to passing pedestrians
lead to a reduction of the flow capacity. Weidmann (1993) reports a capacity loss
of about 4-9% in the case of equal flows in both directions (50%/50%) and a higher
capacity loss (about 14.5%) for a directional ratio of 10%/90%.

Finally, it is worth drawing some considerations about flow dimensionality.
Many of the proposed relations refer to pedestrian movement on a plane. Seyfried
et al. (2005) showed that the measurement of the speed-density relation for a single-
file movement of pedestrians leads to results in complete agreement with Weidmann’s
diagram: this means that specific two-dimensional features, such as internal friction
and lateral interference, do not have a strong influence on the fundamental diagram
in the considered density range.

In conclusion, it can be stated that it is not possible to determine a universally
valid speed-density relation, since there are too many parameters that affect such a
relation. For this reason, a specific law has to be tuned in order to characterize a
particular problem. Furthermore, it should be borne in mind that the fundamen-
tal diagrams are derived in steady state conditions: this means that the quantities
characterizing the system vary slowly with respect to space and time. Therefore,
the fundamental diagrams are not suitable for use in unsteady conditions, such as
emergency or panic situations.

2.1.3 Crowd-structure interaction: the synchronous lateral ex-
citation phenomenon

When a pedestrian walks on a laterally moving surface, because of the attempt to
maintain body balance, he walks with his legs more widespread and adapts his lateral
frequency and phase to that of the moving surface, that is, he synchronizes with the
structure. Hence, the lateral motion of the upper part of the torso increases and the
resulting lateral force grows in turn. This phenomenon is amplified if the pedestrian
walks in a crowd, since synchronization among pedestrians increases the effects of the
pedestrian-structure synchronization. The phenomenon, called synchronous lateral

excitation by Dallard et al. (2001), can occur in any bridge with a lateral frequency
below 1.3 Hz that is loaded with a sufficient number of pedestrians. So far, the phe-
nomenon has never led to structural failure since it has a self-limited nature, that
is, when the vibrations exceed a limit value pedestrians stop walking or touch the
handrails, causing the vibrations to decay. Nevertheless, the resulting reduced com-
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fort for the users has often led to a temporary closure of the footbridge in order to
provide proper countermeasures, with consequent economic and social repercussions.
This is exacly what happened on the famous London Millennium Bridge, which was
closed the day it opened (10 June 2000) because of excessive lateral vibrations. The
event gave rise to investigations in order to explain what had happened, and it re-
sulted that the phenomenon had already occurred in the past but had not been fully
investigated.

The growing frequency of occurrence of these phenomena is primarily due to the
increasing strength of new structural materials and longer spans of new footbridges,
accompanied by the aesthetic requirements for greater slenderness (Bachmann, 2002).
Most of the footbridges that suffer from this phenomenon are, in fact, characterized
by a reduced structural mass, so that the ratio between the mass of pedestrians and
the structural mass is no longer negligible, and also by a very low damping. A sample
of the bridges that experienced the phenomenon is summarized in Table 2.4 and Fig.
2.8. It should also be pointed out that a road bridge, like the Auckland Harbour
Bridge in New Zealand, also experienced this kind of lateral vibration, showing that
the problem is not related to a specific structural type or to technical innovations.

Table 2.4. Examples of bridges that have experienced human-induced lateral vibra-
tion

Bridge Year Type Span Lateral
[m] freq. [Hz]

Auckland Harbour Bridge,

north span (New Zealand)

1975 Steel box girder 190 0.67

Groves Bridge (Chester, UK) 1977 Suspension 100 -

T-Bridge (Japan) 1993 Cable-stayed 178 0.90

Solferino Bridge (Paris, F) 1999 Steel arch 106 0.71

Millennium Bridge (London,
UK)

2000 Suspension 81 (north) 1.00

144 (centre) 0.5

108 (south) 0.8

M-bridge (Japan) 2003 Suspension 320 0.88

In the last few years, many studies have been devoted to the measurement of
the lateral force exerted by one pedestrian walking on a moving surface. The first
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Figure 2.8. Examples of bridges that have experienced human-induced lateral vi-
bration
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laboratory experiments were carried out at London Imperial College and at the Uni-
versity of Southampton to explain what had happened on the London Millennium
Bridge (Dallard et al., 2001). The tests at the University of Southampton involved a
person walking ”on the spot” on a small shaking table. The tests at Imperial College
involved persons walking along a 7.2m-long platform which could be driven laterally
at different frequencies and amplitudes. Even though these tests did not permit the
behaviour of people walking in a crowd to be investigated, they allowed important
results to be obtained about the behaviour of a single pedestrian and the probability
that he would synchronise his footfall rate to the frequency of the swaying platform
(lock-in). Fig. 2.9 reports the DLF s of the first harmonic and the probability of
lock-in, both of which increase for increasing platform amplitudes.
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Figure 2.9. DLF s of the first harmonic (a) and probability of lock-in, after Dallard
et al. (2001)

In France, Sétra (2006) built a 7-m long and 2-m wide slab on 4 flexible blades moving
laterally, in order to measure the horizontal load of pedestrians (Fig. 2.10a). The de-
vice was provided with access and exit ramps in order to maintain walking continuity.
These tests showed that there is an acceleration threshold above which some syn-
chronization arises and causes uncomfortable vibrations (> 0.6 m/s2). Similar tests
on a moving treadmill were also performed by Pizzimenti (2005). The specially built
treadmill (Fig. 2.10b) was laterally driven at 15 different amplitude configurations
(z = ±15, ±30, ±45 mm) and frequency configurations (fs =0.6, 0.7, 0.75, 0.82, 0.92
Hz). The DLF s of the force component at the same frequency as the platform are
reported in Fig. 2.11: the dashed line refers to the mean value obtained from the
static tests discussed in §2.1.1.

Other suggestions come from the observation of the videos recorded during
crowd events. Fujino et al. (1993) were the first to observe the phenomenon of syn-
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(a) (b)

Figure 2.10. Example of treadmills after Sétra (2006) and Pizzimenti (2005)

Figure 2.11. DLF s of the force component at the frequency fs, after Pizzimenti
(2005)

chronous lateral excitation on the T-bridge in Japan and recorded human passage
during a congested period. The motion of a selected number of pedestrian heads
were digitized from the video by means of a microcomputer (Yoshida, 2002). The
head motion time histories showed a surprising similarity, i.e. they were synchronized
although the amplitudes were different. Fujino et. al estimated a percentage of syn-
chronized pedestrians of about 20%. They explained the phenomenon as follows: first
a small lateral vibration is induced by random pedestrian forces and some pedestri-
ans synchronize with the structure; then the deck vibration increases because of the
resonant force and more pedestrians become syncronized. The vibration is therefore
self-excited, but it does not go to infinity because of the adaptive nature of men, who
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stop walking when the vibration is excessive.
The phenomenon has also been studied by means of tests performed on the

structure. The tests carried out on the Millennium Bridge in July and December
2000 (Dallard et al., 2001) (Fig. 2.12) evidenced an almost linear dependence of
the pedestrian force on the deck lateral velocity. In addition, the deck acceleration
abruptly increased when the number of pedestrians exceeded a critical value. The
triggering number of people was defined as

NL =
8πcfM

k
, (2.6)

where c, M and f are the modal damping, mass and lateral frequency, while k = 300
Ns/m in the frequency range 0.5-1.0 Hz. The critical number of people likely to
induce synchronous lateral excitation was also estimated by Roberts (2003), assuming
a single-span simply-supported deck and a uniform crowd distribution along the span
L:

Np =
ρL

mpΩ
2D

, (2.7)

where ρ is the bridge mass per unit length, mp is the average mass of a single pedes-
trian, Ω is the ratio between the step frequency and the frequency of the dominant
mode of vibration, D is the dynamic amplification factor which is equal to:

D =

√

1

(1 − Ω2)2 + (2ξΩ)2
, (2.8)

and ξ is the damping ratio. Roberts (2003) also extended his model to the more
general case of pedestrians uniformly distributed over n discrete regions of length
αL/n. Both Eq.s (2.6) and (2.7) can be used to predict the required damping for a
given density in order to avoid synchronous lateral excitation. The damping required
to ensure stability has also been estimated by other authors, e.g Barker (2002) and
Newland (2003). According to the latter, the stability criterion is defined as:

2ξ > αβm/M, (2.9)

where α is the ratio between the body movement and the amplitude of deck vibration,
β is the percentage of synchronised pedestrians, m is the pedestrian modal mass and
M the modal mass of the dominant mode of vibration.

Several test campaigns were also carried out on the Solferino footbridge (Sétra,
2006), leading to the following conclusions: the lock-in occurred for the first lateral
mode and appeared to start and develop more easily when the step lateral frequency
was lower than the deck lateral frequency; lock-in occurs beyond a particular thresh-
old, that can be determined in terms of critical number of pedestrians (as proposed
by Dallard et al., 2001) or critical value of acceleration, which seems more relevant;
below 0.1 m/s2, pedestrian behaviour may be considered random.
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Figure 2.12. (a) Peak amplitude of the lateral modal force per person per vibration
cycle. (b) Lateral force per person per vibration cycle vs deck velocity, after Dallard

et al. (2001)

Field measurements were also conducted in November 2002 by Nakamura (2003)
on the M-bridge in Japan. Accelerometers in the lateral direction were attached to
the base of the handrails at five positions of L/8, L/4, 3L/8, L/2 and 9L/16 (L: span
length), and accelerometers were also attached to the waist belt of a person, who
walked on the bridge among other pedestrians. The measurements confirmed that
the pedestrian walked at the same frequency as the girder and showed that the pedes-
trian phase is between 120◦ and 160◦ ahead of the girder. A comparison between
the time histories of the girder and pedestrian lateral motion also showed that the
pedestrian was sometimes no longer tuned to the structure (Fig. 2.13): this means
that he lost his balance because of large girder vibrations and temporarily stopped
walking. By analizing the behaviour of the three aforementioned footbridges (Millen-
nium Bridge, T-bridge and M-bridge), Nakamura proposed a serviceability limit for
lateral vibration, that is, a displacement of 45 mm (a velocity of about 0.25 m/s and
an acceleration of about 1.35 m/s2). Nakamura also observed that synchronization is
unlikely to occur at a deck natural frequency under 0.6 Hz.

Finally, other interesting suggestions to better understand the phenomenon
come from wind engineering. Several authors (e.g. McRobie et al. 2003, Newland
2003, Pizzimenti and Ricciardelli 2004) observed some similarities with an interaction
phenomenon between fluid flow and structures that is widely studied in wind engi-
neering and commonly known as lock-in. In this case, the cross-flow oscillations of
a bluff structure are due to and interact with the shedding of vortices in its wake.
Even though the vortex-induced and crowd-induced oscillations differ in their causes,
they show analogous features about the structural response. In a given range of the
incoming wind velocity (the so-called lock-in region), the vortex-shedding frequency
is in fact constant and equal to the frequency at which the structure oscillates, rather
than being a linear function of the wind velocity, as stated by the Strouhal law.
In other terms, the structural motion affects the wind flow (or crowd flow) so that
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Figure 2.13. M-bridge: lateral displacements of girder and pedestrian at the L/4
position, after Nakamura (2003)

synchronization occurs and the resonance condition takes place. Furthermore, both
phenomena are self-limited, in the sense that structural oscillations do not proceed to
divergent amplitudes but enter a limit cycle even though the structural damping is
null. The tendency for vortex shedding to induce wind-excited structural vibrations
is measured by the Scruton number, which is a product of damping and the ratio
of structural and fluid masses. According to this analogy, Newland (2003) proposed
the definition of a Pedestrian Scruton number defined, with the same notation as Eq.
(2.9), as:

Scp = 2ξM/m. (2.10)

Therefore, by substituting Eq. 2.10 in (2.9), the required condition for stability is:

Scp > αβ. (2.11)

2.2 Physical-mathematical models

This Section, like the previous one, is organized according to the different scales of
observation of the coupled system. Therefore, the models referring to the different
components of the overall dynamical system (i.e. the structure, the crowd, the force
exerted) are reviewed first; then, a few hints of coupled-systems modelling are given.

2.2.1 Structural models

The modelling of structures is usually performed through the Finite Element (FE)
approach. This means that the real structure with an infinite number of DOFs is
discretised into FEs, which are interconnected at a limited number of points (nodes)
with a resulting finite number of degrees-of-freedom (DOFs). The dynamic response
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of the structure is given by the well-known equation of motion of a multi-degree-of-
freedom (MDOF) system (Clough and Penzien, 1987):

MẌ(t) + CẊ(t) + KX(t) = F(t), (2.12)

where M, C and K are the mass, damping and stiffness matrices, while Ẍ, Ẋ, X and
F are the acceleration, velocity, displacement and external force vectors.

The mass and stiffness matrices are determined by assembling the mass and
stiffness element matrices, that are calculated according to the geometrical and mate-
rial properties of the structure. The damping mechanisms are very difficult to model.
If the system is linear, a typical way of expressing viscous damping is in terms of
the modal damping ratios ξn, where n is the number of DOFs. According to this
hypothesis, Eq. 2.12 can be uncoupled into n equations, that is, into n single-degree-
of-freedom (SDOF) systems:

ÿn(t) + 2ξnωnẏn(t) + ω2
nyn(t) = Fn(t)/mn, (2.13)

where ÿn, ẏn and yn are the generalized or modal acceleration, velocity and displace-
ment, ωn is the natural circular frequency for the nth mode of vibration, while Fn

and mn are the modal force and mass for the same mode. The total response of the
system can then be obtained by a linear combination of the mode shape vectors φn:

x(t) =
n

∑

i=1

φiyi(t). (2.14)

If the system is non linear, the damping cannot be expressed by means of damping
ratios, but an explicit damping matrix is needed. One of the easiest ways of deter-
mining a proportional damping matrix is to make it proportional to either the mass,
the stiffnes matrix or a combination of the two:

C = αM + βK. (2.15)

This is the so-called Rayleigh damping and it leads to the following relation:

ξn =
α

2ωn
+

βωn

2
. (2.16)

The evaluation of the two Rayleigh coefficients can be made by solving a pair of
simultaneous equations if the damping ratios ξn and ξm associated to two different
frequencies are known. This is unlikely in practice, therefore the same damping ratio
ξ = ξn = ξm is used for both control frequencies and the coefficients are given as:

{

α
β

}

=
2ξ

ωm + ωn

{

ωmωn

1

}

(2.17)

It is recommended to take ωm as the fundamental frequency and ωn as the higher fre-
quency of the modes which significantly contribute to the dynamic response (Clough
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and Penzien, 1987).
Thanks to the computational power of personal computers and sophisticated

FE software that is currently available, it is possible to perform dynamic analysis of
very complex structures. However, when one mode dominates, as often happens in
footbridges, the dynamic response can be estimated with sufficient accuracy using a
generalized single-DOF (SDOF) model for the appropriate mode (Clough and Pen-
zien, 1987), with a great reduction of computational cost. In other words, the total
response is given by:

x(t) = φiyi(t), (2.18)

where φi is the selected mode shape and the generalized properties are determined as
follows:

mi = φT
i Mφi

ci = φT
i Cφi

ki = φT
i Kφi

Fi = Fφi. (2.19)

2.2.2 Crowd models

The crowd, as well as the structure, can be seen as a dynamical system. Crowd
dynamics modelling is quite recent and is mainly derived from vehicular traffic mod-
elling, which has been widely analysed in the field of applied mathematics since the
beginning of the Seventies. Pedestrian and vehicular flows have some common fea-
tures: they are both granular flows; even though the psychological human component
greatly affects people’s behaviour, in normal condition, pedestrians and drivers do not
act in a chaotic way, but they develop self-organized behaviour that is predictable;
in congested situations, some synchronization occurs due to high correlated motion.
On the other hand, drivers are more sensitive to velocity and try to avoid crashes.
In addition, vehicular flows can be more easily modelled as monodimensional flows,
since cars are always organized in lanes, while pedestrians can choose different paths
more freely.

