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Abstract-This paper deals with a computational study for evaluating the capability of 2D nu- 
merical simulation for predicting the vertical structure around a quasibluff bridge deck. The laminar 
form, a number of BANS equation models, and the LES approach are evaluated. The study was ap- 
plied to the deck section of the Great Belt East Bridge. The results are compared with wind-tunnel 
data and previously conducted computational simulations. Sensitivity of the results with regard to 
the computational approaches applied for each model is discussed. Finally, the study confirms the 
importance of safety-barrier modelling in the analysis of bridge aerodynamics. @ 2003 Elsevier 
Science Ltd. All rights reserved. 

Keywords-Computational wind engineering, Bridge aerodynamics, Vortex shedding, Grid-based 
methods, Turbulence modelling. 

1. INTRODUCTION 

The study of aerodynamic characteristics plays a prominent role in the design of long-span bridges. 
In particular, the vortex-induced forces acting on the bridge deck are of great interest from the 
practical point of view. In fact, this phenomenon occurs at a relatively low range of wind speeds 
and can markedly affect the durability and serviceability of the structure. 

Traditionally, these studies are experimentally carried out by means of wind-tunnel tests, which 
are economically burdensome and in some cases not realistic, owing to the lack of aerodynamic 
similitude of the model. In order to respect the conditions of aerodynamic similarity without. 
using cumbersome models, wind-tunnel tests often employ section models in the preliminary 
bridge design. In fact, rigidly mounted models provide a good description of the complex flows 
that develop around bluff-shaped cylinders at high Reynolds numbers. 
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A number of fundamental studies, critically reviewed by Buresti [l], have investigated the 
unsteady flow around basic bluff sections, such as circular, square, or rectangular ones. The 
results obtained from such studies represent a useful basis for further applications in a number 
of industrial fields, such as bridge aerodynamics. 

Generally speaking, flows of this kind are characterized by shear layers presenting marked vor- 
ticity and by massive separation which involves unsteady motion of the vertical structures around 
the body and in its wake. Both of these phenomena, which are strictly interconnected, play an 
important role in the production of aerodynamic forces in terms of mean value and frequency 
content. Three-dimensional structures ultimately appear in the process of wake formation de- 
spite the nominally two-dimensional geometry of the body, as a result of the vortex lines being 
distorted. 

The case study of the rectangular section best applies to the shape of long-span bridge decks. 
In regard to these cylindrical bodies, it is widely recognized that their width-depth ratio B/D 
strongly affects the characteristics of the separated shear layer that is generated at the leading 
edge [2]. From this point of view, such sections are classified into two categories, namely, the 
“separated-type” sections (compact cross-sections) and the ‘?eattached-type” sections (elongated 
cross-sections) [3]. The former are generally prone to Karman-type vortex shedding, whereas the 
latter present more complex phenomena, such as discontinuities in Strouhal number at B/D = 2.8 
and B/D = 6 or the double mode in the lift fluctuations due to unsteady reattachment of the 
separated shear layer on the side surfaces at 2.0 < B/D < 2.8 [4]. Likewise, most of the bridge 
decks are quite elongated (B/D z 7) so that occurrence of a reattached shear layer calls for a 
proper evaluation of other characteristics of the flow, such as the extent of the separation bubble, 
the convection of the vortices along the surfaces of the deck, and the interaction between vortices 
shed from the windward and leeward edges [5]. 

During the last decade, the advent of powerful computers has gradually introduced a com- 
plementary computational approach to the aerodynamic analysis of bridge decks. An increased 
efficiency (accuracy-cost ratio) is ,required for this approach to be attractive as against wind- 
tunnel tests. To achieve this goal, a number of numerical procedures have been proposed. These 
can be broadly classified into two main categories: simplified methods (panel methods) applied 
to the potential flow (see, for example, [6]), as well as approaches that involve numerical solution 
of the Navier-Stokes equations (NSEs). The latter category may be further classified as regards 
turbulence modelling into direct numerical simulation (DNS), large-eddy simulation (LES), and 
Reynolds-averaged Navier-Stokes (RANS) equation models. 

