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Abstract

This paper proposes an efficient method to determine the flutter derivatives of 2-dimensional streamlined cylinders

by means of a modified indicial approach adapted to a Navier-Stokes solver using an Arbitrary Lagrangian Eulerian

formulation. The method relies on heave or pitch motion imposed on the structure according to smoothed ramp time

histories and on the computational evaluation of the transient forces that arise on the obstacle. Hence, the indicial

transfer function that relates the structural motion to the induced force in the frequency domain is obtained. The

approach is applied to a flat plate of finite thickness and length immersed in a viscous flow. The low computational

costs of the method allow the effects of the Reynolds number to be evaluated on both the aerodynamic and aeroelastic

behaviour for a wide range of Re values. The flow around the motionless plate is compared to the well-known Blasius

and Goldstein solutions. The flutter derivatives extracted from simulations with a moving plate are compared to ones

obtained from the Theodorsen function in the frame of the thin airfoil theory. Relationships between the variation of

Re, the fluid flow phoenomena and the flutter derivatives are highlighted in order to identify the flow field features

that affect the flutter derivatives to the greatest extent.

Key words: computational wind engineering, flutter derivatives, indicial approach, grid-based methods, Reynolds number
effects.

1. Introduction

The study of flutter instability of linelike, flexible structures is usually simplified by considering the two-
dimensional (2D) airflow around a representative rigid section along the main span of the structure. The
relationship between the aeroelastic force on the section, induced by its own motion, and the motion itself
can be expressed as an aeroelastic system that is characterized by transfer functions in the time or frequency
domain between the input (motion) and output (force). It is worth pointing out that this approach leads
to the formulation of a linear type aeroelastic system. The above mentioned transfer functions have been
expressed in this common modeling framework in different ways that depend on the application of interest.
As for the time domain, the indicial approach was successfully used by Wagner (Fung, 1993) to give a
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closed-form solution of the transient lift evolution versus time (the so-called Wagner indicial lift function)
of a 2D flat thin plate placed in a potential flow and subjected to a step-wise pitch motion. As for the
frequency domain, the complex Theodorsen function was obtained by Theodorsen (1935) in analytical form
by imposing a sinusoidal motion to the theoretical flat plate in the same flow conditions, that are well
able to approximate the usual flying ones. Garrick (1938) demonstrated that the Theodorsen circulation
function can be related to the Wagner indicial function by the Fourier transform. Theodorsen’s modelling
framework was first extended to bluff bodies moving in a viscous flow at moderate Reynolds numbers
by Scanlan and Tomko (1971) who introduced frequency-dependent, empirical coefficients in place of the
Theodorsen function, under the assumption that the linearity of the system still holds. Simiu and Scanlan
(1996) related the resulting so-called flutter derivatives to the Theodorsen function in closed form, referring
to the streamlined flat plate in a potential flow. To the authors’ knowledge, the first attempt to evaluate the
Reynolds number effects on the flutter derivatives of a symmetrical airfoil was made by Halfman (1952) and
then more recently by Le-Mâıtre et al. (2003). Neverthless, these studies cover distinct but narrow ranges
of the Reynolds numbers (respectively 1e + 5 ≤ Re ≤ 1e + 6 and 6e + 2 ≤ Re ≤ 1.2e + 3), so that a clear
trend is hard to recognize.

The flutter derivatives are generally obtained through wind-tunnel tests on oscillatory section models,
e.g. in Matsumoto (1996). The computational calculation of these transfer functions is a challenging task
for Computational Fluid Dynamics (CFD) and Computational Wind Engineering (CWE). In the latter
field of research, the most popular method to achieve this goal was first proposed by Walther and Larsen
(1997) and subsequently applied to a number of bridge cross-sections, e.g. in Vairo (2003). The method
adopts sinusoidal imposed vibrations of the section in perfect analogy with the experimental tests. The
aerodynamic derivatives are obtained from the amplitude and phase relationships between the imposed
motion and the fitted time histories of the aeroelastic force components. From a computational point of
view, this method is very expensive, as a time-dependent simulation is needed for each non-dimensional
frequency (the so-called reduced frequency) of interest. Moreover, it requires that the extent of the simulated
time histories of the aeroelastic force components is large enough to overcome the transient flow solution
and to allow their correct fitting. According to the authors, the above mentioned computational difficulties
have not been overcome in a recent study by Le-Mâıtre et al. (2003): the proposed method is based on a
spring-mounted airfoil placed in the free stream, subjected to an initial displacement and then left free to
oscillate in order to estimate the apparent damping ratio and apparent natural mechanical frequency of the
airfoil. Once more, one simulation is necessary for each reduced frequency of interest. Even though only the
transient solution is of interest, the lower the structural frequency, the longer the simulated time and the
CPU one. The indicial approach is certainly less expensive from a computational point of view, because of
two main reasons. First, a unique simulation is needed to evaluate the transfer function in the whole range
of interest of the reduced velocity. Second, only the transient flow has to be simulated and its extension
in time does not depend on the structural natural frequency of the obstacle. Nevertheless, great attention
should be paid to make the indicial approach compatible with the computational simulation of the flow. In
the authors opinion, the first attempt made by Brar et al. (1996) to apply the indicial approach by means
of CWE experienced some difficulties dues to the assumption that the relative angle of attack, associated to
a vertical displacement of the section, can be equivalently simulated by a motionless obstacle immersed in a
uniform velocity field in space at the initial time. The above mentioned approach does not respect the physics
of the transient flow nor eliminate the numerical errors due to the flow impulsive initial conditions affecting
the transient force that arises on the structure. Hence, both the indicial function at its first time steps and
its Fourier transform at high frequencies contain a non-physical contribution. In another work applied to
aircraft manoeuvres, Lesieutre et al. (1994) took into account the motion of the wing by directly simulating
the imposed obstacle motion. Furthermore, a smoothed-ramp motion of the section during a finite time
is proposed in order to overcome the computational problems involved by the step-wise displacement and
the infinite velocity of the structure. In a previous work, Fransos and Bruno (2006) extended and adapted
the above mentioned approach to the numerical calculation of the transfer functions expressed in terms of
flutter derivatives. The proposed approach has been applied to a thick flat plate immersed in an incoming
smooth viscous flow at null mean incidence and at high Reynolds number (Re = 1.e + 4). The efficiency
of the approach has been discussed referring to the previous computational results by Walther and Larsen
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(1997).
The proven low computational cost of the adopted method offers the opportunity, in the present work, of