What follows refers to the vehicular traffic theory, which has been adapted
to pedestrian traffic. Traffic models can be classified into three categories (Bellomo
et al., 2002; Bellomo and Coscia, 2005): microscopic, statistical and macroscopic
models. Once the representation scale has been chosen, it is useful to express all the
variables involved in the problem in dimensionless form and they are therefore scaled
with respect to characteristic quantities, that is:

• L is the length of the footbridge span;

• uM is the maximum admissible density of the crowd, which is also called jam
density;
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• vM is the maximum mean velocity of the crowd, which is also called free speed.

Let us also introduce a characteristic time Tc = L/vM , defined as the time necessary
to cover the footbridge span L walking at the maximum mean velocity vM .

We can now define the independent and dependent dimensionless variables (the
subscript r refers to the variable dimensional value):

• t = tr/Tc is the time independent variable;

• x = xr/L is the space independent variable;

• u = ur/uM is the crowd mass density;

• v = vr/vM is the crowd velocity;

• q = u · v is the linear mean flow.

In the following, we refer to a one-dimensional flow of pedestrians along a walkway of
length L.

Microscopic models

Microscopic models describe the dynamics of each single pedestrian under the action
of the surrounding people. The state of the system is described by the position and
velocity of each pedestrian as a function of time. Pedestrian behaviour in different
situations is described by a set of rules. Models developed at a microscopic scale
are generally described by ordinary differential equations. Then, similarly to the
Newtonian mechanics for systems of particles, one has to solve a large system of
equations. Mean quantities, such as density and mass velocity, are then obtained
by an averaging process. If N(t) is the number of pedestrians, each characterized
by a position xi and a velocity vi, the density can be calculated as the number of
pedestrians which, at the time t, are in the tract [x − ∆x, x + ∆x], say:

u(t, x) ∼= N(t)

2∆xuM
(2.20)

and, similarly, the mean velocity is

v(t, x) ∼= 1

N(t)vM

N(t)
∑

i=1

vi(t). (2.21)

A large number of microscopic models have been developed in literature, e.g.
the social force models by Helbing and Molnár (1995) and Seyfried et al. (2006), the
cellular automata model by Blue and Adler (1998) and the microscopic models by
Hoogendoorn and Bovy (2004).
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Statistical models

Statistical or gas-kinetic models consist of the derivation of an evolution equation for
the distribution function on the position and velocity of the pedestrians along the
walkway. The state of the system is still identified by the position and velocity of
the pedestrians, however their identification does not refer to each individual but to
a suitable probability distribution:

f = f(t, x, v) (2.22)

where f dxdv is the number of pedestrians who at time t are in the phase domain
[x, x + dx] × [v, v + dv]. Macroscopic observable quantities can be obtained, under
suitable integrability assumptions, as momenta of the distribution f , normalized with
respect to the maximum density uM (see Bellomo et al., 2002). The kinetic models are
described by integro-differential equations that are similar to the Boltzmann equation.

Gas-kinetic models have been proposed e.g. by Hoogendoorn and Bovy (2000).

Macroscopic models

Macroscopic models, in analogy with the principles of fluid dynamics, refer to the
derivation, on the basis of conservation equations and material models, of an evolution
equation for the mass density, linear momentum and energy, regarded as macroscopic
observable quantities of the flow of pedestrians assumed to be continuous. Macrosopic
modelling has been extensively developed for vehicular traffic flow (e.g. Bellomo et al.
2003; Bertotti and Bellomo 2003; Bonzani and Mussone 2003). The macroscopic
description, in the case of pedestrian or a vehicular flow, represents only a rough
approximation of the physical reality, since the flow of pedestrians is regarded as a
fluid. We are in fact dealing with a granular flow, which means that distances among
pedestrians may not be negligible with respect to the length of the walkway. The
general mathematical framework is given by the three partial differential equations
(PDEs), that express the conservation of mass, momentum and energy:

∂u
∂t

+
∂(uv)
∂x

= 0 (a)

∂v
∂t

+ v ∂v
∂x

= f [u, v, e] (b)

∂e
∂t

+ v ∂e
∂x

= g[u, v, e] (c)

(2.23)

where f defines the acceleration referring to each particle and g is an energy produc-
tion term. In order to solve the system (2.23) it is necessary to define the constitutive
assuptions, that is, how the production terms f and g depend on their argument. Ac-
cording to the specific constitutive assumption, different models can be derived that
involve only some of the three equations in (2.23). They can be classified as follows:
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• scalar or first order models: only described by a mass conservation equation and
by a closure equation v = v[u] that links the local velocity to the crowd density
(e.g. Hughes, 2002);

• second order models: obtained from mass and linear momentum conservation
equations with the addition of a phenomenological relation that describes the
psycho-mechanic action f = f [u, v] on the pedestrians;

• higher order models: use all the equations in (2.23), with a suitably defined
energy density e.

The presented classification involves increasing accuracy in the description of crowd
dynamics, but also increasing complexity. Higher order models introduce more pa-
rameters that have to be identified and therefore they are very difficult to handle
and compare with the experimental observation. Therefore, in the following, more
attention is paid to the description of first order models.

Some considerations about the closure of the mass conservation equation should
be made. Different models can be proposed to describe the phenomenological rela-
tion between density and velocity. The simplest model simply substitutes one of
the expressions of v(u), reported in §2.1.2, in equation (2.23)-a. Equation (2.23)-a
becomes:

∂u

∂t
+ f(u)

∂u

∂x
= 0 (2.24)

where f(u) = ∂q/∂u represents the flow propagation speed. The above equation is
hyperbolic and shows unrealistic shock wave phenomena which are not experimentally
observed. These phenomena occur each time the density is greater than the capacity
density uca, that is, when the propagation speed is negative (congested regime). This
inconsistency is due to the fact that conditions which correspond to steady uniform
flow are instantaneously imposed in unsteady conditions. This problem can be solved
by introducing a small diffusion term into the closure equation, so that the model
becomes parabolic. This can be achieved, for instance, by using an apparent density
model (Bellomo and Coscia, 2005) which is based on the concept that the pedestrian
feels an apparent density u∗, which is larger than the real one, if the local density
gradient is positive (trend to jam conditions), while it is smaller than the real one if
the gradient is negative (trend to vacuum). The apparent density can be expressed
as follows:

u∗ = u

[

1 + η(1 − u)
∂u

∂x

]

(2.25)

where η is a positive parameter.
Finally, it is worth citing the delay models (Bellomo and Coscia, 2005), which

assume that the pedestrian reaction time is finite, so that the velocity at which the
pedestrian walks refers to a density earlier in time, as:

v(ū) = v(u(x, t − τ)), (2.26)
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where τ is a small parameter compared to the unit, that corresponds to a relatively
large time, thus introducing a retarded adaptation of the pedestrian to the actual traf-
fic conditions. In their research, Bellomo and Coscia (2005) proposed an improvement
of the above model by introducing a space dislocation in Eq. 2.26, that becomes:

v(ū) = v(u(x − |δ| , t − τ)), (2.27)

where the dislocation parameter |δ| is small compared to the unit.

2.2.3 Force models

According to Živanović et al. (2005), the load models can be divided into two cate-
gories: time-domain and frequency-domain force models. In the following, the models
that can be ascribed to the first category are described, since they are the ones that are
mainly used in practice. In addition, only the load models concerning the horizontal
component are retained for the scope of this work.

Force models in literature

Most of the load models proposed so far are deterministic time-domain models, based
on the assumption that both feet produce exactly the same periodic force. According
to this hypothesis, the force exerted by a single pedestrian can be represented by a
Fourier series (Eq.s 2.2).

Generally, the force exerted by a number of n pedestrians is described by mul-
tiplying the force of a single pedestrian by a coefficient that could be considered as
a synchronization factor. One of the first attempts in this direction was made by
Matsumoto et al. (1978). Assuming that pedestrians arrive on the bridge following
a Poisson distribution, the total response can be obtained by multiplying a single
pedestrian’s response by the multiplication factor

√
n. In other words, this means

that pedestrians are absolutely uncorrelated, therefore the model is not suitable for
use in the presence of synchronization phenomena.

Grundmann et al. (1993) proposed three models corresponding to different
pedestrian density configurations on a footbridge that should be considered sepa-
rately, based on the derivation of a synchronization coefficient S from probabilistic
considerations:

• Model 1: bridges with low pedestrian density

Pedestrians walk in small group with the same speed v and slightly different
step frequencies fp and step length lp. In such cases, some synchronisation
between these people is expected, but only when the bridge frequency is within
the normal walking frequency range. The synchronization coefficient can be
found according to the graph in Fig. 2.14, which shows that, for the frequency
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range between 1.5 and 2.5 Hz, the force exerted is three times that of a single
pedestrian.

Figure 2.14. Synchronization factor for low densities after Grundmann et al. (1993)

• Model 2: bridges with a random stream of low density pedestrian traffic

If the density is below 0.6 ped/m2, pedestrians can walk freely. S is defined as
follows:

S =







0.225Nr 1.5 < f1,v < 2.5Hz√
Nr f1,v < 1.5 ∩ > 2.5Hz

0.225 · 0.5Nr 3.5 < f1,v < 4.5Hz
, (2.28)

where the number of pedestrians on the bridge deck Nr is given by the product
of the crowd density, the deck surface and a weighting factor K, which accounts
for the variable point of application of loading. It should be noted that the
second equation in (2.28) recovers Matsumoto et al.’s model.

• Model 3: bridges with a stream of high density pedestrian traffic

For a crowd density above 0.6 ped/m2, the synchronization coefficient can again
be calculated according to Eq. (2.28). This model accounts for synchroniza-
tion among pedestrians due to high crowd density, but does not account for
pedestrian-structure synchronization.

The laboratory and field tests performed on the Millennium Bridge led Dallard et al.
(2001) to observe a linear relationship between the lateral force and the local velocity
of the deck ż, after the pedestrians had synchronized to the structure:

F (t) = kż(t), (2.29)
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where the proportionality factor k has to be determined experimentally and for the
Millennium Bridge is equal to 300 Ns/m. This means that moving pedestrians act as
negative dampers (i.e. amplifiers) increasing the response of the structure until they
have to stop because they loose balance. It should be stressed that this load model
only refers to the crowd behaviour after the lock-in occurs.

Different load models have been proposed by Fujino and coworkers, based on
the observation of the human-induced lateral vibrations on two Japanese footbridges,
the T-bridge and the M-bridge. First, Fujino et al. (1993) showed, by means of
a SDOF model of the T-bridge, that the total lateral force exerted by pedestrians
was equal to 0.2 times the force of a single pedestrian, which means that 20 % of
pedestrians were synchronized. Later on, Nakamura and Kawasaki (2006) proposed
a more sophisticated model, where the total force is expressed as:

F (t) = k1k2H(ż)G(f1,h)Mpg, (2.30)

where:
- k1=0.04;
- k2=0.2 is the percentage of synchronized pedestrians;

- H(ż) =
ż(t)

k3 + |ż(t)| is a function used to describe the pedestrian synchronization

nature. At a low deck velocity ż, pedestrians synchronize proportionally with ż;
when the velocity increases, pedestrians feel unsafe and stop walking, therefore the
girder response is limited. The value of k3 is determined by trial and error and was
set to 0.01 for the T-bridge;
- G(f1,h) = 1 describe how pedestrians synchronize with the bridge’s first lateral
frequency f1,h;
- Mpg is the self-weight of the pedestrians.
This model has the merit of accounting for the self-limited nature of the phenomenon
by means of the function H(ż). Hence, it represents an improvement of Dallard et al.’s
model, in which the force grows linearly with the velocity, causing the structural
response to go to infinity (Fig. 2.15).

Force models in international codes and design guidelines

Eurocode 1, Part 1, ”Live loads on bridges”, includes a load model that allows for
synchronization effects. This model is divided into three parts corresponding to dif-
ferent pedestrian configurations. In the following, only the horizontal component is
reported:

• Single pedestrian load model

Fh = 70 sin (2πfht) [N]
The action should be applied on the most unfavourable position on the bridge.
The same model is also reported in British Standard BS5400, Part 2, and in
Ontario Highway Bridge Design Code OHBDC ONT 83 (FIB, 2005).
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Figure 2.15. Comparison between the models of Dallard et al. (2001) and Nakamura
and Kawasaki (2006)

• Load model for a pedestrian group

Fh = 70kh(fh) sin (2πfht) [N]
where kh is a synchronization factor that accounts for random synchronized
pedestrians within the group. It can be graphically determined as a function of
the structural frequency fh.

• Load model for a continuous pedestrian stream

qh = 3.2kh(fh) sin (2πfht) [N/m2]
The load should be applied to the relevant areas of the bridge, according to the
excited mode shape.

Finally, it is worth citing the load model proposed in the French design guidelines
drawn up by Sétra (2006). The model consists in deriving an equivalent number of
pedestrians Neq, which - evenly distributed, at the same frequency of the footbridge
and in phase, with the loading sign related to the mode sign - will produce the same
effect as random pedestrians. Neq was obtained by performing 500 tests with a fixed
number of pedestrians. The following two laws are retained:

• Sparse or dense crowd : random phases and frequencies with Gaussian law dis-
tribution
Neq = 10.8

√
nξ, where ξ is the critical damping ratio;

• Very dense crowd : random phases and all pedestrians at the same frequency
Neq = 1.85

√
n.
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The total force is equal to Neq multiplied by the force of a single pedestrian, whose
amplitude is equal to 0.05 times the pedestrian weight.

Concluding remarks

Many of the lateral force models proposed so far have the advantage of being synthetic
and conceived for practical use. On the other hand, they have experienced some
difficulties in taking into account some non negligible aspects of the problem, that is:

• the dependence of the pedestrian lateral force on the two-way interaction be-
tween two systems, the crowd and the structure. All the reviewed models, in
fact, assume that the state variables of the two systems (i.e. number of pedes-
trians, crowd density, deck velocity or acceleration) are given;

• the possibility of an inhomogeneous distribution of the crowd along the deck
due to bottlenecks, congested traffic or other non-linear traffic phenomena;

• the existence of two kinds of synchronization, one between the pedestrians and
the structure and the other among the pedestrians;

• the presence of different frequency components in the overall force;

• triggering of the lock-in phenomena and the resulting self-limited oscillations.

In addition, some of the aforementioned models have been conceived specifically for
a particular footbridge (e.g. the ones of Fujino et al., Nakamura and Kawasaki and
Dallard et al.), and they therefore lack of generality.

2.2.4 Coupled mechanical systems

The analysis of coupled mechanical systems can be performed according to the so-
called partitioned approach. The approach, first proposed by Park and Felippa (1983),
is widely used in the Aerospace, Mechanical and Civil Engineering fields, e.g. in the
modelling of fluid-structure interaction, but so far it has never been applied to crowd-
structure interaction. This section is a brief summary of the method described in
Park et al. (1999).

Basic terminology

System (according to the American Heritage Dictionary): a functionally related group
of components forming, or regarded as, a collective entity.

Coupled system: a system in which physically or computationally heterogeneous me-
chanical components interact dynamically. The interaction is multiway in the sense



32 F. Venuti. “Crowd-Structure Interaction in lively footbridges”

that the response has to be obtained by solving simultaneously the coupled equations
which model the system.

Partitioning : the process of spatial separation of a discrete model into interacting
components, called partitions or fields.