A number of other numerical parameters have to be taken into consideration to increase the 
accuracy of the simulation in grid-based methods: discretization schemes in both space and 
time, imposed boundary conditions, extension of the computational domain in two or three di- 
mensions, and grid size. On the other hand, 3D analysis and refinement of spatial resolution 
markedly inflates memory usage and processing time. For instance, Murakami [i’] reports that 

LES computation of vortex-shedding flow past a square section requires only 60 hours for the 2D 
model but more than 42 days for the 3D model on a convex ~240 machine. As may be readily 
understood, even when possible the extension of 3D simulations to industrial applications char- 
acterized by complex geometries and high Reynolds numbers (as in the case of long-span bridge 
decks) is likely to prove extremely burdensome and excessively time-consuming as compared to 
wind-tunnel tests. In order to reduce the computational costs, many authors have examined 
the applicability of the above-mentioned approaches to the 2D simulations of vortex-shedding 
flow past a square cylinder. According to the authors of the present paper, three main studies 
obtained the most representative results. 

Tamura et al. [8] discussed the reliability of two-dimensional direct numerical simulation for 
unsteady flows around cylinder-type structures. They emphasized the importance of the mix 

between grid size and discretization schemes of the nonlinear convection term in order to avoid 
an excessive amount of numerical diffusion. According to the above authors, two-dimensional 
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calculations cannot properly simulate the three-dimensional structures which ultimately appear 

in the process of wake formation. Consequently, attention must be paid to the reliability and 

limitations of 2D direct numerical simulation for the above-mentioned class of flows. 

More recently, Murakami et al. [9] predicted the vortex-shedding flow past a two-dimensional 
square cylinder using large-eddy simulation (LES). The standard Smagorinsky-type subgrid 
model was used, and the value of the Smagorinsky constant for 2D simulations was increased b? 
50% with respect with the Smagorinsky constant generally used in 3D simulations (Cs = O.lOj in 
order to compensate for the limited diffusion in the spanwise direction. The results of 2D and 3D 
LES computations were compared with those obtained using RANS models, as well as with those 
obtained from experiments. The results of the 3D computations present a close correspondence 
with the experimental results, whereas the results of the 2D LES computations present cert,ain 
significant discrepancies. According to Murakami et al., the energy-transfer mechanism through- 
out a wide spectrum range cannot be reproduced by 2D computations because it is fundamentally 
due to the vortex-stretching mechanism, which is essentially a 3D phenomenon. 

Shimada et al. [3] carried out a critical review of the tests performed using R.ANS simula- 
tions around square sections and extended this approach to elongated rectangular sections. They 
demonstrated that the k - E model, which incorporates the spanwise diffusion process by an eddy 
viscosity, enables two-dimensional analyses even in the high Reynolds-number region. On the 
other hand, an incompleteness of the ensemble-averaged model was detected in the underesti- 
mated lift fluctuations for stationary reattached-type cross sections. 

The study of unsteady flows around bridge decks introduces further important difficulties 
related both to physical and to computational aspects. 

First, the Reynolds number related to such flows is very high (1.e + 5 < Re < 1.e + 08): 
in computational analysis, respecting this number involves particular requirements in spatial 
discretization. 

Second, the most widely used deck sections currently adopted for long-span bridges are char- 
acterized by intermediate levels of “bluffness” (elongated sections and faces inclined windward 
and leeward). Consequently, the flow around them is generally characterized by small separation 
bubbles and shedding of vertical structures that are extremely variable in frequency and size. 

Third, the actual finished bridge deck carries several items of equipment, such as side railings 
and crash barriers. According to various authors, the effects of such section-model details cannot 
be disregarded. Using flow visualization techniques in wind-tunnel tests, Bienkiewicz [lo] qual- 
itatively showed the influence of partial streamlining and traffic barriers on the vortex-induced 
response of bridge decks. Adopting the same approach, Scanlan et al. [ll] pointed out the criti- 
cal dependence of bridge-flutter derivatives upon even minor details, such as deck railings They 
likewise identified a critical component of the experimental approach in terms of accuracy and 
similitude requirements in the modelling of the section details. The noticeable influence of barri- 
ers has recently been confirmed by computational simulations performed using RANS models in 
the case of steady flow around a streamlined deck [12]. 