investigating the effects of the Reynolds number on the flutter derivatives of the flat plate for a wide range of
Reynolds numbers (1.e + 1 ≤ Re ≤ 1.e + 5). Compressibility effects take place for Re < 10, while the upper
bound is close to the theoretical threshold values at which transition to turbulence takes place. The range
investigated herein covers both the range of interest for bridge decks and wind turbines (1.e+4 ≤ Re ≤ 1.e+5)
and the one of interest for biomechanics, insect flight and drone planes (1.e + 1 ≤ Re ≤ 1.e + 3).

The key features of the quasi-indicial computational approach employed to identify the flutter derivatives
are briefly recalled in section 2. The Reynolds number effects on the steady and unsteady flow field and on
the flutter derivatives are evaluated in section 3. In particular, the study has been conducted to point out
some relationships between the variation of Re, the fluid flow phoenomena and the flutter derivatives in
order to identify the flow field features that affect the flutter derivatives to the greatest extent. Hence, an
empirical expression of the most important flutter derivatives versus the Reynolds number is proposed.

2. Computational identification of the flutter derivatives

The method adopted herein to compute the 2D-flutter derivatives follows these steps:
(i) computational simulation of the aerodynamic behavior of the motionless obstacle with a steady ho-

mogeneous incoming flow;
(ii) computational simulation of the effects of the motion of the obstacle in the flow:

(a) the motion (input i(t)) is prescribed according to a suitable smoothed-ramp evolution in time;
(b) the resultant forces (output o(t)) are obtained by integration of the surface stresses on the body;

(iii) post processing in order to infer flutter derivatives from the simulated time histories of the input i(t)
and output o(t) variables.

The main components of the computational model, referring to steps 1. and 2., and the approach employed
to recover the flutter derivatives (step 3.) are briefly described in the following.

2.1. Computational Model

Computational simulation of fluid-structure interaction problems is a challenging task that can be per-
formed through different approaches, depending on the type of interaction and the aim of the simulation.
In this paper, the solid structure sub-system is modeled as a 2D-SDOF rigid body and its dynamics is fully
described by the imposed displacement i(t) of its rotational center. The coupled fluid-structure system is
then reduced to a fluid flow in a time-dependent domain, and the motion of the domain boundary is known a

priori. Time-dependence of the domain introduces a further requirement for grid-based numerical methods,
i.e. an efficient way of moving the computational grid.
The following subsections are devoted to describing the mathematical modeling of the fluid flow system, the
moving grid strategy and the numerical method employed to solve the obtained model. Neverthless, it is
worth pointing out that the proposed method works for any kind of computational approach and physical
model of the flow.

2.1.1. Flow modeling

The incompressible, unsteady, two-dimensional laminar flow with moving boundaries is modeled in the
present study by means of the Navier-Stokes equations. For a moving domain Ωg(t), the Arbitrary Lagrangian

Eulerian (ALE) approach (Donea, 1996; Nomura and Hughes, 1992) allows a reference frame Ω̂g to be
introduced, which is mapped for each time t in the fluid domain by ξ 7→ x (t, ξ), where ξ and x are the ALE
and Eulerian (spatial) coordinates respectively. The classical nondimensional instantaneous continuity and
momentum equations are then modified in their ALE counterpart in terms of the fluid variables relative to
the moving frame
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divu = 0, x ∈ Ωg(t), t > 0,

∂u

∂t

∣

∣

∣

∣

ξ

+ (u − ug) gradu = −gradp +
1

Re
∆u, x ∈ Ωg(t), t > 0,

(1)

where u is the velocity of the fluid, ∂(·)/∂t
∣

∣

ξ
the time derivative on the ALE frame, ug = ∂x/∂t

∣

∣

ξ
the frame

velocity, p the pressure. The variables are nondimensionalized by the reference free stream velocity U , the
chord length of the body B and the fluid density ρ, so that the Reynolds number is Re = ν−1, where ν is
the kinematic viscosity. The boundary motion is then treated by imposing

ug =
∂x

∂t
, ∀x ∈ ∂Ωf (t), t > 0, (2)

and solving an auxiliary problem in order to determine ug inside the domain. The choice of an appropriate
auxiliary problem characterizes the ALE method; the choice adopted in this work is described in section
2.1.2.
Dirichlet conditions are imposed on the velocity at the inlet and Neumann conditions are imposed on the
normal component of the stress tensor T at the outlet, as depicted in Figure 1a.