System decomposition

Systems are analyzed through decomposition or partitioning. The decomposition
can be done according to physical, functional or computational considerations. The
common practice in modelling is based on the following partition hierarchy: coupled
system (top-level), structure, substructure, subdomain and element. For instance, a
top-level partition driven by physics is into fluid and structure models.

At the first level of the hierarchy, two types of subsystems (or fields) are pos-
sible:

• Physical subsystems, when their mathematical model is described by field equa-
tions. Examples are mechanical and non-mechanical objects treated by contin-
uum theories (e.g. fluid, solids, heat);

• Artificial subsystems, that are used for computational purposes, for instance to
facilitate information transfer between two subsystems.

Computational approach

The main advantages of the partitioned approach lie in the computational treatment
of coupled systems, for which fields are discretized in space and time. In particular,
in algebraic partitioning, the coupled system is spatially discretized first, and then
decomposed, while in differential partitioning the decomposition is done first and each
field then discretized separately. The differential partitioned approach allows:

• Customization: each field can be treated by discretization techniques and solu-
tion algorithms that are known to perform well for the isolated system;

• Independent modelling : the use of non-matching models is facilitated, as in the
case of fluid-structure interaction;

• Software reuse: the use of existing codes is permitted;

• Modularity : new methods and models may be introduced in a modular fashion.

On the other hand, the partitioned approach requires careful formulation and imple-
mentation to avoid degradation in stability and accuracy.
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2.3 Design codes and guidelines

The problem of vibration is usually handled by international codes by providing com-
fort requirements, that can be divided into two categories:

• Limit values for structural frequencies, that should fall outside the pedestrian
frequency ranges in order to avoid resonance loading;

• Limit values of accelerations: if the limit on structural frequencies is not re-
spected, a dynamic calculation is required and the resulting accelerations are
limited to ensure pedestrian comfort.

As observed in FIB (2005), in practice, many footbridges exceed the limits of comfort
reported in literature and codes, but users have seldom complained. Users, instead,
very often enjoy these structures because of their liveliness.

The following tables provide a summary of the limit values for horizontal fre-
quencies and accelerations provided in international codes (FIB 2005).

Table 2.5. Limit values for horizontal frequencies in international codes (after FIB,
2005)

Code/Standard Limit values [Hz]

Eurocode 2 (ENV 1992-2) 0.8 - 1.2

Eurocode 5 (ENV 1995-2) < 2.5

SIA 260 (Switzerland) < 1.3

Table 2.6. Limit values for horizontal accelerations in international codes (after FIB,
2005)

Code/Standard Limit values [m/s2]

Eurocode 1 min

{

0.14
√

fh

0.15

for fh =0.5-1.5 Hz
for fh =1.5-2.5 Hz: check dependant on case
from fh =2.5 Hz: no check necessary

Eurocode 5 0.2 for f < 2.5 Hz (for standing individuals)

A horizontal vibration limit for footbridges is also recommended in ISO 10137,
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which reports a perception curve in term of RMS acceleration (Fig. 2.16): this base
curve should be multiplied by a factor of 60. The peak acceleration can be obtained
by multiplying the RMS value by

√
2 (Živanović et al., 2005). For a frequency of 1

Hz, the peak acceleration limit is about 0.3 m/s2. Willford (2002) reports that near
normal walking can be sustained until the lateral acceleration level exceeds about 0.25
m/s2 (referring to experiments on the perception of vibration in high buildings).

Figure 2.16. Acceptability of horizontal vibration after ISO 10137

It should be pointed out that FIB (2005) suggests a lock-in threshold for lateral
vibrations which corresponds to an acceleration of 0.08 m/s2 for a frequency of 1 Hz.
This value has also been suggested by Bachmann (2002), who recommends a limit
displacement of about 2 mm in order to avoid the lock-in effect. This value is well
below the comfort thresholds reported in Table 2.6.



Chapter 3

Crowd-Structure Interaction
(CSI) Model

The main features of the proposed model lie in the mathematical and numerical
partitioning of the coupled system into two physical subsystems and in the two-way
interaction between them (Park et al., 1999) (Fig. 3.1). The two subsystems, the
Crowd and the Structure, will be referred to with the subscripts c and s, respectively.

Figure 3.1. Scheme of the time-domain coupled model

In the following, each part of the model is described referring to the framework
schematized in Fig. 3.1. It is worth stressing that the model is herein expressed in its
dimensional form in order to better point out the physical meaning of its components.
Neverthless, the dimensionless form can be obtained by scaling all the variables with
respect to reference quantities (Bellomo and Coscia, 2005), that is, the maximum

35
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mean pedestrian velocity vM , the maximum admissible crowd density uM and the
footbridge length L. In order to ease the notation, the subscript r that refers to the
variable dimensional value is omitted in the following.

3.1 The Structure subsystem

The Structure subsystem is modelled by a 3D model. The structural dynamics is
described by the non-linear equation of motion:

[Ms + Mc(u)]s̈ + Cṡ + Ks = F (u, z̈), (3.1)

where s are the structural displacements; Ms, C and K are the structural mass,
damping and stiffness; Mc is the crowd mass; F is the applied load; z̈ is the deck
lateral acceleration.

It should be noticed that the Ordinary Differential Equation (ODE) (3.1) is
non-linear for two reasons: first, the forcing term F is a function of both the crowd
density and the lateral acceleration of the deck; second, the overall mass M is given
by the sum of the structure and the crowd mass, which derives from the solution of
the equation governing the Crowd subsystem, in turn dependent on the solution of
the ODE (3.1), as will be explained in the next sections.

3.2 The Crowd subsystem

As stated in Section 2.2, mathematical modelling of crowd dynamics can be developed
according to three different mathematical frameworks, respectively based on micro-
scopic, statistical and macroscopic description. In particular, first order macroscopic
modelling refers to the derivation of an evolution equation for the mass density, re-
garded as a macroscopic quantity of the flow assumed to be continuous. Such a
representation implies an approximation of the physical reality, since the distances
among the pedestrians can be large enough to be in contrast with the continuity as-
sumption of the hydrodynamic model, expecially in case of very low crowd density.
On the other hand, a relatively simple model is preferable to study the complexity of
the crowd-structure coupled system. Hence, a first order hydrodynamic model in the
one-dimensional (1D) spatial domain is developed in the following.

It follows that the reference framework describing the crowd dynamics is given
by the 1D mass conservation equation in its Eulerian dimensional form (see A.1),
closed by a phenomenological relation that links the mean velocity to the mass den-
sity and the deck lateral motion:

∂u
∂t

+ ∂
∂x

(uv) = 0

v = v[u, z̈]
(3.2)
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It is worth stressing that, among the three variables describing the structural re-
sponse (i.e. displacement, velocity, acceleration), it has been generally accepted that
acceleration is the vibration parameter which should be used to describe the problem
(Živanović et al., 2005). One of the key reasons is that acceleration is convenient to
be measured and serviceability criteria reported by most of the design codes make
reference to acceleration values. Neverthless, several authors (e.g. Yoneda, 2002)
retained the velocity as the parameter which mostly affect pedestrian behaviour.

3.3 Structure-to-Crowd action: the closure equa-

tion

In the following an interpretative model of the pedestrian fundamental relation is
proposed and compared with some experimental laws herein rivisited.

3.3.1 Physical-based model of the pedestrian fundamental re-
lation

The fundamental relation that links crowd density to walking velocity is usually ex-
pressed in the direct form v = v(u). In this section, a phenomenological relation that
links pedestrian velocity v to crowd density u and deck acceleration z̈ is proposed
in the inverse form u = u(v, z̈). Bearing in mind that crowd density u [ped/m2] is
a scarcely intuitive quantity, its reciprocal Pedestrian Area Module (PAM) (Fruin,
1987), i.e. the surface S occupied by a pedestrian, is used as a more manageable unit
[m2]. Hence, the proposed relation is based on some phenomenological considerations
about S(v, z̈). Obviously, once the latter is obtained, the density can be calculated as
the reciprocal of S(v), and the speed-density relation can be recovered as an inverse
relation.

Among the various factors that can affect walking behaviour, two are specifi-
cally retained, that is, the geographic area and the travel purpose: the related coeffi-
cients are respectively named with the subscripts G and T . These factors are assumed
to affect both free speed vM and PAM S through the coefficients α and β, respectively.

The free speed is expressed in the general form:

vM = v̄M αG αT g(ζ), (3.3)

where v̄M = 1.34 m/s is the average free speed (Buchmueller and Weidmann, 2006);
the coefficients αG and αT were determined analyzing the data reported in Buch-
mueller and Weidmann (2006) as the ratio between the proposed free speeds and v̄M ,
and they are reported in Table 3.1; ζ is the envelope of the deck acceleration time
history |z̈(t)|; the corrective factor g(ζ) takes into account the sensitivity of v to the
deck acceleration and has a qualitative trend, based on the following hypothesis:
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• the lateral motion of the deck reduces the walking velocity;

• after the pedestrians have stopped because of excessive lateral vibrations at
time ts, a stop-and-go time interval ∆tr should elapse before they start walking
again.

It follows:

g =







1 ζ ≤ z̈c ∩ t ≥ ts + ∆tr
[z̈M − ζ(x, t)] /(z̈M − z̈c) z̈c < ζ < z̈M ∩ t ≥ ts + ∆tr
0 ζ ≥ z̈M ∩ ts < t < ts + ∆tr

, (3.4)

where z̈c
∼= 0.2 m/s2 (ISO 10137, 1992) corresponds to the threshold of motion percep-

tion and z̈M = 2.1 m/s2 (Nakamura, 2003) is the maximum acceptable acceleration
above which pedestrians stop walking.

Table 3.1. Coefficients of geographic area and travel purpose that affect the free
speed vM

Geographic area αG Travel purpose αT

Europe USA Asia Rush hour/ Commuters/ Leisure/
Business Events Shopping

1.05 1.01 0.92 1.20 1.11 0.84

The PAM occupied by a motionless pedestrian can be calculated considering
an elliptical or a rectangular form. According to the latter hypothesis, the average
surface occupied by a motionless pedestrian is S0 = w0d0, where w0 and d0 are the
average lateral width and depth of a human body (Fig. 3.2). When a pedestrian is
walking, a greater surface is required, that is, S = wd (Fig. 3.2). Both the terms w
and d can be expressed as a function of the walking velocity v. In addition, the lateral
width could be made sensitive to the deck acceleration, since pedestrians tend to walk
with their legs more widespread when the surface is laterally moving, as stressed by
various authors (Dallard et al. 2001, Fujino et al. 1993).
The required forward distance d can be expressed as the sum of two terms: lp, the
step length, which is a function of the walking velocity and step frequency fp; ds, the
sensory distance, which is defined by Fruin (1987) as the area required by the pedes-

trian for perception, evaluation and reaction. While the former can be physically
measured, the latter depends to a great extent on cultural and psycological factors
and is, therefore, hard to evaluate. As for the lateral width w, even though the same
distinction can be made between pacing and sensory zones, a unique width is retained
because of the lack of available data. Therefore, S takes the form

S(v, ζ) = Sp + Ss = w(v, ζ)lp(v) + w(v, ζ)ds(v), (3.5)
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Figure 3.2. Human body dimensions: motionless and walking pedestrian

where Sp and Ss are the pacing zone and the sensory zone, respectively. It is supposed
that βG only affects the pacing zone, since the geographic area is mainly related to
the body dimensions (width and step length), while βT only concerns the sensory
zone, since the travel purpose can be connected to psycological factors. Therefore,
equation (3.5) can be rewritten as

S = w(βGlp + βT ds). (3.6)

It is worthwhile recalling that the value of the maximum admissible density can be
calculated as uM = 1/S(0), while the critical density is uc = 1/S(vM ).

All the parameters introduced in the modelling framework are characterized in
the following on the basis of several experimental data coming from various research
fields such as transportation, biomechanics, safety and structural engineering.

The lateral width w(v) is expressed in the additive form w(v, ζ) = w(v)+wr(ζ),
where wr(ζ) is the peak-to-peak value of the relative lateral displacement of the torso
between adjacent pedestrians. According to Buchmueller and Weidmann (2006), in
a free walking regime a pedestrian requires a lateral additional space equal to about
62 % of his average width. Therefore, the simplest expression for w(v) is the linear
relation

w(v) = w0

(

1 + 0.62
v

v̄M

)

, (3.7)

where w0 = 0.45 m (Buchmueller and Weidmann, 2006) (Fig. 3.3). The relative
lateral displacement of the torso considers the fact that, the higher the platform
motion, the higher the synchronization between pedestrians and the platform and
therefore, the lower the relative displacement among pedestrians. Hence, the relative
displacement can be expressed as

wr(ζ) = w(ζ) (1 − Sps) , (3.8)

where the relation between w and ζ can be inferred by fitting experimental data
recorded on actual lively footbridges (Fig. 3.4a) (Fujino et al. 1993, Nakamura 2003):

w(ζ) = 0.0375 (ζ − z̈c)
1/3

ζ ≥ z̈c, (3.9)
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while Sps(ζ) is the pedestrian-platform synchronization coefficient (Fig. 3.4b) ob-
tained by fitting the data of Dallard et al. (2001), that will be detailed in §3.4. From
Fig.s 3.3 and 3.4a it is clear that the value of the term wr(ζ) is two orders of magni-
tude less than w(v). Therefore, it is not retained in the following.
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The relation between the step length lp and the velocity v can be derived from
the relation between the step frequency fp and v, since lp = v/fp (Fig. 3.5b). The
frequency-speed relation is derived from a cubic fitting to the Bertram and Ruina
(2001) experimental data (Fig. 3.5a) coming from laboratory tests on a treadmill
with fixed velocity:

fp = 0.35v3 − 1.59v2 + 2.93v. (3.10)

Fig. 3.5b shows that, when a pedestrian is motionless (v = 0), the body depth d0,
whose value is set equal to d0 = 0.36 m according to Seyfried et al. (2005), takes the
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place of the step length.
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The sensory distance ds (Fig. 3.5b) can be obtained as d − lp, since some
experimental data concerning the d − v relation are available in literature (Seyfried
et al., 2005). The data have been fitted according to the law

d(v) = d0 + 1.06v + bv10, (3.11)

where b = (2.08vM − d0)/v10
M , so that d(vM ) takes the value for which uc

∼= 0.3
ped/m2, as proposed by Oeding (1963). It should be pointed out that, according to
Seyfried et al. (2005), the almost linear trend of the d − v relation at low velocities
is due to synchronization phenomena among pedestrians (e.g. marching in lock-step)
which reduce the sensory distance ds.

The geographic area coefficient βG is derived, considering the dimension occu-
pied by the human body in different countries (Table 1 in Buchmueller and Weidmann,
2006), as the ratio between the surface averaged per geographic area and the mean
surface S0. It results that βG equals 1.075 for the European and American case, while
it equals 0.847 for Asian countries. The travel purpose coefficient βT is determined by
fitting the reciprocal of equation (3.6) to the experimental data reported by Oeding
(1963) and Fruin (1987) (Fig. 3.6 and Table 3.2). It can be noticed that βT mono-
tonically decreases for increasing free speeds vM associated to travel purposes.

In order to evaluate the sensitivity of the model to the different parameters
of interest, the proposed model has been applied with different combinations of the
latter. Some results are represented in Fig. 3.7 in terms of fundamental diagrams.
In Fig. 3.7a, the model is applied with a fixed geographic area (Europe), varying
the travel purpose; in Fig. 3.7b, the travel purpose is fixed (commuters) and the
geographic area varies.