To provide an example of such peculiarities, we shall introduce the study case adopted in the 
present paper. The Great Belt East Bridge (GBEB) deck is here considered as a particularly 
significant benchmark from the standpoint of vortex shedding for three main reasons. First, the 
peculiarities mentioned above fully apply to this deck. Second, large vortex-induced oscillat,ions 
were measured on the main span just after the deck’s completion. Third, the deck has been the 
subject of various experimental measurements [13] and computational studies, and thus, provides 
a significant data base to be used for assessing new simulations. 

Figure 1 is a schematic illustration of the flow pattern around the deck at Re = UoB/u = 1.5e+5 
(where B is the deck width) and o = 0” using the computed instantaneous streamlines. The 
instants tr and tz correspond to a local maximum value and a local minimum value of the lift 
force, respectively. The three main characteristics may be easily recognized: 
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Figure 1. Flow pattern around the deck: instantaneous streamlines. 

(a) the strong interaction between vortices vi, ~2, and ~4, ~5; 

v4 e 3 

v2 

(b) the differences in size, intensity, and shedding frequency between the vortices; and 
(c) the flow perturbations induced by the safety barriers. 

The main vertical structures around the deck are located at its lower surface and in the near 
wake. We shall focus on their mechanism of interaction. The vortices vl, which develop from the 
separation bubble downstream of the lower sharp corner, travel across the lower surface of the 
deck. Independently, another recirculation zone (~2) is present in the near-wake region close to 
the lower slope. When the advected procession of vortices vi passes the lower leeward corner, it 
coalesces with the vortex 212 and is shed in the wake. 

The barriers seem to enhance perturbations in the flow pattern on account of two main phe- 
nomena. First, the flow passing between the upper surface of the deck and the lateral barriers 
is accelerated. The side barriers reattach the separated shear layer downstream of the upwind 
edge and prevent a larger separation bubble from forming. Second, the vortex street us behind 
the trailing barriers seems to interact with the vortex v4 in the deck wake. 

Table 1 summarizes the wind-tunnel setup and the conditions of computation of the most rele- 
vant studies. The results obtained are expressed in terms of the following integral parameters: the 
mean values of the drag coefficient CD = D/(1/2 pUsB) and lift coefficient C:L = L/(1/2 pUaB), 
and the Strouhal number St = fc,D/U,, where D is the deck depth. 

Early section-model tests were conducted by Reinhold et al. [14] on a number of candidate 
cross-sectional shapes. The 1:80 modei selected, designated as H9.1 and characterized by a 
width-depth ratio Bf D x 7.2, was tested using equipment fully described in [14]. Steady-state 
wind-load coefficients were subsequently measured on the same cross section using a 1:300 taut- 
strip model 1151. The overall agreement between the results obtained from models of different 
size indicates that Reynolds-number effects, even though they are present, do not have a marked 
influence on the global aerodynamic behaviour of the deck. The most important discrepancy 
regards the value of the lift coefficient. In the opinion of the authors of the present study, this 
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Table 1. Outline of published studies-zero angle-of-attack (cx = 0’). 

Author 

Reinhold [ 141 

Larose [ 151 

Frandsen [ 161 

Larsen [17,18] 

Taylor [ 191 

Frandsen [20] 

Kuroda [21] 

Selvam [22,23] 

Jenssen [24] 

Bnevoldsen [25] 