The classical Eulerian form of the Navier-Stokes equations can be recovered imposing ug = 0 in the absence
of boundary motion: this choice is adopted to simulate the flow around a motionless obstacle together with
no-slip boundary conditions at the wall

u = ug = 0, x ∈ Γs, t > 0, (3)

and impulsive initial conditions

u0 = (U, V ) , x ∈ Ωg, t = 0. (4)

The more general Arbitrary Lagrangian Eulerian approach (eq. 1) is used for simulations with a moving
obstacle together with the corresponding form of the no-slip boundary condition at the wall

u = ug(t) = uw (i(t)) , x ∈ Γs, t > 0, (5)

where uw (i(t)) is the wall velocity that corresponds to the imposed input obstacle motion i(t). The velocity
field simulated around the motionless obstacle is used as the initial condition for the flow velocity field in
moving obstacle problems.

2.1.2. Grid generation strategy

In grid-based methods, two main goals are pursued concerning the mesh in simulating flow problems with
moving boundaries. First, the minimization of the computational cost required to adapt the grid to the
changes in the domain geometry; second, the maximization of the grid quality at each time step. In order
to define it, the ratio ai/Λx between the maximum body displacement ai and the characteristic length of
the grid cell Λx can be assumed as a significant parameter.

On one hand, the application dealt with in this paper involves small displacements of the solid boundary,
coherently with the assumption of Scanlan’s model (ai ≈ Be − 2). On the other hand, it calls for very fine
meshes in order to accurately solve the thin viscous boundary layer at high Re numbers (e.g. ai/Λx ≈ 1e+2
at Re = 1e + 4). The simulation of the unsteady aerodynamics of the moving obstacle also requires a high
grid quality in its neighborhood and in its wake.
Both the decomposition of the computational grid and the deformation of the existing unstructured grid are
adopted in the present work in order to handle these features. The artificial field Ωg of the computational
grid is further partitioned by means of a II level decomposition into three sub-fields (Fig. 1b) in an analogous
manner to Vairo (2003) and Jeong and Kwon (2003). A hybrid adaptive quad/tri grid approach is adopted
to discretize the resulting complex computational domain. A body-fitted, structured quadrangular grid is
generated near the wall in partition Ωg1 in order to guarantee the best initial grid quality with orthogonal
and unskewed cells. A triangular grid is generated to cover the intermediate domain Ωg2 using an advancing
front method. Finally, a coarse paved quad grid is used to fill the outer domain Ωg3.
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Fig. 1. Computational domain, boundary conditions (a) and partitions for the ALE approach (b)

The structured quad grid around the solid boundary Γs moves with the moving body, while the paved
one in Ωg3 remains stationary. As the quad grids are not deformed, their quality remains the same along
the simulation, which is a particular benefit when solving the viscous boundary layer. In addition, the outer
sub-domain Ωg3 does not require re-meshing procedures, thus reducing the computational costs. Meanwhile,
the unstructured triangular grid needs to bridge the imposed displacements on Γg1 to the zero-displacements
on Γg2.

The deformation of the existing unstructured grid, usually referred to as a “dynamic mesh” approach
according to the early work by Batina (1989), is adopted herein for this purpose. In particular, the spring
analogy method is adopted to deform the dynamic mesh. The grid in partition Ωg2 is viewed as a quasi-
static pseudo-structural discrete system. In this analogy, a fictitious lineal spring is attached along each edge
connecting two vertices i and j of the fluid mesh, and the stiffness coefficient of this spring is chosen to be
inversely proportional to the length lnij of the supporting edge at each time-step tn, i.e. kn

ij ∝ 1/lnij, so that
if two vertices get closer during mesh motion, the lineal spring attached to the edge connecting the vertices
becomes stiffer and therefore prevents them from colliding.

The position of the dynamic mesh is obtained from the solution of the quasi-static problem


















qn = qn = yn + θnr, ξi ∈ Γs , Ωg1 , Γg1,

Knqn = 0, ξi ∈ Ωg2,

qn = 0, ξi ∈ Γg2 , Ωg3 , Γg3,

(6)

where qn is the current displacement vector whose terms are defined by

qn
i = ξn

i − ξ0
i , (7)

qn denotes the prescribed displacement vector of the moving boundary Γs of the solid domain Ωs, r is
the distance between the i − th vertex and the center of rotation O and Kn is the current stiffness matrix
associated to the fictitious lineal springs.

2.1.3. Numerical method

Computations were performed using the FLUENT 6.2 code, based on the Finite Volume Method (Eymard et al.,
2000; Ferziger and Peric, 2002).

The physics of the investigated flow seems to be significantly sensitive both to numerical diffusion effects
(affecting the smoothing of the velocity defect in the wake of the streamlined obstacle and the small vortical
structures induced by its motion) and to numerical dispersion effects (i.e., it appears to cause phase errors
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term scheme local order overall leading error main effect

time Euler impl. 1st ∆t/2
(

d2φ/dt2
)

diffusive

convective QUICK 3rd ∆x2/24
(

∂3φ/∂x3
)

dispersive

2UPW 2nd ∆x2/3
(

∂3φ/∂x3
)

dispersive

Table 1
Adopted numerical schemes

between the obstacle displacements and the motion-induced forces acting on it). It is worth observing that
the higher the Reynolds number of the flow, the lower the diffusive effects due to kinematic viscosity and
the more relevant the numerical diffusion. Thus, the computational simulation of flows characterized by high
Reynolds numbers is very sensitive to numerical errors. Advancement in time is accomplished by the 1st
order implicit Euler scheme. The cell-center values of the variables are interpolated at face locations using
a second order Central Difference Scheme for the diffusive terms. The interpolation of the convection terms
is accomplished by means of the Quadratic Upwind Interpolation for Convective Kinematics (QUICK) on
quadrilateral cells in the Ωg1 and Ωg3 partitions, while the second-order upwind scheme (2UPW) is employed
on the triangular cells of the unstructured grid in Ωg2. The local order and the overall leading error made
on the flux of a generic variable φ by the above mentioned schemes are summarized in Table 1. For the sake
of simplicity, the overall leading errors are evaluated on a Cartesian equispaced grid for the pure convection
equation. The pressure-velocity coupling is achieved by means of the pressure-implicit PISO algorithm, using
a predictor-corrector approach for the time discretization of the momentum equation, whilst enforcing the
continuity equation.