42 F. Venuti. “Crowd-Structure Interaction in lively footbridges”

 1.5

 1

 0.5

 0

 0  1  2  3  4  5  6

v [m/s]

Oeding (1963)

 0  1  2  3  4  5  6

Fruin (1971)

Oeding (1963)

 0  1  2  3  4  5  6

u [p/m
2
]

Oeding (1963)

(a) (b) (c)
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Table 3.2. Coefficients βT

Leisure/Shopping Commuters/Events Rush hour/Business

vM [m/s] 1.18 1.56 1.69

βT 1.07 0.93 0.55

The following considerations can be made: i) the effects of the travel purpose
can be seen above all in the variation of vM and βT , which determines different values
of uc and uca. It should be noticed that neither uc nor uca grow monotonically with
the free speed; ii) the geographic area has the effect of varying the jam density uM .
While Europe and the USA have practically the same diagram, Asia shows a higher
uM and capacity flow qca, which is in agreement with data in literature (Buchmueller
and Weidmann, 2006).

3.3.2 Comparison with fundamental laws revisited

The above physical-based relation is compared to two laws previously proposed in
literature in the direct form v = v(u): the first one is the Kladek formula, proposed by
Weidmann (1993), while the second one is recovered from the vehicular traffic theory
(Bellomo and Coscia, 2005). Both are reported in their original (O) dimensional form
in Table 3.3.

In order to make these relations sensitive to the walking features considered in
this work, the two laws are rewritten in a revisited form (R), where vM , uc and uM are
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Table 3.3. Original (O) and revisited (R) fundamental laws proposed in literature

Kladek formula v = vM

{

1 − exp
[

−1.913
(

1
u − 1

5.4

)]}

O

v = vM

{

1 − exp
[

−γ
(

1
u − 1

uM

)]}

R

Vehicular law v = vM exp
(

−α u
uM − u

)

O

v =

{

vM u ≤ uc

vM exp
(

−γ u − uc
uM − u

)

u > uc
R

determined according to the principles explained in the previous section (see Eq. 3.3,
3.6) and γ is the fitting free parameter determined referring to the same experimental
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data (Oeding 1963, Fruin 1987) selected on the basis of the travel purpose. The
results of the fitting are reported in Table 3.4: it should be pointed out that the
coefficients γ do not show a monotonic trend for increasing free speeds. The revisited
laws and the interpretative model are plotted in Fig. 3.8 in the case of Europe and
leisure/shopping.

The vehicular traffic law shows a good correspondence with the other two
for densities lower than 2 ped/m2, while it underestimates the velocities for higher
densities: this behaviour is stressed in the flow diagram. It can be explained recalling
that, in the case of vehicular traffic, the driver tends to reduce speed more quickly
for high densities, in order to avoid crashes. As can be noticed, the physical-based

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 4 3 2 1 0 u [p/m
2
]

v [m/s]

interpretative model

Kladek revisited

vehicular revisited

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5 4 3 2 1 0 u [p/m
2
]

q [p/ms]

Figure 3.8. Velocity and fundamental diagrams for the three laws in the case of
Europe and leisure/shopping

model shows a surprising agreement with the revisited Kladek formula, even though
the same results are obtained through different approaches, i.e. based on microscopic
interpretative modelling and fitting to macroscopic observation data, respectively.
The physical-based model represents a complementary tool to shed some light on
the role that microscopic walking phenomena play in the macroscopic fundamental
relation, while the revisited Kladek formula, because of its continuity and compact
direct form, is more suitable for practical use and will be retained in the following.

Table 3.4. Coefficients γ in the revisited fundamental laws

γ Leisure/Shopping Commuters/Events Rush hour/Business

Kladek revisited 0.245uM 0.214uM 0.273uM

Vehicular law 2.191 2.340 1.788
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3.3.3 Space dislocation and time delay

As stressed in §2.2.2, an improvement of the main framework (3.2) can be achieved
by introducing in the closure equation a space dislocation δ and a time delay τ (see
Eq. 2.27). From a phenomenological point of view, they can be explained as follows:

• the pedestrians react according to what they see in a suitable stretch of road
in front of them, and this length is dependent on the walking speed. A similar
assumption is made by Delitala and Tosin (2007) for a kinetic vehicular model,
where δ is referred to as visibility length. In the case of pedestrian traffic, the
dislocation parameter δ can be interpreted as the sensory distance ds discussed
in §3.3.1. It has to be noticed that ds is a microscopic distance, since it refers to
one pedestrian, while δ is related to a cluster of pedestrians at the macroscopic
scale. Bearing in mind this analogy, δ can be obtained as:

δ = ds dc/d0, (3.12)

where dc has to be intended as the characteristic dimension of a cluster of
pedestrians;

• the pedestrians adjust their step to the deck motion with a synchronization time
delay τ . Generally speaking, the time delay is expected to be greater than the
time interval between two succeeding footfalls.

According to these hypothesis, the closure equation can be rewritten in the form:

v(u, ζ) = v[u(x + δ, t), ζ(x, t − τ)]. (3.13)

In the following, only the space dislocation will be considered in order to study the
qualitative properties of the model, that is:

v(u) = v[u(x + δ, t)], δ > 0. (3.14)

A first order Taylor expansion of u gives:

u(x + δ, t) ∼= u(x, t) +
∂u

∂x
(x, t)δ, (3.15)

so that:

v(u(x + δ, t)) ∼= v

(

u(x, t) +
∂u

∂x
(x, t)δ

)

∼= v(u(x, t)) + v′(u(x, t))
∂u

∂x
(x, t)δ

= v(u) + v′(u)δ
∂u

∂x
.

(3.16)
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Let us substitute Eq. (3.16) in the mass conservation equation:

∂u

∂t
+

∂

∂x

(

uv(u) + uv′(u)δ
∂u

∂x

)

= 0, (3.17)

that is:
∂u

∂t
+

∂

∂x
(uv(u)) +

∂

∂x

[

(uv′(u))

(

δ
∂u

∂x

)]

= 0. (3.18)

The parameter δ is a function of the pedestrian velocity v, that is, of the crowd
density, δ = δ(u). Lets now consider the last term of Eq. (3.18). It can be rewritten
as follows, by introducing G(u) = uv′(u)δ(u):

∂

∂x

[

G(u)
∂u

∂x

]

=
∂

∂x
G(u)

∂u

∂x
+ G(u)

∂2u

∂x2

= G′(u)

(

∂u

∂x

)2

+ G(u)
∂2u

∂x2 . (3.19)

Coming back to Eq. (3.18) and assuming:

∂

∂x
(uv(u)) = q′(u)

∂u

∂x
, (3.20)

where q = uv(u) is the flow and q′(u) = v(u) + uv′(u) is the propagation speed, we
finally have:

∂u

∂t
+ q′(u)

∂u

∂x
= −G′(u)

(

∂u

∂x

)2

− G(u)
∂2u

∂x2 . (3.21)

The first member of Eq. (3.21) is the well-known convection term that would be
obtained with a closure equation without space dislocation v = v(u), while the second
member introduces a diffusive term that has the effect of turning the hyperbolic
equation into a parabolic one.

Eq. (3.21) can be particularised for a specific v − u relation. The revisited
Kladek formula is chosen as the most suitable and is rewritten in a dimesionless form:

v = 1 − exp

[

−γ

(

1

u
− 1

)]

. (3.22)

Therefore, the terms q′(u), G(u) and G′(u) become:

q′(u) = 1 −
(

1 +
γ

u

)

exp

{

−γ

(

1

u
− 1

)}

, (3.23)

G(u) = −γ

u
exp

{

−γ

(

1

u
− 1

)}

δ(u), (3.24)

G′(u) =
γ

u2

[(

1 − γ

u

)

δ(u) − uδ′(u)
]

exp

{

−γ

(

1

u
− 1

)}

. (3.25)
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In order to evaluate the weights of the three terms, they are calculated for a 90-m-long
platform located in Europe, by assuming the ratio dc/d0 = 2. Results are plotted in
Fig. 3.9 in dimensionless form.
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Figure 3.9. Space dislocation (a), convective term (b) and diffusive terms (c)-(d)

3.4 Crowd-to-Structure action: the force model

The scheme in Fig. 3.1 shows that the Crowd-to-Structure interaction takes place in
two ways. On one hand, the mass M is constantly updated by adding the pedestrian
mass Mc to the structural mass Ms; on the other hand, a force model is proposed to
determine the lateral force exerted by pedestrians on the footbridge deck (Venuti and
Bruno, 2007b).

The force model has the aim of giving due weight to some important features
of the crowd-structure interaction phenomenon, that so far have not been taken into
account, that is:
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• the dependence of the pedestrian force on the two-way interaction between two
systems, the crowd and the structure, which can be described by two variables,
the pedestrian density and the footbridge lateral vibration;

• the possibility of a inhomogeneous distribution of the crowd along the deck due
to bottlenecks, congested traffic or other non-linear traffic phenomena;

• the existence of two kinds of synchronization, as recently pointed out by Ric-
ciardelli (2005) and Venuti et al. (2005), one between the pedestrians and the
structure and the other among the pedestrians. The latter takes place when
the relative movement of the pedestrians is constrained because of high crowd
density;

• the presence of different frequency components in the overall force;

• triggering of the lock-in phenomena and the resulting self-limited oscillations.

It is worth recalling the hypothesis, presented in §3.3.3, that pedestrians react to the
deck oscillations with a time delay τ . Therefore, all the variables describing the deck
motion that are introduced in this section refer to the time t − τ .

The model is conceived on the basis of a macroscopic description of crowd
dynamics, which means that the pedestrians are not viewed as single individuals
but as clusters characterized by a mean walking velocity and a mean step frequency.
Nevertheless, an adaptation of the model to a microscopic or statistical description
of the crowd is possible.

The proposed force model can be ascribed to the category of time-domain
models. It is based on the assumption that the force exerted by a number n of
pedestrians walking along a portion of the bridge span is given by the sum of three
components:

F = Fps + Fpp + Fs, (3.26)

where Fps is the term due to the synchronization between the pedestrians and the
structure, Fpp is due to the synchronization among pedestrians and Fs is the part due
to uncorrelated pedestrians.

Fps has the same frequency fs as the excited lateral structural mode, while the
other two terms have the same frequency fpl as the lateral pedestrian footstep. fpl,
which is half the walking frequency fp, is assumed to vary as a function of the walking
velocity v, as stated in §3.3 (Fig. 3.5), that is:

fpl = (0.35v(u)3 − 1.59v(u)2 + 2.93v(u))/2. (3.27)

It is worth stressing that the pedestrians who walk with a step frequency equal to
fpl are the ones not synchronized to the structure, that is, they are not sensitive to
the deck lateral motion. This is the reason why the velocity v in Eq. (3.27) is only a
function of u: in other words the term g(ζ) is not taken into account in the expression
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of v.
Each term of the overall force is weighted on the basis of phenomenological

considerations, by means of three weights, nps, npp and ns, that can be considered,
respectively, as the number of pedestrians in the cluster that are synchronized with
the structure, synchronized to each other and uncorrelated:

nps = nSps

npp = nSpp(1 − Sps)
ns = n − nps − npp

(3.28)

where Sps and Spp are the synchronization coefficients, which both vary in the [0 1]
range. Thanks to the distinction of pedestrians in three categories, the model is able
to represent the triggering of lock-in: even though no one is synchronized with the
structure, the presence of a high crowd density results in a lateral force that triggers
the lateral vibration of the bridge.

Sps represents the degree of coupling between the crowd and the structure.
This is a function of two variables: the structure lateral acceleration and the ratio
fr = fpl/fs, where fr is defined in the [0 2] domain: the lower bound depends on the
minimum value of fpl (fpl =0), when the walking velocity is null; the upper bound
was obtained from the laboratory tests reported by Pizzimenti (2005), according to
which pedestrians are not influenced by structural oscillations under 0.6 Hz and the
maximum recorded lateral walking frequency is 1.1 Hz. The variation of Sps versus
ζ (Fig. 3.10a) is given by a fitting of the Dallard et al. (2001) experimental data, by
means of the interpolating function:

Sps(ζ) = 1 − e−b(ζ−z̈c). (3.29)

Pedestrians start to synchronize with the structure for values of ζ higher than z̈c, and
they are completely synchronized when ζ reaches the maximum value z̈M . Sps(fr) is
supposed to have a normal distribution, with a variance that grows when ζ increases.
This means that, for increasing values of ζ, the pedestrians who walk with a step
frequency that is different from fs gradually become involved in the synchronization
phenomenon. For ζ = z̈M , everyone is synchronized with the structure, whatever the
value of fr (Fig. 3.10b). Sps(fr) is defined as:

Sps(fr) = e[−η(fr−1)2],

η(ζ) = 50e(−20ζ/π).
(3.30)

The synchronization coefficient Sps(ζ, fr) is given by the product of equations (3.29)
and (3.30).

The coefficient Spp (Fig. 3.11) represents the degree of synchronization among
pedestrians and, because of the lack of experimental data, it has been defined in a
qualitative way as a function of the crowd density u [ped/m2]:

Spp(u) =
1

2

{

1 + erf

[

a

(

u − usync + uc

2

)]}

, (3.31)
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Figure 3.10. Sps versus ζ (a) and fr (b)

where a=3.14 and usync is the density that corresponds to the total synchronization
of pedestrians. Its value is estimated to be 1.8 ped/m2, according to the maximum
densities recorded on crowd events (e.g. Fujino et al., 1993).
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It is worthwhile pointing out that the proposed laws for the synchronization
coefficients Sps and Spp can be interpreted as cumulative density functions of an ex-
ponential and a Gaussian probability density function, respectively. From this point
of view, the model can be adapted to a statistical description of the phenomenon as
soon as a greater amount of data is available.

The first component of the total force, Fps, can be written, according to Pizzi-
menti (2005), as the sum of a component in-phase and another 90◦ out-phase with
respect to the structure lateral displacement. The in-phase component can be seen
as 180◦ out-phase of the acceleration, while the other can be seen as in-phase with
the lateral velocity:

Fps = nps[F̄ (ζ)sin(2πfst + π) + F̄ (ν)cos(2πfst)] (3.32)
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where ν is the envelope of the deck lateral velocity time history.
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Figure 3.12. DLF s of the components in phase with ν (a) and ζ (b)

The amplitudes of the two components (Fig. 3.12) are defined by means of piecewise
functions. The first branch comes from a quadratic fitting of the experimental data
concerning the medium Dynamic Load Factors (DLF s) of the in-phase and out-of-
phase components (Pizzimenti, 2005). The data corresponding to DLF s close to zero
for non null ν or ζ, and to ν or ζ above their serviceability limit (that is, żs=0.25
m/s and z̈s=1.35 m/s2, Nakamura, 2003) have been discarded. The second branch is
defined qualitatively, based on the following assumptions:

• the DLF s reach their maximum when the velocity and the acceleration exceed
their serviceability limit;

• the DLF s decrease to zero when the velocity and the acceleration reaches max-
imum values, above which pedestrians stop walking, i.e. żM=0.44 m/s and
z̈M=2.1 m/s2 (Nakamura, 2003). This trend also guarantees that the ampli-
tude of Fps is self-limited as is the overall structural response.

It should be pointed out that the threshold values suggested by Nakamura (2003)
are based on a very limited number of observed cases. In particular, the maximum
velocity and acceleration refer to those recorded on the Millennium Bridge, while
the serviceability values are based on the field tests performed on the M-bridge in
Japan. Recalling that the ratio between the acceleration and the velocity amplitudes
depends on the natural frequency of vibration fs (i.e. |ζ/ν| = 2πfs), it is clear that the
threshold values on the velocity and on the acceleration are simultaneously reached
only for a particular frequency.