Method Model Geom. Re CD CL St 

Exp. Section det 1.e + 5 0.08 + 0.01 0.109 - 0.158 

Exp. Taut-strip det 7.e + 4 0.10 - 0.08 0.11 

Exp. Full scale det 1.7e+7 - _ 0.08 - 0.15 

DVM pot. + w 2Dba.s 1.e + 5 0.06 + 0.06 0.100 - 0.168 

DVM pot. + w 2Dbas 1.e + 5 0.05 + 0.07 0.16 - 0.18 

DVM pot. + w 2Dbss 1.6e + 7 0.08 + 0.06 0.09 

FEM NSE lam 2Dbas 1.6e + 7 0.06 - 0.09 0.25 

FDM NSE lam 2Dba.s 3.e + 5 0.07 - 0.19 0.101 - 0.168 

FEM NSE les 2Dba.s l.e+5 0.06 - 0.34 0.168 

FVM NSE les 3Ddet 4.5e + 4 0.06 + 0.04 0.16 

FEM NSE les PDdet 7.e + 4 0.07 + 0.08 0.17 

difference may be related to the unachieved aerodynamic similitude of the barriers in the 1:300 
model. In fact, as demonstrated in [12], the most important blockage effect of the railings involves 
the higher flow velocity and the stronger suction along the lower surface. The lift force is thus 
reduced. The various vortex-shedding mechanisms highlighted in Figure 1 probably account for 
the spread frequency content of the lift force that was found experimentally by Reinhold et al. [14]. 
The full-scale measurements obtained by Frandsen [16] substantially confirm this characteristic 
of the flow. The results obtained by Larose [15] seem to indicate that the Strouhal number at the 
lower bound of the range has the most important effects on the structural response of the deck. 

Most of the computational simulations assume the same Reynolds number used by Reinhold et 
al. [14]; exceptions are represented by [26,27]. On the other hand, only Enevoldsen et al. [25,28] 
state that they include the deck equipment in the computational model. No author takes into 
account the inflow turbulent level experimentally set at It M 7.5%. 

Three general conclusions may be drawn from an overall analysis of the results obtained. In 
the first place, the underestimated prediction of the drag coefficient is a common feature in all of 
the simulations. This error is certainly due to the absence of barriers and to the incoming smooth 
flow. Second, most of the simulations fail to highlight the spread frequency content of the lift 
force, indicating only one Strouhal number. This difficulty mainly concerns the approaches that 
solve the Navier-Stokes equations using grid-based methods. Finally, almost all the simulations 
are conducted in the 2D computational domain. This common approach provides confirmation 
of the fact that 3D simulations remain scarcely applicable in extended parametric studies and 
excessively burdensome for industrial applications. 

A number of applications are based on the so-called discrete vortex method (DVM), which is 
comprehensively reviewed in [29]. This approach is widely adopted in bridge aerodynamics (see. 
for example, [6]) for two main reasons. First, the Lagrangian nature of the method markedly 
reduces the difficulties encountered in grid-based methods (mesh quality, numerical diffusion, 
modelling of small details of the deck section). Second, the description of the flow field is obtained 
by an essentially potential-flow method, so that the computational effort is significantly reduced 
as compared to the methods involving solution of the Navier-Stokes equations. 

On the other hand, the above advantages are obtained thanks to a fundamental assumption 
regarding the physical feature of the flow, namely that “for high Reynolds numbers, viscous 
effects may not be essential in the development of the wake, as the vorticity that is introduced 
in the wake from the separation point remains confined to narrow regions and its dynamics is 
mainly dominated by convection, with viscous diffusion only playing a secondary role” [ 11. From 
the numerical point of view, this assumption requires that the amount of vorticity w shed from 
the separation point (which must be known a priori) be introduced by means of particles of 
finite core size in each time step. This approach has been applied to the study case by Larsen 
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et al. [17,18], who obtained an impressive agreement between their results and the experimental 
data, even if compared with more complex approaches. According to Sarpkaya [29], “practically 
all applications of vortex models to unsteady separated flows past two-dimensional bluff bodies 
have shown that the circulation of the vortices should be reduced as a function of time and 
space in ad hoc manner in order to bring the calculated forces, pressure and circulations in close 
agreement with those measured”. As a result, the evaluation of the performance of this approach 
and of its suitability for application to other shapes remains very problematical. In the framework 
of the aforesaid numerical approach, Taylor and Vezza [19] attribute the underestimated value of 
the drag coefficient to the lack of modelling of the barriers. Consequently, the side railings are 
introduced by addition of a flat plate treated as a solid geometry. According to these authors. 
“care must be taken when analysing these results as [ . ] porosity effects are neglected”; i.e., 
the blockage effect is largely overestimated in such a way as to change the nature of the flow 
completely. 

Other authors have predicted the flow around the Great Belt East Bridge by solving the Navier- 
Stokes equations using a number of discretization methods, e.g., finite difference method, finite 
element method, finite volume method. 