2.2. Choice of the smoothed ramp function and motion time

This section briefly mentions the main guidelines followed to select the most suitable smoothed-ramp
function i(t) and motion time extension (step 2a.). The extended a-priori analysis of the qualitative proper-
ties of several smoothed-ramp functions and the evaluation of the effect of the ramp-time extension on the
harmonic content of the function itself can be found in Fransos and Bruno (2006).
In the indicial approach, the Heaviside or step-wise function is traditionally chosen as the input function
i(t) because the output function o(t) is the indicial response function itself. In computational applications,
a step-wise variation of the imposed displacement cannot be exactly represented because of discretization
errors. Moreover, its discrete derivative versus time (velocity) shows large values generally involving non-
physical oscillations of the solution. Hence, a smoothed ramp is preferred. Two main guidelines must be
taken into account when choosing the best smoothed ramped input.

First, the input represents a physical continuous in time phenomenon, so that a high class of continuity
seems a reasonable choice. Lesieutre et al. (1994) proposed a cosine function and a 5th order polynomial
one. In order to guarantee the highest class of continuity, the error function is proposed by the authors:

ferf (t) =
ai

2

[

1 + erf(b(t − c))
]

, −∞ ≤ t ≤ +∞ . (8)

where ai is the amplitude of the ramp reached after an elapsed “ramp-time” Tr from the start at t = t0.
The start time and the ramp-time for the error function are defined as t0 | i = 0.01ai and t0 + Tr | i = 0.99ai

respectively, because of the asymptotic trend to initial and final values of the function itself.
The second guideline refers to the harmonic contents of the input function. Special attention should in

fact be paid to assure a significant harmonic content at the upper bound of the range of interest of the
reduced frequency k = ωB/U , where ω = 2πn is the angular velocity of the body motion. In the following,
a non-dimensional ramp time of Tr = 0.87 is retained.
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2.3. Identification of the flutter derivatives

In the following, the approach firstly proposed in Fransos and Bruno (2006) to easily recover the 2-
dimensional flutter derivatives from the time-histories of the body motion and of the acting forces obtained
by computational simulation is recalled. Let us consider the expression of the aeroelastic forces arising on
an oscillating rigid body immersed in a 2D wind field given by the model of Scanlan & Tomko, reported in
Simiu and Scanlan (1996):

L =
1

2
ρU2B

[

kH∗

1 (k)
ẏ

U
+ kH∗

2 (k)
Bθ̇

U
+ k2H∗

3 (k) θ + k2H∗

4 (k)
y

B

]

, (9)

and

M =
1

2
ρU2B2

[

kA∗

1 (k)
ẏ

U
+ kA∗

2 (k)
Bθ̇

U
+ k2A∗

3 (k) θ + k2A∗

4 (k)
y

B

]

, (10)

where L and M are the lift force and the pitching moment evaluated at the pole O (0.5B; 0), ρ the air
density, y and θ the heave and pitch component of the displacement of the pole O, respectively. Herein, the
so-called flutter derivatives H∗

i (k) and A∗

i (k) are expressed as functions of the reduced frequency.
The aeroelastic system, because of the basic assumption of the model, can be seen as a linear map (Figure

2) between the input variables (displacements and velocities) and the output ones (aeroelastic forces).
Hence, the equations 9 and 10, obtained for sinusoidal motions, can be generalized to any kind of motion,

�������������
�������������
�������������

�������������
�������������
�������������

o(t)i(t)

x

U

y

M(t)θ(t)

L(t)y(t)

O
Aeroelastic System

Fig. 2. Aeroelastic forces on a 2-dimensional cylinder

the proposed smoothed ramp functions included.
Let us consider a general evolution in time η(t) of the input variable η = i = y, θ and the corresponding

time-history of the output variable in non dimensional form η = o = CL, CM where CL = 2L/ρU2B
and CM = 2M/ρU2B2. These variables can be expressed as the inverse Fourier transform of their Fourier
transform:

η(t) = F−1
[

F [η(t)]
]

=

∫ +∞

−∞

aη̂(ω)ej(ωt+ϕη̂(ω))dω, (11)

where aη̂(ω) and ϕη̂(ω) are the modulus and the phase angle of the Fourier transform of η(t), respectively.
If a linear operator is assumed to map the input and output, for each reduced frequency, the argument of
the integral in equation 11 can be expressed by means of equations 9 - 10. For instance, let us consider θ(t)
as the input and CL(t) as the output. Using the Scanlan & Tomko formulation, one obtains:

aL̂ej(ωt+ϕL̂) =
[

kH∗

2

B

U

d

dt

(

aθ̂e
j(ωt+ϕ

θ̂
)
)

+ k2H∗

3aθ̂e
j(ωt+ϕ

θ̂
)
]

= k2aθ̂

[

jH∗

2 + H∗

3

]

ej(ωt+ϕ
θ̂
). (12)

It follows that:

H∗

3 + jH∗

2 =
1

k2

aL̂

aθ̂

ej(ϕL̂−ϕ
θ̂
) =

1

k2

aL̂

aθ̂

(

cos(ϕL̂ − ϕθ̂) + j sin(ϕL̂ − ϕθ̂)
)