The second force component, Fpp, is defined as:

Fpp = nppF̄ssin(2πfplt) (3.33)

where F̄s is the medium amplitude of the force exerted by a single pedestrian in the
case of a motionless deck, whose DLF=0.04 (Živanović et al., 2005).
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Finally, the component Fs is determined according to the model proposed by
Matsumoto et al. (1978), who found that the force due to n uncorrelated pedestrians
is

√
n higher than the force due to a single pedestrian. Therefore, Fs becomes:

Fs =
√

nsF̄ssin(2πfplt). (3.34)



Chapter 4

Computational approach

The solution of the mathematical model described in Chapter 3 is obtained by means
of computational simulation performed in the space and time domains. This Chapter
is devoted to the description of the Matlab code, specifically developed to simulate
crowd-structure interaction.

4.1 Partitioned simulation strategies

The partitioned analysis of the coupled system allows the two-solver approach out-
lined in Fig. 4.1 to be used: a Computational Crowd Dynamics (CCD) solver for
the PDE governing the Crowd subsystem and a Computational Structural Dynamics
(CSD) solver for the ODE governing the Structure subsystem. In other words, the
coupled system is decomposed into two fields, the Crowd and the Structure, that are
computationally treated as isolated entities. Interaction effects are viewed as forcing
effects that are communicated between the individual components using prediction,
substitution and synchronization techniques (the latter only if the fields are separately
stepped in time) (Park et al., 1999).

Fig. 4.2 shows the flowchart of the computational code. The code has been
conceived in order to perform different types (#) of simulation, that could involve the
complete model or just some of its parts:

1. crowd dinamics only;

2. crowd dynamics with imposed z̈;

3. structural dynamics with imposed F ;

4. crowd-structure interaction without crowd added mass Mc;
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Figure 4.1. Scheme of the two-solver approach strategy

5. complete crowd-structure interaction.

Each part of the code will be discussed in the next sections.

4.2 Space and time grids

As stated in §2.2.4, the differential partitioning of the coupled system allows different
discretization grids to be chosen for each subsystem. Some a-priori considerations
about the computational grids can be drawn. The crowd and structural dynamics
have quite different space and time scales. As far as the space discretization step ∆x
is concerned, the pedestrian traffic phenomena in fact require a dense computational
grid because of the possibility of the occurence of high density gradients. On the
other hand, the frequency of one of the first lateral modes usually falls in the lock-in
region for the structures of interest: hence, a coarser grid can be used to describe
the corresponding mode shape. For these reasons, non-matching space meshes are
generated in the crowd field (subscript c) and structural field (subscript s), and this
allows for a relevant reduction of the computational costs of the modal analysis. If
the structure is modelled by means of a 3D MDOF model, only the deck nodes are re-
tained for data interpolation between non-matching grids: space distributed variables
(e.g. u) are treated by means of a standard quadratic interpolation while conservative
interpolation (Farhat et al., 1998; Jiao and Heath, 2004) is used for the crowd added
mass Mc. Furthermore, the step ∆xc should satisfy the continuity assumption of
the model. It follows that it has a lower bound equal to the depth occupied by one
pedestrian in a condition of congested traffic, i.e. ∆xc = d0.

A similar problem arises for the time discretization step ∆t. The characteristic
time of the structure, that is, the period of oscillation of interest Ts, is much smaller
than the crowd characteristic time Tc, defined in §2.2.2. It follows that the structural
field requires a finer time grid in order to fully describe the dynamics of the struc-
ture. Bearing this in mind, a common time step ∆t is used for the simulation of both



Chapter 4. Computational approach 55

Figure 4.2. Flowchart of the computational code
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phenomena, and its value is discussed in §4.3.

The notation used in the next Sections is as follows:
h = ∆x = space step
k = ∆t = time step
xj = jh = jth point in the space grid
tn = nk = nth instant of time.

4.3 Computational Structural Dynamics (CSD) solver

The Finite Element Method is employed for the space discretisation of the 3D struc-
tural field. As far as the advancement in time is concerned, the CSD solver employes
a step-by-step integration method to solve the non-linear ODE that describes the
multi-degree-of-freedom (MDOF) Structure subsystem (Eq. 2.12). The Constant
Average Acceleration (CAA) method, which is one of the Newmark Beta methods,
is chosen since it is widely used in practice, because it has the advantage of being
unconditionally stable. The scheme is implemented using an incremental formulation,
so that the procedure can be applied either to linear or non-linear analysis (Clough
and Penzien, 1987).

The basic concept of a integration method is expressed by the following equa-
tions:

ṡ1 = ṡ0 +
∫ k

0
s̈(τ)dτ

s1 = s0 +
∫ k

0
ṡ(τ)dτ

(4.1)

which express the velocity and displacement vectors at the end of the time step. The
CAA method assumes the acceleration to be constant during the time step, leading to
a linear variation of the velocity and a quadratic variation of the displacement (Fig.
4.3).

In the Newmark formulation, Eqs. (4.1) are expressed as follows:

ṡ1 = ṡ0 + (1 − γ)ks̈0 + γks̈1

s1 = s0 + kṡ0 + (1/2 − β)k2s̈0 + βk2s̈1

(4.2)

where the factor γ controls the amount of artificial damping induced by the integration
procedure, which is null if γ = 1/2. The CAA method is characterized by γ = 1/2
and β = 1/4.

The exposed implicit formulation has to be converted in a explicit form. The
explicit incremental procedure of the CAA method is described in the following. First,
the effective stiffness matrix within the time step k is defined as:

K̃ = K +
2

k
C +

4

k2 M, (4.3)
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Figure 4.3. Motion based on constant average acceleration, after Clough and Pen-
zien (1987)

while the incremental effective load vector is:

∆F̃ = ∆F + 2Cṡ0 + M

[

4

k
ṡ0 + 2s̈0

]

. (4.4)

Then the incremental displacement ∆s is obtained by solving:

K̃∆s = ∆F̃ (4.5)

and the velocity increment is given by the following expression:

∆ṡ =
2

k
∆s − 2ṡ0. (4.6)

Finally, the acceleration at the end of the time step is given by:

s̈1 = M−1(F1 − Cṡ1 − Ks1). (4.7)

As previously stated, the CAA method is unconditionally stable with respect
to the size of the time step and, for this reason, is a very robust method that can
be used for the step-by-step dynamic analysis of MDOF structural systems. On the
other hand, the size of the time step influences not only the stability but also the
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accuracy of the solution. A time step k ≤ 1/(20fmax) is recommended, where fmax

is the highest natural frequency of vibration which significantly contributes to the
structural response.

4.4 Computational Crowd Dynamics (CCD) solver

The CCD solver employes the Finite Difference Method to obtain the approximate
solution to the non-linear PDE governing the crowd dynamics, that is rewritten in
the form:

∂u

∂t
+

∂

∂x
f(u) = 0, (4.8)

where f(u) = uv is the flux function. Eq. (4.8) holds for t ≥ 0 and 0 < x < L. In this
case it is necessary to specify both the initial conditions (ICs) u(x, 0) and the bound-
ary conditions (BCs) at the inlet u(0, t) and at the outlet u(L, t). A Dirichlet BC is
defined at the inlet, while a Von Neumann BC is imposed at x = L (∂u/∂x = 0).

In this section some numerical methods for conservation laws are briefly re-
viewed, with reference to Leveque (1992)’s complete monograph. A finite difference
method produces approximations Un

j to the solution un
j = u(xj , t

n) of Eq. (4.8).
Four different numerical schemes have been tested to establish the appropriate one:
the Upwind (UP) and Lax-Friederichs (LF) schemes, which are first order ones; the
Lax-Wendroff (LW) and MacCormack (MC) schemes, which use a two-step splitting
procedure to achieve second order accuracy. The time derivative is replaced by a
forward-in-time approximation, which means that the solution at time n + 1 only
depends on the solution at the previous time n (explicit 2-level method). In general,
it is possible to write:

Un+1 = Hk(Un), (4.9)

where Un+1 is the vector of approximations Un+1
j and Hk(Un) is an operator that

expresses the dependence of Un+1
j at point j on several values from the vector Un,

depending on the stencil of the scheme (Fig. 4.4). In the following the mesh ratio
k/h is assumed to be constant.

Figure 4.4. Stencils of the finite difference schemes
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In order to guarantee convergence to the so-called weak solution, that is, the one
which satisfies the integral form of the conservation equation (see A.1), the schemes
are implemented in their conservation form:

Un+1
j = Un

j − k

h
[G(Un

j−p, U
n
j−p+1, . . . , U

n
j+q) − G(Un

j−p−1, U
n
j−p, . . . , U

n
j+q−1)], (4.10)

where G is called numerical flux function. In the simplest case, p = 0 and q = 1 so
that G is a function of two variables and Eq. (4.10) becomes:

Un+1
j = Un

j − k

h
[G(Un

j , Un
j+1) − G(Un

j−1, U
n
j )]. (4.11)

The UP scheme is defined as follows:

Un+1
j = Un

j − k

h
[f(Un

j ) − f(Un
j−1)]. (4.12)

It should be pointed out that the upwind scheme becomes downwind when the prop-
agation speed sp = f ′(u) is negative.

The conservative form of the LF scheme is:

Un+1
j = Un

j − k

h
[G(Un

j , Un
j+1) − G(Un

j−1, U
n
j )], (4.13)

where

G(Un
j , Un

j+1) =
h

2k
(Un

j − Un
j+1) +

1

2
[f(Un

j ) − f(Un
j+1)]. (4.14)

The two II Order schemes are generalized to non-linear systems by using a
two-step procedure. The LW scheme takes the form:

U
n+1/2
j+1/2 =

1

2
(Un

j + Un
j+1) −

h

2k
[f(Un

j+1) − f(Un
j )] (4.15)

Un+1
j = Un

j − h

k
[f(U

n+1/2
j+1/2 ) − f(U

n+1/2
j−1/2 )],

while MC is:

U∗

j = Un
j − h

k
[f(Un

j+1) − f(Un
j )] (4.16)

Un+1
j =

1

2
(Un

j + U∗

j ) − h

2k
[f(U∗

j ) − f(U∗

j−1)].

Local truncation error

The local truncation error Lk(x, t) is a measure of how well the difference equation
models the differential equation locally. It can be obtained by replacing the approx-
imate solution Un

j in the difference equations by the true solution u(xj , tn). For a
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general 2-level method, the local truncation error is defined by:

Lk(x, t) =
1

k
[u(x, t + k) −Hk(u(·, t);x)], (4.17)

where u(·, t) denotes the function of x alone obtained by fixing t. The method is of
order p if, for all sufficiently smooth initial data with compact support, there is some
constant CL such that

‖Lk(·, t)‖ ≤ CLkp for all k < k0, t ≤ T. (4.18)

If the procedure is applied, as an example, to the LF scheme, it can be found that
Lk linearly depends on k, therefore the scheme is said to be first-order accurate. It
should be pointed out that Lk is the local order of the method, but it results that,
for smooth solutions, the global error is of the same order, provided the method is
stable.

Stability

According to Courant, Friederichs and Lewy, the necessary condition for stability of
a numerical scheme in the form (4.10) is:

∣

∣

∣

∣

sp
k

h

∣

∣

∣

∣

≤ 1. (4.19)

Eq. (4.19) is called CFL condition and the first term is the Courant number. If the
propagation speed sp is not constant, the CFL condition becomes:

k ≤ h

sup |sp(x, t)| . (4.20)

4.4.1 Grid effects on a model equation

In order to study the qualitative behaviour of the approximate solutions, the four nu-
merical schemes reported in the previous section are tested on a non linear hyperbolic
model equation, the Burgers equation (see A.3), with Heaviside ICs

u(x, 0) =

{

ul x < 0.2
ur x > 0.2

(4.21)

for which the analytical solution is available (Riemann problem) (Leveque, 1992) in
two cases: ul > ur (shock wave) and ul > ur (rarefaction wave). All the variables are
expressed in dimensionless form.

Fig. 4.5 shows a comparison between the exact and approximate solutions at
t=0.5, obtained with the different numerical schemes and the same discretization in
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time and space (∆t=1/1000, ∆x=1/320). The first-order schemes show a diffusive ef-
fect while the second-order schemes show unphysical oscillations, especially upstream
to the discontinuity: both effects are typical and are related to the local truncation
error of the schemes.
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Figure 4.5. Comparison between the exact and approximate solutions of the Rie-
mann problem

A parametric study on space discretization is then performed for each numeri-
cal scheme in the case of shock waves. The space step is systematically refined in the
range [∆xc=1/640;1/40], with a ratio of two between two successive grid sizes. The
accuracy of each scheme is evaluated by means of three parameters measured in x=0.4
and t=0.5: i. the phase error between the approximate and exact solution expressed
as ǫph = (uapprox − uexact)/(ul − ur); ii. the diffusion evaluated by ǫd = (∂u/∂x)

−1
;

iii. the maximum oscillation of the solution, which is typical of second-order schemes,
calculated as ǫo = (umax − ul)/(ul − ur) (Fig. 4.6). An error threshold of 5% is
fixed in order to determine the optimal space step ∆xc for each method. Fig. 4.6-c
shows that the LF and MC schemes do not satisfy the imposed limit on oscillations,
therefore they are discarded for the applications proposed in this work. It is worth
pointing out that the Burgers equation always involves the forward propagation of the
initial discontinuity, therefore it is not suitable to model all the different flow regimes.
A proper choice of the numerical scheme and of the discretisation grid should be
carefully evaluated for the specific simulation.
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Figure 4.6. Evaluation of the accuracy of the numerical schemes (t = 0.5, x = 0.4)



Chapter 5

Applications and results

5.1 Crowd dynamics on a motionless platform

This section discusses the simulations of crowd dynamics on a motionless platform.
Two kinds of simulations are performed, corresponding to two different boundary
conditions at the inlet (Fig. 5.1):

1. a compact group of pedestrians that cross the initially empty bridge (BC1);

2. a smaller group of pedestrians that follows a higher density cluster (BC2).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1  2  3  4  5

t

u(0,t)

BC 1

BC 2

Figure 5.1. Boundary condition on the density at the inlet

The benchmark is an ideal 90-m-long footbridge located in Europe. The chosen clo-
sure equation is the revisited Kladek formula in its dimensionless form (Eq. 3.22).

The aim of the first set of simulations is to test the sensitivity of crowd be-
haviour to different travel purposes: rush-hour (R), commuters (C) and leisure (L).
Each condition corresponds to a different value of γ and of the free speed vM . All
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the simulations are performed both in the non-dislocated (v = v(u(x, t))) and in the
dislocated case (v = v(u(x + δ, t))).

Fig. 5.2 reports the density and velocity space distributions at t = 2.5 for
the non-dislocated case. As expected, in the R condition, which is characterised by
the highest value of γ, pedestrians walk faster and fill the deck more quickly. The
comparison with the dislocated case is reported in Fig. 5.3 for the R case at t = 3.
The space dislocation δ is proportional to the walking velocity v and its main effect
can be seen in terms of diffusion, that is, a smoother space distribution.
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Figure 5.2. u and v space distribution at t = 2.5 in the non-dislocated case

The second simulation (BC2) has been performed in leisure conditions and Fig.
5.4 reports the density distribution for different instants of time:

• at t = 1 the first group of pedestrians is gradually filling the deck span;

• at t = 2.5 all the pedestrians of the first group have entered the bridge and some
of them have already left;

• at t = 3 the smallest group enters the bridge;

• at t = 4 the smallest group has reached the pedestrians in front and the groups
are no longer distinguishable.

The effects of the space dislocation once more have a diffusive nature.

5.2 Application of the force model

The properties of the force model described in §3.4 have been evaluated by means of a
sensitivity study on the two main variables, ζ in the [0 z̈M ] m/s2 interval and u in the
[0 uM ] ped/m2 range. The simulations are performed assuming a deck acceleration
time history with constant amplitude ζ:

z̈ = ζcos(2πfst). (5.1)
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Figure 5.3. Comparison between the dislocated and non-dislocated simulation

This type of simulation can be compared to an experimental test on a moving tread-
mill, except that the single pedestrian is substituted by a cluster of pedestrians.