Among the various works that neglect turbulence modelling (laminar form), the results ob- 
tained by Kuroda [21] are in good agreement with the wind-tunnel data. It seems that the error 
in approximating the convection term provides a numerical damping that balances the absence of 
turbulence damping. On the other hand, no parametric studies are reported on the relationship 
between numerical diffusion, grid resolution, and the scheme adopted (fifth-order upwinding) in 
order to justify the accuracy obtained in a 2D simulation. 

More recently, Frandsen et al. [27] applied the FEM-without-turbulence model to the study 
case. A parametric study on the mesh-density sensitivity was initiated with particular attention 
paid to boundary-layer modelling. As a result, shedding-frequency predictions were generally 
inaccurate even for the most refined grid so that the authors of the paper concluded that “further 
studies are needed to establish the model requirements”. Subsequently, Frandsen [20] tested the 
DVM in order to compare the two different approaches with one another and with the results of 
other studies. 

To the knowledge of the present authors, RANS models have never been applied to the case 
study. Only Lee et al. [30] adopted a RANS approach for predicting the vortex-induced wind 
loading on a fully bluff bridge deck. The renormalization group (RNG) k - E model was used 
without law of the wall. The quadratic upwind interpolation for convective kinetics (QUICK) 
scheme was employed to approximate the convection term. The unsteady wind loading was 
indirectly validated by performing dynamic structural analysis and comparing the displacements 
at the bridge midspan with the full-scale measurements. This approach clearly does not permit 
any conclusions to be drawn on the reliability of the statistical approach. 

In the last few years, the LES approach has been applied to the case study. Selvam [23] dis- 
cussed the reliability of the 2D simulation, considering the deck section of the Great Belt East 
Bridge approach span. Both 2D and 3D computational models were used, neglecting the barri- 
ers. No parametric studies were performed. The author assumed the value of the Smagorinsky 
constant proposed by Murakami [9] for the square cylinder (C, = 0.15 in 2D, C, = 0.10 in 3D), 
without any further investigations. According to Selvam, only 3D models are able to capture the 
drag coefficient with reasonable accuracy. In a subsequent paper, the same author [22] employed 
two different levels of grid refinement and two near-wall treatments (i.e., low Reynolds number 
and law of the wall) in the 2D model of the Great Belt East Bridge main span. The results 
of the study indicate an impressive sensitivity of the mean flow to the parameters mentioned 
(ACD M 50%, ACL M 400%, ASt M 20%). B ecause of the limited number of computations, no 
conclusions were drawn regarding this sensitivit,y. 

In the case of nonperiodic flows and spread frequency contents of the aerodynamic forces, the 
integral parameters only provide a partial physical insight into the flow. Figure 2 compares the 
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Figure 2. Published studies: mean Cp distribution on the deck (a = 0’) 

distributions of the mean pressure coefficient on the deck obtained in wind-tunnel tests and in 
a number of simulations. Two main discrepancies clearly appear between the experimental and 
the computational distributions. 

First, in the range 0 I x/B 5 0.2 the experimental data reveal a moderate suction on the 
lower surface just downstream of the leading point. All the computational simulations ignore this 
phenomenon, thus overestimating the pressure. The reasons for this discrepancy are not clear. 
They may be related to the high anisotropy of the turbulence in the forebody region [31], but 
minor imperfections of the leading edge of the geometrical model cannot be ruled out a priori. 

Second, both the lengths of the separation bubbles at the lower and upper surfaces are over- 
estimated in the computational simulations. In the wind-tunnel tests the recirculation zone at 
the lower surface is restricted within the range 0.2 < z/B 5 0.35, and recovery of the pressure 
rapidly occurs within the range 0.35 5 x/B 5 0.45. Except for the DVM approach, all the other 
numerical methods predict a pressure recovery in the range 0.6 5 x/B < 0.7 and underestimate 
the suction peak. It is to be pointed out that the phenomena occurring in this region play a 
major role in the vortex-formation process, as emerges from Figure 1. Consequently, the lack 
of accuracy in this region deeply affects the overall reliability of the simulations. The reason 
for these errors is not clear. However, if it is taken into account that the characteristics of the 
incoming flow are rather similar, the differences between computations seem to be related to the 
different computational procedures adopted in the studies. 