, (13)

and equating the real and imaginary components:

H∗

2 (k) =
1

k2

aL̂

aθ̂

sin(ϕL̂ − ϕθ̂), (14)

H∗

3 (k) =
1

k2

aL̂

aθ̂

cos(ϕL̂ − ϕθ̂). (15)

In an analogous manner the expressions of the remaining 6 flutter derivatives are easily obtained and are
listed in Table 2. Equations 14 and 15 show that it is possible to determine the transfer function in the
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A∗

1
(k) = B

k2

a
M̂

aŷ

sin(ϕ
M̂

− ϕŷ), H∗

1
(k) = B

k2

a
L̂

aŷ

sin(ϕ
L̂
− ϕŷ),

A∗

2
(k) = 1

k2

a
M̂

a
θ̂

sin(ϕ
M̂

− ϕ
θ̂
), H∗

2
(k) = 1

k2

a
L̂

a
θ̂

sin(ϕ
L̂
− ϕ

θ̂
),

A∗

3
(k) = 1

k2

a
M̂

a
θ̂

cos(ϕ
M̂

− ϕ
θ̂
), H∗

3
(k) = 1

k2

a
L̂

a
θ̂

cos(ϕ
L̂
− ϕ

θ̂
),

A∗

4
(k) = B

k2

a
M̂

aŷ

cos(ϕ
M̂

− ϕŷ), H∗

4
(k) = B

k2

a
L̂

aŷ

cos(ϕ
L̂
− ϕŷ).

Table 2
Expression of the flutter derivatives

frequency domain for any input by evaluating the ratio between the Fourier transforms of output o(t)
and input i(t), provided the inverse of the latter is not singular. Furthermore, the modulus of the Fourier
transform of input aî(ω) must be large enough with respect to the one of the output aô(ω) at every frequency
of interest, in order to guarantee the accurate numerical evaluation of the flutter derivatives. Finally, it is
worth noting that the method can also be applied to the classic Heaviside input function, where aî = 1 and
ϕî = 0.

3. Reynolds number effects

The proposed approach is applied to the parallel incoming laminar flow along a finite-length smooth
flat plate. A finite thickness D = B/400 and rounded leading and trailing edges are adopted to obtain a
streamlined section.

The Reynolds number effects on the steady flow past the motionless obstacle and on the unsteady flow
around the moving plate are systematically investigated in the following. The efficiency of the proposed
computational approach, proven in Fransos and Bruno (2006), allows the computational solution of the
Navier-Stokes equations in a wide range of Re values (1.e + 1 ≤ Re ≤ 1.e + 5). The flow is incompressible
and laminar in this range, while compressibility effects take place for Re < 10, as shown by Sun and Boyd
(2004), and the transition from the laminar boundary layer to the turbulent one occurs at Rex,crit =≈ 3.e+6,
according to the boundary layer theory (Schlichting, 1979).

Apart from the previously illustrated grid-generation strategy, the density of the control volumes (cv)
is mainly dictated by two problem-dependent aspects. First, the highest grid density is set in the obstacle
neighborhood by imposing a cell thickness close to the wall yw = 5.e − 6B in order to accurately resolve
the laminar wall boundary layer. Even though the accurate simulation of the flow in the neighborhood of
the plate plays a dominant role in steady aerodynamics, an analogous precision is required to predict the
velocity distribution in the wake in view of the study of the aeroelastic behavior. The indicial response in fact
quantifies the effect of the impulsive motion induced flow field perturbations and of their following convection
far from the obstacle in its wake on the aeroelastic forces. Hence, the accurate computational simulation
of the transport mechanisms (convection and diffusion) along the wake plays a relevant role in predicting
flutter derivatives at high reduced velocities Ur = 1/k = U/nB. The extended analysis of the effects of the
grid density in the wake region on the computational results can be found in Fransos and Bruno (2006). In
the following, the adopted computational grid in the region downwind to the trailing edge is characterized
by a non-dimensional control volume (cv) surface Acv/B2 = 1.e−4. The region crosswind dimension is equal
to 0.2B while its alongwind extension is equal to 8B. The overall grid cv number is equal to 10.5e+4.

3.1. Steady-state flow past a fixed plate

The aerodynamic behaviour of a fixed plate in a steady viscous flow is first simulated to provide suitable
initial conditions for the simulation with a moving obstacle and to compare the computational results with
the available analytical solutions. In particular, the obtained results are compared to Blasius and Goldstein
closed-form solutions, as well as to some experimental data available in literature. It is worth recalling that
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Blasius assumptions fully hold for Re ≥ 1.e + 3: hence, only data for this range are reported.
Figure 3 shows the main characteristics of the boundary layer around the plate. Its shape can be observed
in Figure 3a, where the 0.99U contour of the velocity is plotted. The Reynolds number affects not only the
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Fig. 3. Boundary layer thickness around the plate and velocity profile at x/B = 0.5 varying Re

boundary layer thickness along the side of the plate, defined as the non-dimensional distance from the wall
y/B at which ux = 0.99U , but also the width of the front region, which is far from being negligible at low
Re even for a thin flat plate. It is worth pointing out that the shape of the front region also depends on
the leading edge geometry of the plate. The growth of the boundary layer thickness along the upper side of
the plate is shown in Figure 3b: a general good agreement results from the comparison with the closed-form
Blasius solution. Similar conclusions can be drawn for the velocity profile along the x/B = 0.5 line, which
is plotted in Figure 3c. In both cases, the profiles at Re < 1.e + 3 vary with the same trend, but cannot
be compared with any approximate closed-form solution. Figure 4a shows the horizontal velocity along the
y = 0 line, while the horizontal component of the velocity along the x = 1.5 line is plotted in Figure 4b.
In both cases, the obtained results are compared to the experimental and theoretical values reported by
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Fig. 4. Horizontal component of the velocity in the wake at different Re numbers
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Goldstein. The discrepancy between the present results and the reference values in the maximum horizontal
velocity defect in the near wake is probably related to the finite thickness of the plate. Figure 5a shows the
skin friction coefficient distribution along the side of the plate at different Reynolds numbers. The friction
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Fig. 5. Cf distribution along the plate and at x/B = 0.5, varying Re