The sensitivity study has been performed by referring to two case-studies, the
T-bridge and the south span of the London Millennium Bridge, since they are fully
documented. Therefore, the closure equation has been characterized for the two cases
as for the geographic area and the travel purpose, that is: Asia and rush hour traffic
for the T-bridge (TB); Europe and leisure traffic for the Millennium Bridge (MB). A
summary of the input data is reported in Table 5.1.

Fig.s 5.5a-c-e and 5.6a-c-e show the weights of the force components, scaled
with respect to the number of pedestrians n, versus ζ and u. The following consider-
ations can be made for both the case-studies:

• nps is much more sensitive to the deck acceleration ζ, than to the crowd density
u and grows monotonically as ζ increases and as u decreases; it reaches the
highest value for ζ > z̈s , whatever the value of u (Fig.s 5.5a and 5.6a);
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Figure 5.4. Space distributions of u for BC2

Table 5.1. Input data

vM [m/s] uM [p/m2] γ u [p/m2] ζ [m/s2] fs [Hz]

TB 1.48 7.7 0.273uM 0.8÷2.0 0.34 0.9

MB 1.18 6.0 0.245uM 1.3÷1.5 1.50 0.8

• npp has the opposite trend to nps: it grows as u increases and as ζ decreases.
For u > usync (Spp=1), npp is complementary to nps (Fig.s 5.5c and 5.6c);

• ns is obtained from subtraction of the other two terms, therefore it reaches the
maximum value when ζ and u are under their critical values and is null for
ζ > z̈s and u > usync, when all the pedestrians are synchronized (Fig.s 5.5e and
5.6e).

A colour map of the three weights in the u-ζ plane (Fig. 5.7) can be obtained for
each structure, in order to quickly estimate, in the preliminary design phase, which
kind of synchronization will play the main role.

Fig.s 5.5b-d-f-h and 5.6b-d-f-h represent the amplitudes a of the three force
terms (in N/m2) and of the overall force F , which is expressed in terms of its root
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Figure 5.5. Millennium Bridge
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Figure 5.6. T-bridge
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Figure 5.7. Colour map of the pedestrian synchronization

mean square (rms) value (Frms), versus ζ and u. Some common features can be
recognized in both cases:

• the evolution of Fps versus ζ is influenced by both nps and by the distributions
of the DLF s (see Fig. 3.12), which determine its non monotonic trend and its
self-limited nature with respect to ζ. The dependence of Fps on u is almost
linear, i.e. its amplitude grows linearly as the number of pedestrians increases
(Fig.s 5.5b and 5.6b);

• the amplitude of Fpp has the same evolution as npp, since it comes from the
product of npp and the constant F̄s. It is worthwhile pointing out that Fpp

goes abruptly to zero when fpl=0, that is, for u = uM : this means that the
Fpp component is self-limited with respect to u (Fig.s 5.5d and 5.6d). A similar
consideration can be drawn for Fs, which also has a non monotonic evolution
versus u (Fig.s 5.5f and 5.6f);

• the evolution of Frms versus u and ζ is not trivial, since it comes from the sum of
periodic signals with different frequencies and it therefore cannot be determined
by simply summing the three component amplitudes (Fig.s 5.5h and 5.6h).

The main difference between the two case-studies emerges in the Fps diagrams. For
the reasons explained in §3.4, Fps becomes null for a value of ζ that is higher than
z̈M , depending on the value of fs. As an example, Fig. 5.8 plots the amplitudes
of the two Fps components for the T-bridge: both the component in phase with the
acceleration F̄ (ζ) and the one in phase with the velocity F̄ (ν) are null when ζ and
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ν reach their the maximum values, but in the T-bridge case the limit values are non
simultaneoulsy obtained (i.e. for ν = żM , ζ = 2.5 m/s2).
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Figure 5.8. Amplitude of the Fps components in phase with ζ and ν for the T-bridge

The amplitudes of the force components can also be analysed with respect to
their frequency content (Fig. 5.9). Fig.s 5.9a-b are obtained for fixed ζ (the values
reported in Table 5.1), while Fig.s 5.9c-d are obtained by fixing the crowd density
u = 1.4 ped/m2 for both cases (average value of the measured crowd conditions).
The term Fps evolves in time with a constant frequency equal to fs; the component
Fpp, instead, has a frequency fpl which depends on u (see Fig.s 5.5g and 5.6g) and is
constant when u is fixed (Fig.s 5.9c-d). When u is under its critical value, fpl is at its
maximum value, while, as u grows, the walking velocity decreases and fpl decreases
in turn. In the MB case, the deck acceleration, which is much higher than in the TB,
causes the component Fps to prevail on Fpp for a fixed density (Fig. 5.9a); on the TB
the situation is opposite. The amplitudes of the forces for fixed u are, instead, very
similar for the two cases since they have been obtained for the same value of u: the
slightly differences are due to different closure equations and different values of fs.

Table 5.2 provides a deeper insight into the other results obtained with the
model. The correspondence between the simulated results and the actual data can
clearly be seen by looking at the force frequency content. In the case of the T-bridge,
the estimated step lateral frequency fpl (0.86 Hz) is very close to the deck lateral
frequency (0.9 Hz), therefore the two components Fpp and Fs also excite the first
lateral mode. As for the Millennium bridge, since fpl is very far from fs, it can be
stated that the overall force is mainly due to the synchronization between pedestrians
and the structure. Finally, let us consider the number of synchronized pedestrians.
Even though both events are characterized by high crowd density, as the two struc-
tures have different slenderness, the Millennium bridge shows higher oscillations than
the T-bridge, which means a greater number of pedestrians synchronized with the
structure. Since only a few pedestrians are captured in the structure-induced syn-
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Figure 5.9. Amplitudes of Fps and Fpp versus f , u and ζ

chronization on the T-bridge, the crowd density plays a leading role in determining
the overall force.

Table 5.2. Results obtained with the proposed force model (forces in [N/ped])

Benchmark a(Fps) a(Fpp) a(Fs) fpl Frms nps/n npp/n

MB 94.3 0.87 1.09 0.66 67.0 0.97 0.03

TB 3.44 19.0 5.10 0.86 17.46 0.33 0.63

The single force per pedestrian [N/ped] obtained with the model is, finally,
compared to that predicted with the force models proposed by Fujino et al. (1993),
Nakamura and Kawasaki (2006) and Dallard et al. (2001) (Table 5.3). It should be
pointed out that, since the cited models do not distinguish between the two types of
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synchronization, the predicted force is considered to be only due to the pedestrian-
structure synchronization and it is therefore compared to the term Fps.

Table 5.3. Comparison between the proposed force model and those found in liter-
ature (forces in [N/ped])

Model TB MB

Fujino et al. (1993) 7 n.a

Nakamura and Kawasaki (2006) 4.7 n.a.

Dallard et al. (2001) n.a. 89.5

Proposed 3.44 94.3

First, it is should be noticed that each model in literature is based on the data
recorded on a particular footbridge and it can not therefore be extended to all other
structures. For instance, Nakamura and Kawasaki (2006) observed that the model
they proposed for the T-bridge only agreed with that of Dallard et al. (2001) for deck
lateral velocities under 0.015 m/s. The proposed model, instead, has a more general
validity, since it is not based on one single event but on the phenomenological descrip-
tion of the components of the coupled system in their fundamental constitutive laws.
The amplitudes of the term Fps predicted by the proposed model are very similar to
those estimated by Nakamura and Kawasaki (2006) for the T-bridge and by Dallard
et al. (2001) for the Millennium bridge, respectively: this fact highlights the wide
applicability of the model.

5.3 Complete computational simulation on the T-

bridge (Japan)

5.3.1 Description of the case study

The proposed model has been tested by simulating a crowd event on the T-bridge
(Toda Park Bridge, Toda City, Japan, 1989). The T-bridge (Fig. 2.8) was chosen
since it has been extensively described by Fujino and coworkers in several papers
(Fujino et al. 1993, Nakamura 2003, Nakamura and Kawasaki 2006, Nakamura and
Fujino 2002) and particular attention has been devoted to the description of the
crowd conditions during the events. In the following, only some characteristics are
recalled. The T-bridge is a cable-stayed footbridge with a two-span continuous steel
box girder, a two-plane multistay cable system with 11 stays per plane and a 61.4 m-
high tower made of reinforced concrete. The total bridge length L is about 180 m and
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the road deck width B is 5.25 m. The girder is fixed longitudinally and transversely
at the tower position. Concrete was poured inside the box girder on the side span
to reduce the up-lift force at the end support. The bridge mass is 800 kg/m2 and
the damping ratio around 0.7%. The footbridge connects a boat race stadium to a
bus terminal. Therefore, at the end of boat races the bridge is crossed by a great
number of pedestrians, sometimes more than 20000, who leave the stadium to reach
the bus terminal. In these situations, lateral vibrations of the girder of up to 1 cm
were recorded.

Structural model

The FE modelling of cable-stayed bridges is not a simple task and different modelling
strategies are possible. In order to reduce the degrees of freedom and simplify the
dynamic analysis, a single-girder (spine) model is used (Ren and Peng, 2005), that
is, the bridge deck is modelled using a single central spine with offset rigid links to
provide cable anchor nodes. The deck stiffness is assigned to the spine elements and
the deck translational mass (lumped mass approach) is assigned to the spine nodes.
The towers and the deck are modelled with elastic beam elements and the cables with
truss elements (Fig. 5.10).

Figure 5.10. The FE model of the T-bridge

Each cable is modelled using a single truss element and the non-linear behaviour is
taken into account by introducing an effective axial modulus of elasticity (Warnitchai
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et al., 1995):

Eeq =
E

1 + λ2/12
and λ2 =

E(ρL)2

T 3 , (5.2)

where E is the cable modulus of elasticity, L is the horizontal projection of the cable
length, ρ is the cable weight per unit length, A the cross-section area and T the
prestress. The properties of the structural members are summarized in Table 5.4.

Table 5.4. Properties of the structural members

Component Area ρ E (105) Iz Iy T
[cm2] [Kg/m] [MPa] [m4] [m4] [KN]

C1 14.24 11.6 2.10 – – 428
C2 14.24 11.6 1.99 – – 451

C3 14.24 11.6 1.98 – – 387

C4 21.17 18 1.73 – – 290

C5 21.17 18 1.58 – – 278

C6 28.09 24 1.61 – – 425

C7 41.95 35 1.97 – – 1790

C1s 41.95 35 1.93 – – 451

C2s 41.95 35 1.87 – – 451

C3s 41.95 35 1.79 – – 451

C4s 41.95 35 2.00 – – 3000

Deck main span 1340 4840 2.10 0.2175 0.68 –

Deck side span 1340 8200 2.10 0.2175 0.68 –

Tower 39600 9900 0.345 1.597 1.07 –

The FE model has been validated by comparing the natural frequencies and
mode shapes of the footbridge with those reported by Fujino et al. (1993) and with
those obtained through a commercial FE software, Ansys v.10 (Fig. 5.11). It can
be observed that the first lateral frequency obtained using the developed FE model
is higher (1.05 Hz) than the one obtained by Fujino et al. (0.9 Hz). Nevertheless, it
should be noticed that the dominant frequency of the girder vibration recorded on the
T-bridge was about 1 Hz when loading was small (Fujino et al., 1993), and decreased
to about 0.93 Hz when the deck was congested and the vibration amplitude reached
its maximum value (Nakamura and Fujino, 2002). Therefore, the obtained lateral
frequency agrees with the deck behaviour in a non congested crowd condition, while
the added pedestrian mass is obtained from the solution of the mass conservation
equation (3.2). Moreover, Fujino et al. (1993) observed that some cables vibrate with
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a frequency close to 1 Hz. In order to take into account the local motion of the cables,
each cable should be described as a multi-element cable, with a consequent increase
in the number of DOFs and required computational costs (Warnitchai et al., 1995).
Since this kind of modelling is not the scope of this work, the inertial contribution of
the vibrating cables has been taken into account by adding an estimated equivalent
modal mass to the deck nodes that provide cable anchorages, as suggested by Fujino
et al. (1993). In such a way, the first lateral frequency decreases from 1.05 to 0.97 Hz.

1st vertical mode 1st lateral mode 3rd vertical mode

Fujino et al. (1993) 0.73 Hz 0.90 Hz 2.04 Hz

Developed code 0.66 Hz 1.05 Hz 1.88 Hz

Ansys 0.64 Hz 1.03 Hz 2.04 Hz

Figure 5.11. Comparison between the frequencies obtained with the developed code,
Ansys and those reported by Fujino et al. (1993)
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Crowd condition along the deck

The different crowd conditions recorded on the T-bridge have been described in a
qualitative way in several papers. The most crowded event was reported by Fujino
et al. (1993), when more than 20000 people left the stadium and crossed the bridge
in about 20 minutes. In the most congested situation, about 2000 people walked
simultaneously on the bridge. Less crowded situations are described in other papers
(Nakamura 2003, Nakamura and Kawasaki 2006, Nakamura and Fujino 2002): a max-
imum number of around 12000 people crossed the bridge in 12 to 20 minutes, with a
crowd density varying between 0.8 and 1.5 ped/m2.

The simulated condition represents an average of the events reported in lit-
erature. The initial condition on the density is u(0, x) = 0.01 ped/m2, while the
boundary condition at the inlet u(t, 0) (Fig. 5.12) has been built in order to allow
about 14000 pedestrians to pass over the bridge in 23 minutes, with a maximum
density of 1.33 ped/m2. It is worth pointing out that the incoming density shows
a steady-state regime bounded between two transient ones, which correspond to the
start and the end of the stadium evacuation. It should be noticed that the density
decreases in a smoother way than the initial increase. This is due to the assumption
that the stadium evacuation abruptly starts at the end of the boat race with a sud-
den increase in the crowd density, while the complete evacuation is expected to take
a longer time.

The speed-density relation has been adapted for the case of Asia and rush-
hour traffic, that is, uM = 7.7 ped/m2, vM = 1.48 m/s and γ = 0.273uM (Venuti and
Bruno, 2007a) (Fig. 5.13a). Fig. 5.13b graphs the flow-density diagram q − u, where
q = vu, and shows the capacity density uca, which corresponds to the maximum
flow. It is worthwhile recalling that, for u > uca, the crowd flow enters the congested
regime.
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Figure 5.12. Boundary condition on the density at the inlet
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Figure 5.13. Speed-density (a) and flow-density (b) relations

5.3.2 Simulation of an actual event

The proposed approach allows the evolution in space and time of both subsystems to
be described. Fig. 5.14 reports the time-space distributions of some main variables
obtained through the computational simulation: the crowd density u, the envelope
of the deck lateral acceleration ζ and the force components, expressed in [N/m]. In
order to retain only the large time-scale fluctuation, Fig.s 5.14c-f graph the envelope
of the variable maxima. It is worth pointing out that ζ has to be considered delayed
in time by a quantity τ , according to the hypothesis reported in §3.3.3.

The overall evolution in time of u is mainly due to the imposed boundary con-
dition at the inlet. In other words, the crowd dynamics is not affected by non-linear
traffic phenomena due to a crowd density above the capacity value uca or to the effects
of excessive lateral acceleration of the deck, that is, ζ ≥ z̈M .