The overestimated length of the bubble at the upper surface seems to be directly related t,o 
the interference effects of the windward side barrier. These effects have a minor impact on the 
dynamics of the flow but markedly affect the mean value of the lift force. Jenssen [24] has 
modelled such details, obtaining the local reattachment of the shear layer. Nevertheless, the 
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constant value of the pressure downstream of the railings suggests the presence of a recirculation 
zone that is not experimentally detected. 

From the present critical review of the studies published, it follows that most of the researches 
primarily address the question of validation of the codes employed. In many cases, the results 
fail to provide any closer insight into the various physical mechanisms involved in the flow. Fur- 
thermore, the effects of various computational parameters on the solutions is not systematically 
clarified. 

The purpose of the present paper is to reduce the incompleteness of the previous studies and 
to verify the suitability of 2D simulations for predicting unsteady flow past a bluff bridge deck. 
To do this, particular attention has been paid to determining the most suitable computational 
parameters to be taken into consideration in the various turbulence models. In particular, the 
LES approach is optimized not only as regards the above-mentioned parameters but also as 
regards the free input parameter of the Smagorinsky subgrid model. The suitability of each of 
the various approaches to turbulence is discussed on the basis of the optimized model. Finally, 
the equipment of the section is included in the model both to complete the experimental setup, 
so enabling correct comparisons to be made with wind-tunnel measurements, and to point up the 
effects of the details on the characteristics of the aerodynamic field. 

2. GOVERNING EQUATIONS 

The incompressible, unsteady, two-dimensional Navier-Stokes equations of motion are solved 
in the present study. The nondimensional instantaneous continuity and momentum equations 
are 

div u = 0 

and 
dU 
dt + u. grad u = -gradp + & Au, 

where u, p, and t are, respectively, the velocity vector, pressure, and time nondimensionalized 
by the reference velocity Us, the deck chord B, the air density p, and the kinematic viscosity u. 
The Reynolds number Re results from these variables. 

Both the laminar-state (i.e., without turbulence modelling) approach LAM and various turbu- 
lence-modelling approaches are applied. In the framework of the statistical approach, both first- 
order closure models and a second-order closure model are adopted. The first-order closure 
models are the standard (STD) [32] and th e renormalization group (RNG) (331 forms of the Ic - E 
model. The Reynolds-averaged incompressible Navier-Stokes equations are expressed as 

E$+U.!L!&-L p_+g +2& 
3 axj ( 1 axi P 

C” + vt) Sij, 
3 

where ut is the isotropic eddy viscosity given as vt = pC,k2/E, k is the turbulent kinetic energy, 
and SQ is the mean flow strain rate expressed as follows: 

According to the standard k - E model [32], the turbulent kinetic energy k and its dissipation 
rate E are computed by means of their transportation equations 

and 

$+&!p- 
2 

axj [(‘+z) &] +Pk-E 

(5) 



2D Numerical Simulations 803 

where Pk is the production term of the turbulent kinetic energy, and the values of the empirical 

constant are the conventional ones [32]. 
In order to cope with the well-known excessive production of turbulent kinetic energy of this 

model in nonequilibrium situations, the k - E form suggested by the renormalization group [33] 
is also applied. This model introduces a further production term into the transport equation of 
the dissipation rate E in the form 

Ii-= c/J13 (1 - rllrlo) E2 
lfP$ X-’ (6) 

where 

and the constants 70, ,0, uE, ok, C,,, CEz, C, are given in [33]. 
In order to account better for important aspects of the flow-such as the anisotropy of the 

Reynolds stresses, the energy transfer between the turbulent flow and the mean flow, or the 
diffusive transport mechanisms-F’ranke and Rodi [31] applied the Reynolds stress model (RSM) 
to the calculation of vortex shedding past a square cylinder and qbtained interesting results. 
Abandoning the isotropic eddy-viscosity hypothesis, the RSM closes the RANS equations by 
solving transport equations for the individual Reynolds stresses Rij = q. Several terms in 
such equations are unknown, and modelling assumptions are required. In the present study, the 
turbulent diffusive transport term and the pressure-strain term, are respectively, expressed by 
the models proposed by Lien and Leschziner [34] and by Gibson and Launder [35]. 