coefficient regularly varies in agreement with Blasius solution in the range of validity of the latter. The
distribution along the plate does not significantly vary for lower values of Re, but the pointwise value of
the friction coefficient (e.g. at x/B = 0.5 in Figure 5b) increases more quickly than Blasius solution as the
Re number decreases. In the 10 ≤ Re ≤ 100 range, the trend of the computational results is best fitted to
Cf ∝ Re−2/3. Figure 6a shows the pressure coefficient distribution along the side of the plate at different
Reynolds numbers. The pressure distribution along the side surfaces tends to the one around the thin plate
(Cp = 0) at high Re numbers. On the contrary, the suction on the lateral surfaces significantly increases
between Re = 400 and Re = 100, highlighting two distinct flow regimes around these wathershed values.
Moreover, the pressure coefficient at the stagnation point Cpsp (see Figure 6b) is not equal to the unit at
each Re as the Bernoulli equation states for a perfect fluid. The obtained data shows that the lower the
Re, the higher the Cp at x/B = 0 and that the latter asymptotically tends to the unit when the former
increases. When Re decreases, the diffusive term due to viscosity in the Navier-Stokes equations cannot be
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Fig. 6. Cp distribution along the plate and at x/B = 0, varying Re

neglected with respect to the convective one. As previously pointed out in Khris (1998), diffusion can be
considered as an energy loss that adds to the kinetick energy loss that arises near the stagnation point.
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The momentum consevation forces the gradient pressure dp/dx to react to these energy losses, and this
reaction causes the high pressure at the stagnation point. In other words, from an energetic point of view,
the Bernoulli equations can be rewritten in a more general form as Cpsp = 1 + ∆Hp, where ∆Hp > 0 is the
pressure energy surplus. The fitting of Cpsp versus Re in Figure 6b would suggest expressing the pressure

energy surplus as ∆Hp = 76.67/Re2/3, revealing the same dependence versus Re that has previously been
pointed out for the friction coefficient along the plate.
The resultant aerodynamic force is reduced to the drag component due to flow symmetry. The overall
drag coefficient CD is split into its CDp and CDf components, due to the pressure and the shear stresses,
respectively. Their evolution versus Re is shown in Figure 7a. It clearly appears that the friction compo-
nent is predominant at each Re number, as can be expected in the case of streamlined bodies. Figure 7b
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Fig. 7. Drag coefficient varying Re: components and total value

compares the obtained values of the overall drag coefficient CD, varying the Reynolds numbers, with the
experimental results available in literature (Sun and Boyd, 2004; Dickinson and Gotz, 1993; Sunada et al.,
1997; Schaaf and Sherman, 1954) and with the Blasius solution. The present results are in excellent agree-
ment with all the reference values. It is worth noting that, as for the friction coefficient, the drag coefficient
shows a change in its dependence on Re between Re = 100 and Re = 400. While Blasius pointed out this
dependence to be CD ∝ Re−1/2 for Re ≥ 1000, the experimental and computational data for Re ≤ 100 are
best fitted to CD ∝ Re−2/3.

3.2. Unsteady-state flow past a moving plate

In this section, the study deals with the flat plate aeroelastic behavior at different Reynolds numbers. A
smoothed ramp motion is imposed on the obstacle according to the approach previously described in order
to recover its aeroelastic coefficients. The motion is applied to a single degree of freedom, heaving or pitching,
at a time. The amplitude of the prescribed smoothed ramp is chosen in order to fulfill the assumption of
small displacements and velocities of the wall, so to avoid the boundary layer separation and guarantee the
linearity of the aeroelastic system. Hence aθ = +1◦ (counterclock wise) is adopted for the pitch rotation
around the torsional axis at the mid-chord of the plate. The heaving amplitude is then fixed to obtain the
same maximum wall velocity at the tips of the plate, i.e. ay = +8.7e− 3B. The computational simulation of
the unsteady flow is performed assuming a time step ∆s = 1e − 3, where s = tU/B is the non dimensional
time unit. High discretization density in time is required to provide an accurate description of the ramped
motion along Tr = 0.87s and in order to reduce the diffusive effect of the truncation error caused by the
1st order implicit Euler scheme. The computational simulation is carried out till the asymptotic values
of the aerodynamic forces are reached (non dimensional time unit s = tB/U ≈ 50). The lift (first row)
and moment (second row) coefficients that arise on the obstacle due to heaving (first column) or pitching
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Fig. 8. Unsteady aerodynamic coefficients due to heaving or pitching smoothed ramp motion