When ζ exceeds the threshold of motion perception z̈c, some pedestrians syn-
chronize with the structure (Eq. 3.28), so that Fps is not null and has a space
distribution that matches the deck deformed shape (Fig. 5.14c). As a consequence,
the number of pedestrians synchronized to each other decreases, causing a decay of
Fpp (Fig. 5.14d). Otherwise, if ζ ≤ z̈c, Fpp follows the same trend as u. Fs follows
from the other two components: it has an increase when both Fps and Fpp are null,
that is, when u ≤ uc and ζ ≤ z̈c (Fig. 5.14e). Fig. 5.14f clearly shows that the
resulting total force F is mainly due to the Fpp component, since the magnitude of
Fps is small in the case-study.

Looking at the time-space distribution of the crowd density (Fig. 5.14a), five
crowd regimes have been identified:

• Regime I ‘advancing front’:
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Figure 5.14. Space-time distributions of the main variables

• Regime II ‘filling gradient’

• Regime III ‘uniform crowd’



Chapter 5. Applications and results 79

• Regime IV ‘vacating gradient’

• Regime V ‘leaving front’

The upper limit of regime I and the lower bound of regime V correspond to the
maximum and minimum difference between the crowd density at the outlet and at
the inlet ∆u = u(L, t) − u(0, t) (Fig. 5.15) respectively. The boundaries of regime
III have been determined as the time window with a mean value of u along the span
equal to 99% of the maximum mean density ū and a standard deviation of less than
0.01ū.

Figure 5.15. ∆u time history

The five regimes are highlighted in Fig. 5.16, which plots the isolines of the
crowd density and deck acceleration evolution. First, it can be noticed that the
uniform crowd regime also corresponds to the highest values of the deck response
(ζ > z̈c), which almost reaches the steady-state condition in the same period of time.
Second, regimes I and V are characterized by two local maxima of the structural
response that can be related to the well-known travelling load effects and can be
better understood referring to the instantaneous fields reported in Fig.s 5.17a-b. The
ζ local maximum around t = 2.97 min is mainly due to the Fs component, whose
distribution excites the structural first mode. The Fpp component is negligible since
the crowd density is below uc in a large portion of the footbridge span. A similar but
specular situation occurs at t = 30.4 min. In the time interval 27-29 min, the second
lateral mode is mainly excited (Fig. 5.17c). In this case, Fpp prevails on Fs along the
shorter span, where the density still remains high.

A deeper insight into the effects of crowd density and deck acceleration on the
force F is given in the graphs in Fig. 5.18, which plots the matrix R of the coefficients
of the space correlation of the force for each regime. Each term of the matrix R is
defined as follows:

R(i, j) =
C(Fi, Fj)

√

C(Fi, Fi)C(Fj , Fj)
, (5.3)
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Figure 5.16. Crowd regimes

where Fi = F (xi, t) and Fj = F (xj , t) are the forces applied in two generic points of
the deck space grid and C is the covariance matrix, defined as:

C(Fi, Fj) = E[(Fi − µi)(Fj − µj)], (5.4)

where E is the expected value and µi = E Fi. As expected, the highest space cor-
relation occurs in regime III, where the crowd is almost uniform along the span.
The transient regimes II and IV show a totally uncorrelated force, due to the space
variation of the step frequency fpl induced by the crowd density space distribution.
Regimes I and V, which are characterized by the highest gradients of u, have higher
values of correlation in the span portion where the density is very low, that is, the
shorter span in regime I and the first quarter of the main span in regime V.

Finally, the results of the computational simulation are compared to the mea-
surements reported by Fujino et al. (1993) for five time windows (Fig. 5.19). The
time windows reported by Fujino et al. (1993) do not match the five regimes defined
above, but have been defined with a similar objective, that is, to qualitatively identify
the different flow regimes that characterize the event. As for the structure results,
the figure reports the time history of the lateral deck displacement in the node cor-
responding to the position of the installed accelerometers (Fujino et al., 1993), the
first lateral frequency of the structure fs averaged over the period and the dominant
frequency f , obtained through a PSD of the signal in the considered period. As far as
the crowd results are concerned, the instantaneous spatial distributions of the crowd
density are reported, as well as the mean walking frequency fpl.

Looking at the results, a very good agreement between the simulation and the
recorded data is evident. The maximum amplitude of the lateral deck displacement,
of about 9 mm, matches the measured data very well. The maximum percentage of



Chapter 5. Applications and results 81

t = 2.97 min t = 30.4 min

0.9

0.6

0.3

0

-0.3

-0.6

-0.9

10.80.60.40.20

x/L

uc

ζ e+1

u

Fpp e-2

Fs e-2

 0.9

 0.6

 0.3

 0

-0.3

-0.6

-0.9

10.80.60.40.20

  

x/L

(a) (b)

t = 28.3 min

4.0

3.0

2.0

1.0

0

-1.0

-2.0

-3.0

-4.0
10.80.60.40.20

  

x/L

ζ e+2

u

Fpp e-2

Fs e-2

(c)

Figure 5.17. Instantaneous fields: crowd density u [ped/m2], deck lateral accelera-
tion ζ [m/s2], force components Fpp and Fs [N]

pedestrians synchronized to the structure is about 21%, which is in very good agree-
ment with the observation data of Fujino et al. (1993), who estimated a percentage
equal to 20%. Similar considerations can be made for all the considered variables. It is
worth pointing out that the dominant frequency of the deck vibration is always closer
to the walking frequency than to the structure lateral frequency. This means that the
force components due to synchronized-to-each-other or uncorrelated pedestrians are
dominant with respect to the one due to pedestrians synchronized to the structure, as
is also shown in Table 5.5. This outcome qualitatively confirms the results of the force
model application to the T-bridge discussed in §5.2. It is worthwhile noting that the
values of the force components obtained through the simple application of the force
model (i.e. for a given ζ or u) in §5.2 differ from the ones reported in Table 5.5
obtained from a complete simulation: this highlights the complexity of the coupled
behaviour of the system.
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Figure 5.18. Coefficients of space correlation for the five regimes
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Figure 5.19. Comparison between the simulation results and the data reported by
Fujino et al. (1993)
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Table 5.5. Maximum amplitudes of the force components [N/ped] at between 16
and 23 minutes

F Fps Fpp Fs nps/n npp/n ns/n

28.8 1.1 26.9 2.1 0.21 0.9 0.13

5.3.3 Sensitivity studies on the model parameters

Sensitivity study on the interacting terms

The computational approach offers not only the opportunity to simulate mechanical
systems in real conditions, but also to evaluate their behaviour under unphysical
states in order to separate the effects of each component of a coupled interacting
system. Bearing in mind this goal, the same benchmark was subjected to a sensitivity
analysis on the model interacting terms. In practice, the various interacting terms
were ”turned off” in the complete model by successive addition, in order to perform
the following simulations, which are summarized in Fig. 5.20:

1. complete Crowd-Structure Interaction, introduced in §5.3.2;

2. constant overall mass, that is, the structural mass Ms is retained while the
crowd added mass Mc is discarded;

3. the sensitivity to the deck vibration is not taken into account in the Structure-
to-Crowd interaction term, that is, v = v(u), instead of v = v(u, z̈);

4. the sensitivity to the deck vibration is not taken into account in the Crowd-to-
Structure interaction term, that is, Sps = 0 and consequently Fps = 0;

5. a combination of cases 3 and 4, i.e. the deck vibration effects are completely
discarded;

6. the influence of the density u in the lateral force is not considered, that is,
Spp = 0 and consequently Fpp = 0 so that all the pedestrians are uncorrelated.

The structural responses obtained from the six configurations are compared in Fig.
5.21. The maximum values of the main parameters are summarized in Table 5.6.
These values are the maximum ones obtained in the period of time from 16 to 23
minutes, which roughly corresponds to the steady state.
The following considerations can be made:

• the maximum amplitude of the deck displacement is reached with a complete
crowd-structure-interaction simulation. The change in the footbridge modal
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Figure 5.20. Scheme of the performed simulations

Table 5.6. Maximum values of the main variables at between 16 and 23 minutes

Simulation z [mm] z̈ [m/s2] F [N/ped] nps/n npp/n ns/n

1 9.3 0.28 28.8 0.21 0.9 0.11
2-5 6.2 0.19 28.8 0 0.89 0.12

6 1.3 0.04 6.0 0 0 1

properties, due to the crowd added mass, causes the first lateral frequency to be
closer to the walking frequency (Fig. 5.22). As a consequence, the pedestrian-
structure synchronization increases and the vibration in turn grows;

• the simulations from 2 to 5 give identical results. The absence of the crowd
added mass causes the deck lateral acceleration z̈ to never exceed the critical
value z̈c. Therefore, Sps is always null, v is only dependent on u and the four
simulations are, in fact, the same as simulation 5;

• when all the pedestrians are forced to be uncorrelated (simulation 6), the max-
imum vibration amplitude is 1.3 mm. This is in line with the result obtained
by Fujino et al. (1993) in their pioneering work: the application of a simplified
single-DOF model of the T-bridge, with an applied force due to uncorrelated
pedestrians, produced a vibration amplitude of 1 mm;
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• the first and the last five minutes of the response are almost equal in all the six
cases. This is due to the fact that the pedestrians are always uncorrelated in
those periods since the crowd density is below uc.

Figure 5.21. Deck displacement in the six different simulations

As far as the crowd system is concerned, simulations 2-6 present the same evolution
in time and space of the crowd density, since the walking velocity is not sensitized to
the deck lateral acceleration. The space distributions of u, v and ζ are compared in
Fig. 5.23 in two instants of time. It can be noticed that, in the portion of the deck
span in which ζ > z̈c, the walking velocity v is smaller in case 1 than in cases 2-6, be-
cause v is reduced by the deck lateral acceleration according to Eq. (3.4). Conversely,
according to the fundamental relation (3.2), the crowd density increases in the same
span portion shifted by a quantity due to the dislocation in space discussed in §3.3.3.

The sensitivity study highlights the leading role of the pedestrian added mass,
which is about 11.6% of the deck weight, on the overall structural behaviour. The sim-
ulations without the added mass Mc (2-5) follow the qualitative trend of the observed
structural response, but the vibration amplitude is underestimated by about 33%. In
the case of the T-bridge, the amplitude of the lateral force exerted by pedestrians is
mainly due to the synchronization among pedestrians: if the synchronization is ne-
glected, that is, all the pedestrians are uncorrelated, the obtained vibration amplitude
is further underestimated by about 90% of the recorded value, as already pointed out
by Fujino et al. (1993).
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Figure 5.23. Crowd density, velocity and deck acceleration in two istants of time
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Sensitivity study on the closure equation

The complete simulation described in §5.3.2 has been repeated with different closure
equations in order to test the sensitivity of the model to different travel purposes or
geographic areas. The revisited Kladek formula has been characterized each time by
varying the coefficient γ and the values of uM and vM for the following combinations:
Asia-rush hour (AR), Asia-commuters (AC), Asia-leisure (AL) and USA-leisure (UL),
which correspond to a progressive decrease of v for u > 0.8 p/m2 (Fig. 5.24a). The
first case (AR) refers to the condition that actually occurred on the T-bridge and
which is described in §5.3.2. The substitution of the four fundamental laws in Eq.
(3.10) leads to the fp − u relations represented in Fig. 5.24b.
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Figure 5.24. v(u) and fp(u) relations

The five regimes described in §5.3.2 have been identified for the four cases. Fig.
5.25 graphs ∆u for the four cases; the density space distribution corresponding to the
boundaries of regimes I and V are represented in Fig. 5.26.

Figure 5.25. ∆u time history
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Figure 5.26. Spatial distribution of u at the upper boundary of regime I (a) and
lower boundary of regime V (b)

Fig. 5.27 shows the time-space distribution of some of the main variables for
the four cases.

The regimes are also represented in Fig. 5.28, which plots the deck acceleration
time histories in x/L = 0.3, corresponding to the node monitored by Fujino et al.
(1993). First, it can be noticed that the gradual decrease in the pedestrian velocity
from AR to UL causes longer I and II regimes and a consequent progressive shortening
of regime III. The main consequence can be seen in the deck response, which is
gradually shifted in time and decreases: the lock-in threshold z̈c is only exceeded in
the first case AR.

A deeper insight into the simulated phenomena is provided by Fig.s 5.29-5.31,
which graph the space distribution of u, fr and F in the instants of time that are
representative of each regime. The following considerations can be made:

• at t = tI , the four cases present similar distributions of u and F (Fig. 5.29a).
The latter shows a higher space correlation in the portion of the span where
fr is constant (see Fig. 5.18). The different deck responses can be explained
by looking at the fr diagram: the highest motion corresponds to the value of
fr that is closest to unity (AC), which means that the force is almost resonant
with the first lateral mode of the deck;

• at t = tII , the crowd is in the transient condition of gradually filling the deck
span (Fig. 5.29b). In all cases, the slight monotonic variation of fr in space
shows its effects on the space distribution of F . This time, AR has the closest
fr values to 1 and, therefore, the highest deck vibration;

• at t = tIII , the uniform crowd condition reflects on fr, which is almost constant
throughout the span (Fig. 5.30a). Two instants of time are represented in the
AR case, in order to highlight the influence of the deck acceleration on the
density distribution for 0.2 < x/L < 0.4 at t = tIII,b;

• regime IV is specular to regime II as well as regime V is specular to regime I.
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Figure 5.27. Evolution in space and time of the main variables

The sensitivity study on the closure equation shows that different crowd travel pur-
poses can lead to quite different structural responses. In particular the case with
rush-hour traffic causes a deck vibration amplitude which is almost three times the
amplitude obtained in leisure traffic conditions in the same geographic area. For
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Figure 5.28. Time hystories of the deck lateral acceleration

this reason the footbridge should be designed according to the most likely pedestrian
traffic type during the lifetime of the bridge (FIB, 2005).

Sensitivity study on the crowd boundary conditions

The third sensitivity study was performed on the crowd BCs at the inlet, by varying
the maximum value reached by the density uh (Fig. 5.32). The uh = 1.33 p/m2 case
corresponds to the condition simulated in §5.3.2.

First, it should be noticed is that the maximum amplitude of the deck lateral
acceleration does not correspond to the case with the highest density uh = 2 p/m2

(Fig. 5.33). This can easily be explained by looking at the data in Table 5.7. Increas-
ing values of uh correspond to increasing amplitude of the total force, but also to a
decrease in fr due to the effect of the crowd added mass. As a consequence, when
uh = 0.8 p/m2, the total force is an order of magnitude lower that in the case uh = 2
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(a) (b)

Figure 5.29. Space distribution of the main variables in regimes I (a) and II (b)

p/m2, but the force is almost resonant with the deck first mode and, therefore, it
induces the highest structural response (Fig. 5.34).

The almost steady-state response for uh = 2 p/m2 is due to the fact that,
in the same time window, the crowd density exceeds the value usync, above which
Spp = 1. Therefore, all the pedestrians are synchronized to each other and walk with
the same frequency, which is sufficiently far from fs to prevent resonance (Fig. 5.35).
The two local maxima at t ≈ tA and tB could be explained by looking at the space
distributions of u, F and ζ in Fig. 5.36. The variables present similar but specular
space distributions. The concentration of the crowd in the first half of the main span
at t = tA and in the shorter span at t = tB is probably the reason for the higher deck
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(a) (b)

Figure 5.30. Space distribution of the main variables in regimes III (a) and IV (b)

Table 5.7. Mean values of the main variables between 15 and 20 minutes

uh [p/m2] 2 1.3 0.8

fr 0.85 0.93 1.01
|F | [N] 1122 719 169

ζmax [m/s2] 0.10 0.25 0.27
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Figure 5.31. Space distribution of the main variables in regime V
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Figure 5.32. Boundary condition on the density at the inlet
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Figure 5.33. Time histories of the deck lateral acceleration in x = 0.3L

response: in other words, the two local maxima are due to the transient effect of the
travelling load.