(second column) motion, are plotted in Figure 8 versus the shifted time ∆s = s−Tr/2, where Tr is the time
required to accomplish the motion. The forces show common behavior of their evolution in time. A local
maximum occurs during the motion of the plate: in particular, the Reynolds number effects on these forces
(in the following referred to as in-motion forces) dramatically affect the diagonal terms (lift coefficient due to
heaving motion and moment coefficient due to pitching motion). Once the obstacle is motionless, the forces
(in the following referred to as post-motion forces) monothonically tend to the asymptotic steady value,
even though the latter is more clearly observable in the extra diagonal coefficients (lift coefficient due to
pitching motion and moment coefficient due to heaving motion). In the following, both trends are discussed
in order to first interpret them from a phenomenological point of view and then to find dependencies of some
significant quantities on the Reynolds number for each of them. As regard the in-motion forces, let us focus
for instance on the lift coefficient during the heaving motion. As for the moment coefficient due to pitching
motion, it shows a different evolution in time at very low (Re ≤ 100) and high (Re ≥ 400) Reynolds numbers,
analogously with the aerodynamic behavior in a steady flow. For Re ≤ 100, the obstacle is subject to an
increasing upward lift during its upward motion (Figure 9a). In order to better understand this phenomenon,
let us look at the pressure coefficient and at the vertical component of the friction coefficient along the upper
surface for Re = 10 at five sampled time steps (Figure 9b-c). The pressure increases at the upper surface
with the velocity of the motion, as can be expected, reaching its maximum at s = Tr/2. The lower surface is
subjected to a suction that is equal in magnitude and with a null time delay. The lift term resulting from the
pressure is therefore negative in the global reference system (downwards). The positive overall lift can only
be given by the contribution of the vertical component of the viscous forces. In fact, its magnitude reaches
higher instantaneous values than the pressure, which are equal in sign and magnitude at both the upper and
lower surfaces. In order to explain how these forces occur, let us look at the relative velocity Urel between the
plate surface and the fluid, as sketched in Figure 10. Even though the plate keeps an absolute zero angle of
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attack α during the whole vertical motion, the relative velocity shows a vertical component that is equal to
the motion velocity, while the horizontal component Ut remains the same as that of motionless plate. Hence,
the shear stress τ at the wall even has a vertical component along the flat surfaces of the plate. Bearing in
mind that shear stresses are proportional to the kinematic viscosity ν = Re−1, the lower Re, the higher the
vertical component τy . Hence, the vertical component of the shear stress τy gives positive resultant forces in
the global reference system (upwards) both on the upper and lower surfaces, that sums and prevails on the
pressure contribution in the lift coefficient.
The evolution in time of the lift differs for high Reynold numbers (Re ≥ 400 in our study, Figure 11),
showing both local minimum and maximum values. As expected, the friction contribution to the lift becomes
negligible, and the whole behavior of the lift is therefore driven by the instantaneous pressure distribution
on the plate surfaces, which is plotted for the sampled time steps at Re = 1.e + 5 in Figure 11. During the
first part of the motion, the plate is accelerated upwards and the inertial effects cause the pressure to assume
very high positive values at the upper surface and weakly negative values at the lower surface. Hence, the
resulting lift force is negative in the global coordinates. For s > Tr/4, the acceleration decreases, and for
the same reason as before, the pressure changes sign at the lower surface and becomes weaker at the upper
surface. Hence, the lift coefficient changes sign becoming positive, before tending to zero when the motion
ends.
In order to investigate the dependence of the in-motion foces from Re, let us consider the maximum value of
the in-motion aerodynamic coefficients Ci,j (circles in Figures 9 and 11) and their time delay Pi,j from ∆s =
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0, at which the maximum velocity occurs (Figure 12). The maximum values are shown to be proportional
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Fig. 12. In-motion forces dependency on Re number

to 1/
√

Re (Figure 12a), highlighting a linear dependence on the kinematic viscosity. On the contrary, no
unique fitting of the time delay is possible in the whole explored range of Re (Figure 12b). Coherently with
what has been discussed above, it is possible to distinguish two different ranges in which the dependence
changes: for 1e + 1 ≤ Re ≤ 1e + 2 the lift time delay is proportional to Re1/3 and the moment time delay is
proportional to Re2/3, while in 4e+2 ≤ Re ≤ 1e+5 both are proportional to 1/

√
Re. It is worth noting that

the forces are in phase with the velocity at the lowest Re (showing the prevalence of the viscous term), while
the lift force tends to be in phase with acceleration (time delay PL,y = Tr/4) at the highest Re, showing the
prevalence of the inertial effects.
The dynamics of the vortex shed in the wake from the trailing edge of the moving plate is analysed in
the following, in order to study the influence of the Reynolds number on the post-motion forces, From a
qualitative point of view, the evolution of the aerodynamic forces acting on the plate after it stops moving
are expected to be due to the perturbation induced in the flow field by the vortex itself. From this point
of view, both the velocity at which the vortex is convected and its diffusion play relevant roles on the rate
of change of the aerodynamic forces. The instantaneous wake structure at the time s = Tr/2 + ∆s, with
∆s = 3.5, is visualized in Figure 13a by means of the vorticity contours, while the position of the vortex
core at the same time is estimated by the abscissa corresponding to uy = 0 on the line y = 0 for different
Re (Figure 13b, circles). It is worth noting that the wake becomes much thinner than the perturbation at
high Re: this causes the perturbation itself to be greatly affected by the undisturbed flow that impacts on
it and consequently to generate other velocity fluctuations characterized by smaller scales nearby.
The distance ∆x/B traveled by the vortex from when the plate stops moving (s = Tr/2) is obtained as the
difference between the abscissa of the zero value of uy (highlighted by circles in Figure 13b) and the abscissa
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Fig. 13. Vorticity magnitude field and y-velocity along line y = 0 in the wake for different Re at s = Tr/2 + 3.5

of the trailing edge. Hence, an estimate of the averaged convective velocity is obtained as ∆x/(B∆s) for
various ∆s and Re (Figure 14a). Analogously to the time delay of the in-motion forces, no unique fitting of
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the convection velocity versus Re is possible: a dependence on 1/ 3
√

Re is observed at low Reynolds numbers,
while this dependence is on 1/

√
Re at the high ones. It is worth noting that the convective velocity of the
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vortex asymptotically tends to the undisturbed flow field velocity (thin wake) for increasing Re. The higher
the Re, the thinner the wake and the higher the convection velocity at which the motion-induced vortex is
transported. Bearing in mind that the latter is the flow structure that mainly affects the post-motion force
evolution in time, its components CL and CM are expected to tend faster to their steady values.
The radius Rv of the vortex initially shed from the plate is estimated for various ∆s and Re as the distance
between the uy zero value (e.g. in Figure 13b, circles) and its closer downwind local maximum (e.g. in Figure

13b, squares). A dependence on 1/
√

Re can be observed for this quantity in the whole range of Re (Figure
14b).

3.3. Flutter derivatives

The flutter derivatives, computed for each Re using the presented method are plotted in Figure 15 and
compared with the closed-form solution obtained with the Theodorsen function. All the derivatives show
a relevant dependences on the Reynolds number and tend to the Theodorsen solution (inviscid flow) for
increasing Re. The results obtained at Re = 1.e+5 show an excellent agreement with the analytical results,
except for the H2 and A4 ones. It is worth noting that the absolute value of H1 and A2, that is the flutter
derivatives of main interest in torsional and coupled flutter, varies by two orders of magnitude across the
range of Re at each Ur.
In order to better understand the differences between the flutter derivatives that are analitically available
for inviscid flows and the ones numerically obtained for low Re flows, the percentage scatter averaged on Ur

is plotted for each derivative in Figure 16. Significant scatters, ranging from 5% to 100%, can be observed
for all the derivatives in the bridge deck and wind turbine range of interest (1.e + 4 ≤ Re ≤ 1.e + 5). The
A2 and H1 derivatives exhibit even greater scatters (up to 10000%) for the biomechanics and drone plane
Re numbers of interest (1.e + 1 ≤ Re ≤ 1.e + 3).
Bearing in mind the Reynolds number dependencies previously highlighted for some of the main flow quan-
tities (Figures 12 and 14), the flutter derivatives are fitted versus Re using the following functions:

Fi(Re, Ur) = aRe−1 + bRe−1/3 + cRep 1e + 1 ≤ Re ≤ 1e + 2

Fi(Re, Ur) = F ∗

i (Ur) + aRe−1 + bRe−1/2 4e + 2 ≤ Re ≤ 1e + 5
(16)

where Fi = [A, H ] are the Reynolds-dependent flutter derivatives with i = [1, 4], F ∗

i the flutter derivatives
obtained from the Theodorsen function, p = 1/3 for i = y and p = 2/3 for i = θ. The obtained fittings
versus Re are shown in Figure 17. On one hand, the excellent fittings (except for H2 and H4) confirm that
the most significant features of the interaction phenomena and their dependence on Re were recognized with
adequate accuracy in the previous section. On the other hand, generally speaking, the flutter derivatives
exhibit a different dependence on Re in the same two ranges pointed out in the previous sections. Roughly
speaking, A2, H1, H3 and A4 show monotonic behavior for increasing Re in both ranges, while the remaining
derivatives do not. In particular, the regular trends of A2, H1 and A4 versus Re would lead us to think that
a unique variation law versus Re can be found. In particular, these derivatives change sign at low Reynolds
numbers (Re ≤ 1.e + 3), revealing possible unstable aeroelastic behavior of the profile. Bearing in mind the
prevailing role played by H1 and A2 in flutter and their high sensitivity to Re, a futher fitting was proposed
according to the simplified function:

Fi = F ∗

i +
a

Re
+

b√
Re

(17)

which retains the dependencies found for the maximum value of the in-motion forces and for the vortex
diffusion in the wake, both spanning along the whole range of Re. The fitting is plotted in Figure 18a:
The fitting coefficients are plotted versus Ur in Figure 18b in order to point out the linear and quadratic
dependencies, respectively. Hence, the approximated expression of these derivatives as functions of Re and
Ur are:

A2 ≈ A∗

2 + 49
Ur

Re
+ 0.09

U2
r√
Re

H1 ≈ H∗

1 + 594
Ur

Re
+ 0.7

U2
r√
Re

(18)
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Fig. 15. Flutter derivatives at different Reynolds numbers

The contribution of the in-motion force amplitude clearly prevails on the vortex-diffusion in the wake.

4. Conclusions

The possibility of estimating flutter derivatives for a streamlined body through computational simulation
of the flow around a moving obstacle is analyzed in this paper. The classical indicial approach is modified
in order to guarantee its compatibility with the computational tool.
The proposed approach has been applied to a thick flat plate immersed in a viscous flow. In particular, the
Reynolds number effects on flutter derivatives are investigated in a wide range of Re. The computational
approach permits an easy visualization and points out some motion-induced fluid flow phenomena during the
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Fig. 16. Scatter from Theodorsen solution (potential flow)

post-processing stage. For each flow phenomenon, a representative quantity is selected and its dependency
on the Reynolds number is recognized. A combination of these Reynolds number dependencies can also be
recognized in the flutter derivatives. In particular, H1 and A2 are mainly affected by inertial and viscous
in-motion forces. The significant Re effects on all the derivatives for Re ≤ 1.e + 5, and especially on H1 and
A2, would suggest not using the closed-form solution in real low Re flows. The same Re effects are expected
to still hold in bluff body aeroelasticity, even though other Re effects can take place on boundary layer
separation.
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