Figure 5.34. Evolution in time and space of u and fr for uh=0.8 p/m2

This study once again demonstrates the non-linearity and complexity of the
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Figure 5.35. Evolution in time and space of u and fr for uh=2 p/m2

coupled system. For the analysed case-study, in fact, the lowest structural response
was obtained for the higher value of the crowd density. This is due to the effects of
the crowd added mass, which changes the dynamical properties of the footbridge, and
of the closure equation, which influences the lateral walking frequency: both factors
have the effect of changing the ratio fr.

Sensitivity study on the structural constraints

Finally, the influence of the structural constraints is explored by changing the way in
which the deck is constrained at the tower position, according to the scheme reported
in Fig. 5.37:

• A) the deck is not directly connected to the tower: an external constraint in-
hibits all the translations and the rotations around the y and x axes;

• B) the deck is fixed at the tower with two rigid links. This constraint models
the actual condition of the T-bridge;

• C) the deck is not directly connected to the tower: an external constraint inhibits
all the translations and the rotation around the x axis.

The itemizing order corresponds to a decreasing flexural stiffness of the deck in the
x − z horizontal plane.

Looking at the deck acceleration time histories (Fig. 5.38), it can be noticed
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Figure 5.36. Space distribution of the main variables at t = tA (a) t = tB (b)

Figure 5.37. Scheme of the deck-tower constraint
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that case A is qualitatively similar to case B. The higher structural stiffness of the
first case can explain the lower response, which is always under the critical value z̈c.
On the contrary, the higher values of the acceleration local maxima at t ≈ 3 and
t ≈ 31 min in case A are due to a closer fr to unity than in case B and C (Fig. 5.39).

Figure 5.38. Time histories of the deck lateral acceleration

The structural response of case C is quite different from the other cases so far
analysed. Once again, it is possible to identify a correspondence between the crowd
regimes and the structural response. In particular, the deck response in regime II al-
ternates lock-in and unlock phases, like the ones analyzed in Fig. 5.40. At t = t1, the
distributions of v and u are still not affected by the deck acceleration. As ζ increases,
v decreases where ζ > z̈c, causing a local growth of the crowd density, which is clearly
visible at t = t2. The resulting loss of space correlation in the total force, due to local
gradients of the step frequency, cause a decrement of the deck response. At t = t3,
the effects of ζ on u and v have almost disappeared and the deck acceleration again
starts to increase.

The uniform crowd regime III corresponds to a deck response that clearly re-
calls the ”beating” phenomenon, which is characteristic e.g. of the response of an
undamped SDOF system subjected to harmonic loading (Clough and Penzien, 1987).
The natural frequency fs = 0.87 Hz in fact slightly differs from the frequency of the
leading force component Fpp, that is, fpl = 0.83 Hz. Therefore, the deck response
varies with an average frequency equal to (fs +fpl)/2, while the amplitude varies with
a rate equal to the difference between the two frequencies (fpl − fs)/2, that is, with
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Figure 5.39. Evolution in time of fr in x/L = 0.3

a period equal to 47 seconds.
A deeper insight into the simulated phenomena is provided by the time his-

tories of the main variables in Fig. 5.41 for a characteristic time-scale of about 24
s in x = 0.3L. The time history of the deck acceleration is useful to interpret the
other diagrams. When ζ > z̈c, the crowd velocity v proportionally decreases, while u
increases. The effects of ζ are also visible in the percentages of synchronized pedes-
trians: nps grows with ζ and is null when the acceleration is below the critical value,
while npp has a complementary evolution. As already pointed out for the previous
simulations, the synchronisation among pedestrians plays a leading role. This is con-
fermed by the evolution of the force components: the amplitude of Fps is negligible
with respect to Fpp, both because nps < npp and because the DLFs corresponding to
the reached deck acceleration and velocity are smaller than the DLF of a motionless
pedestrian (§3.4, Fig. 3.12).

As expected, the different ways in which a structure is constrained cause a
change in its dynamic properties. Therefore, the footbridge can be less or more sen-
sitive to the force exerted by walking pedestrians (according to the fr ratio), with a
consequent change in the structural response.

Concluding remarks

The results of the simulations commented on in this section highlight the major role
played by the crowd added mass. In lightweight structures, the added mass has the
main effect of changing the structural dynamic properties, that is, the natural fre-
quencies, with the effect of making both the structure less, or more, sensitive to the
lateral force exerted by pedestrians and the pedestrians less, or more, likely to syn-
chronize to the structure. Therefore, as already pointed out in recent guidelines (e.g.
FIB 2005), the mass of pedestrians has to be considered together with the mass of
the structure in the overall dynamical system.

The structural response is also very sensitive to the crowd travel purpose.
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Figure 5.40. Istantaneous fields in regime II

Therefore, in the conceptual design phase, it is important to plan the kind of pedes-
trian traffic that is more likely to cross the footbridge (Schlaich, 2002) during its
lifetime.

Quite surprisingly, a more crowded condition does not always correspond to
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Figure 5.41. Regime III: time histories of the variables
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higher deck vibrations. This result once more confirms the complexity of the coupled
dynamical system. It also shows that simplified comfort criteria based on the limita-
tion of the number of pedestrians crossing the bridge (e.g. Dallard et al., 2001) might
not be effective in preventing the synchronous lateral excitation phenomenon.



Chapter 6

Conclusions

This work has tackled the problem of crowd-structure interaction in lively foot-
bridges. The aim of the study was to develop a general modelling framework, that
has been specifically characterized to simulate the synchronous lateral excitation on
footbridges, in order to provide an accurate description of the most relevant features
of the phenomenon and to represent a solid background for reliable and useful design
tools for engineers.

The model is based on the partitioned approach, widely used in the modelling
of multiphysics systems, i.e. the complex coupled dynamical system is decomposed
into two subsystems, the Crowd and the Structure, separately modelled and discre-
tised, that interact with each other. One of the most original aspects of this approach
to the problem of human-induced vibration is that the crowd is not simply considered
as a load, but as a dynamical system that is governed by specific laws and evolves in
time and space.

The modelling of crowd dynamics has been developed in the framework of first
order macroscopic modelling, which refers to the derivation of an evolution equation
for the mass density, regarded as a macroscopic quantity of the flow which is assumed
to be continuous. The mass conservation equation is closed by a constitutive law
that links the crowd velocity to the density. A great effort has been devoted to the
determination of a suitable relation, in order to sensitise the pedestrian velocity not
only to the crowd density, but also to the lateral motion of the footbridge deck and
to other parameters, such as the travel purpose and the geographic area. In addition,
a space dislocation and a time-delay have been introduced into the closure equation
to account for non-equilibrium conditions due to space gradients in the density dis-
tribution and deck response effects on crowd density, respectively.

Finally, the modelling term that provides the crowd-to-structure action has
been handled by proposing a load model of the lateral action of the pedestrians. The
aim of this model was to take into account some features of the synchronous lateral
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excitation phenomenon, which so far has not been completely understood or modelled:
the existence of two kinds of syncronization, the first between the pedestrians and the
structure (lock-in) due to the deck lateral motion and the second among the pedestri-
ans, due to high crowd density; the triggering of the lock-in and the self-limitation of
the force when excessive oscillations prevent pedestrians from walking; the presence
of different frequency components in the overall force.

The model has been implemented in an ad hoc computational code, which has
been used to perform simulations of ideal or actual events. The simulation of the
event recorded on the T-bridge in Japan and the parametric studies on the model
parameters have in particular given relevant results from the engineering point of
view. First of all, the results of a simulation of the actual event on the T-bridge
gave a good correspondence to the measured data reported in literature. In addition,
the sensitivity studies performed on the same benchmark allowed some important
aspects to be highlighted: the crowd added mass plays a leading role in the behaviour
of the dynamical system and should not be disregarded; the structural response is not
linearly dependent on the number of pedestrians crossing the bridge; the structural
response is very sensitive to the closure equation adopted in crowd dynamics, i.e. to
the mean biometric and psychological features of the crowd.

The proposed crowd-structure interaction model has the advantage of provid-
ing a general framework that can be characterized in each of its parts to simulate
a specific problem. The characterization of the model for the synchronous lateral
excitation phenomenom is based both on the data obtained from literature and on
the original modelling of some ”constitutive laws” of the pedestrian behaviour. These
laws can certainly be improved as soon as new experimental data are available.

The developed code provides a useful tool both to reproduce real events that
have occurred on footbridges and to simulate different crowd scenarios and structural
behaviour in the conceptual design phase. The development of a simplified revision of
the code for the design of footbridges is one of the first research perspectives, in order
to attain a version that will be easier to use and more widely applied. Other future
developments of this work could be the extension of the model to vertical excitation
and the tuning of the proposed laws by means of ad hoc conceived experimental tests
or simulations of other case-studies.



Appendix A

The derivation of the mass
conservation equation

A.1 Integral and differential forms

The one-dimensional mass conservation equation is derived in its integral and differ-
ential form (Leveque, 1992). As an example, let us consider the flow of a gas in a
tube, where density and velocity of the gas are assumed to be constant across each
section of the tube. Let x be the distance along the tube and u(x, t) the density at
point x and time t. The total mass in any given section from x1 to x2 is given by:

∫ x2

x1

u(x, t)dx. (A.1)

The walls of the tube are impermeable, therefore any change in the mass in the
considered section is only due to gas flowing across the endpoints x1 or x2. The rate
of flow, or flux of gas is given by:

q(x, t) = u(x, t)v(x, t), (A.2)

where v(x, t) is the velocity of the gas at point x and time t. The rate of change of
mass in [x1, x2] is given by the difference in fluxes at x1 and x2:

d

dt

∫ x2

x1

u(x, t)dx = u(x1, t)v(x1, t) − u(x2, t)v(x2, t). (A.3)
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Eq. (A.3) represents one integral form of the conservation law. Another form can be
obtained by integrating this in time from t1 to t2:

∫ x2

x1

u(x, t2)dx =

∫ x2

x1

u(x, t1)dx +

∫ t2

t1

u(x1, t)v(x1, t)dt −
∫ t2

t1

u(x2, t)v(x2, t)dt,

(A.4)
where Eq. (A.4) gives an expression for the mass in [x1, x2] at time t2 > t1 in terms
of the mass at time t1 and the total flux at each boundary during the considered time
period.

The differential form of the conservation law is derived assuming that u(x, t)
and v(x, t) are differentiable functions. Then, replacing the following expressions in
Eq. (A.4):

u(x, t2) − u(x, t1) =

∫ t2

t1

∂

∂t
u(x, t)dt

u(x2, t)v(x2, t) − u(x1, t)v(x1, t) =

∫ x2

x1

∂

∂x
(u(x, t)v(x, t))dx

gives:
∫ t2

t1

∫ x2

x1

{

∂

∂t
u(x, t) +

∂

∂x
(u(x, t)v(x, t))

}

dx dt = 0. (A.5)

Since this must hold for any section [x1, x2] and over any time interval [t1, t2], the
integrand in Eq. (A.5) must be identically zero, i.e.,

ut + (uv)x = 0, (A.6)

which is the differential form of the mass conservation equation. It can be solved
alone only if the velocity v(x, t) is known a priori or is a function of u(x, t). In this
case, the flux is a function of u only, that is, uv = f(u), and Eq. (A.6) becomes a
scalar conservation law for u:

ut + f(u)x = 0. (A.7)

A.2 Scalar conservation laws

In the simplest case, the velocity v is known a priori and is constant, say v(x, t) = a
and f(u) = au. In this case Eq. (A.6) reduces to

ut + aux = 0, (A.8)

which is called linear advection equation. If it is solved for t ≥ 0 with initial data
u(x, 0) = u0(x) for −∞ < x < ∞ (Cauchy problem), then the solution is simply:

u(x, t) = u0(x − at). (A.9)
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As time evolves, the initial data propagates unchanged with velocity a. The solution
u(x, t) is constant along each ray x − at = x0, which are called the characteristics
of the equation.

The main property of the solution u(x, t) at any point (x̄, t̄) is that it depends
on the initial data u0 at a single point, namely the point x̄0 such that (x̄, t̄) lies on the
characteristic through x̄0. The set D(x̄, t̄) = {x̄0} is called domain of dependence of
the point (x̄, t̄). The size of this set has a bound of the form D ⊂ {x : |x−x̄| ≤ amaxt̄}.
Conversely, initial data at a point x0 can influence the solution only within some cone
{x : |x − x0| ≤ amaxt} of the x − t plane, called range of influence of the point x0

(Fig. A.1). Summarizing, hyperbolic equations have finite progation speed, that is,
information can travel with velocity at most amax.

Figure A.1. Domain of dependence and range of influence

A.3 Burgers’ equation

In the previous sections we made reference to linear equations. Lets now consider the
non-linear scalar equation, given by Eq. (A.7) with f(u) = 1

2u2, that is, v(u) = 1
2u:

ut +

(

1

2
u2

)

= 0. (A.10)

Eq. (A.10) can be rewritten in a quasi-linear form, recalling that f(u)x = f ′(u)ux:

ut + uux = 0. (A.11)

This equation is called Burgers’ equation or ”‘inviscid Burgers’ equation”’, since the
equation studied by Burgers also includes a viscous term. It looks like an advection
equation, with the advection velocity equal to the value of the avected quantity u.
The characteristic are straight lines and u is constant along each characteristic.

It is interesting to study the Burgers’ equation together with piecewise constant
initial data having a single discontinuity: this is known as the Riemann problem:

u(x, 0) =

{

ul x < 0
ur x > 0

(A.12)
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The following two cases are possible.

Case I: Shock wave: ul > ur.
There is a unique weak solution, that is:

u(x, t) =

{

ul x < sdt
ur x > sdt

(A.13)

where
sd = (ul + ur)/2 (A.14)

is the shock speed, the speed at which the discontinuity travels. The characteristics
in the two regions where u is constant go into the shock as time advances (Fig. A.2).
More generally, the shock speed for scalar problems is given by:

sd =
f(ul) − f(ur)

ul − ur
(A.15)

Figure A.2. Shock-wave

Case II: Rarefaction wave: ul < ur.
In this case there are infinite weak solutions. One weak solution is again (A.13) with
(A.14). Characteristics go out of the shock (Fig. A.3) and this solution is not stable
to perturbations, that is, if a small amount of viscosity is added to the equation, the
solution completely changes.
Another weak solution is the rarefaction wave:

u(x, t) =







ul x < ult
x/t ult ≤ x ≤ urt
ur x > urt

. (A.16)

This solution is stable to perturbation (Fig. A.4) and satisfies the entropy conditions.
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Figure A.3. Entropy-violating shock

Figure A.4. Rarefaction wave
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torato in Ingegneria delle Strutture XVII ciclo, 2005.

A. D. Pizzimenti and F. Ricciardelli. Experimental evaluation of the dynamic lateral
loading of footbridges by walking pedestrians. In 6th International Conference on

Structural Dynamics, Paris, 2005.

A. D. Pizzimenti and F. Ricciardelli. The synchronization: the lessons of the wind
engineering and their application to the crowd-structure interaction. In 8th Italian

Conference on Wind Engineering, Reggio Calabria, 2004.

I. Prigogine and R. Herman. Kinetic Theory of Vehicular Traffic. Elsevier, New York,
1971.

W. X. Ren and X. L. Peng. Baseline finite element modeling of a large span cable-
stayed bridge through field ambient vibration tests. Computers & Structures, 83:
536–550, 2005.



BIBLIOGRAPHY 115

F. Ricciardelli. Lateral loading of footbridges by walkers. In Proceedings Footbridge

2005, Venezia, 2005.

T. M. Roberts. Synchronised pedestrian excitation of footbridges. Bridge Engineering,
156(BE4):155–160, 2003.

M. Schlaich. Planning conditions for footbridges. In Proceedings Footbridge 2002,
Paris, 2002.
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