Model equations for the large eddy simulation (LES) are expressed in the form 

and 
a?!& aii, d 
dt+fijFdz -- 

3 dXi 

where the overline indicates the filtered 

(8) 

value of the variable. The standard Smagorinsky-type 
subgrid scale model is employed [36]: ksGs indicates the subgrid component of k, and USGS the 
subgrid-scale eddy viscosity expressed by 

The subgrid-scale mixing 
tations by 

where n = 0.42, A is the 
boundary. 

USGS = PLSGS 2/ 2SijSij. 19) 

length Ls~s is related to the Smagorinsky constant Cs in 2D compu- 

LSGS = min ted, C,A1/2 , 
( > (10) 

cell surface, and d the distance between the cell and the nearest wall 

2.1. Near- Wall Turbulence Modelling 

Near-wall modelling has a significant impact upon the reliability of numerical simulations of 
wall-bounded flows. A number of works that use various turbulence models render these models 
suitable for application throughout the boundary layer by means of the wall-function approach. 
However, Franke et al. [31] have demonstrated that “the assumptions of a logarithmic velocity 
distribution and of local equilibrium of turbulence are violated in separated flows, especially near 
separation and reattachment regions” [31]. 

Bearing in mind the purpose of the present study, the low Reynolds number one-equation model 
(“two-layer model”) has been adopted in the viscosity-affected region (Re, = p&y/v > 200) in 
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conjunction with the statistical approach. This approach was successfully applied by Franke and 
Rodi [31] in the study case of the square cylinder and by Shimada and Ishihara (31 in predicting 
vortex shedding past rectangular cylinders. The turbulent viscosity ut and the dissipation rate E 
are here calculated using the turbulent kinetic energy k from the relations 

ut = pc, JiFl,, 
k3/2 

The length scales I, and 1, are expressed by the following relations: 

(11) 

(12) 

where the values of the constant in the formulas are taken from Chen and Pate1 [37]. 
When the LES model is applied, the wall shear stress ru is obtained from the laminar stress- 

strain relationship 
ii PWY -_=- 
% LJ' 

where u, = (~~/p)‘.~ is the friction velocity. 

3. NUMERICAL PROCEDURES 

Computations were carried out using the FLUENT ~5.4 code, based on the finite volume 

method. In the grid-based method simulation of flow around complex geometries, mesh generation 
takes on fundamental importance. In this study, the computational domains are generated by 
coupling unstructured and structured mesh types by means of substructuring of the total grid. 
In particular, the mapped grid type is used in the near solid boundary in order to achieve fine 
resolution of the flow structure in this region. 

The cell thickness y,,, adjacent to the solid wall forms the subject of a parametric study for 
laminar simulations and complies with the mesh requirements of the two-layer approach in the 
computations using turbulent models. The computational domain and the boundary conditions 
are shown in Figure 3. The size of the domain is adopted consistently with the results of the 
parametric study reported in [12]. 

The pressure-velocity coupling is achieved by means of the pressure-implicit SIMPLE algorithm 
with splitting of operators [38], using a predictor-corrector approach to advance the momentum 
equation, whilst enforcing the continuity equation. 

I 
-.-.-.-.-.-.-.-.-.-.-.~.~.~.~.~.~.-.~.~.~ 

periodic (LES) 

U=l; v=o; I =o I 

U=l; v=o; I =o 
periodic (LEb) I 

,.,.,.,.-.-.-.-.-.-.-.~.~.~.~,~..m.~.~......a 

15B 30B 

Figure 3. Analytical domain and boundary conditions. 
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For time discretization, the fully implicit second-order Euler scheme is adopted. The nondi- 

mensional time step in the laminar approach and statistical approach varies in the range 5.e - 4 < 
At* < 2.e - 2 with respect to the expected frequency content of the phenomenon and to the con- 
vergence criteria. The time advancement in LES undergoes optimization during the study. The 
initial conditions are set equal to the inlet boundary conditions (impulsively started simulation). 

All the spatial derivative terms are discretized by the second-order central differencing, ex- 
cept for the nonlinear convection terms. The convection terms are discretized according to threcl 
schemes (second-order central difference, second-order upwind [39], and quadratic upwind in- 
terpolation for convective kinetics-QUICK [40]) that are generally expressed according to the 
formula 

an d 

d:,f = -~e.fe - ~p.fp - Kwfw - Kwwfww 

The weights for the discretization schemes adopted are given in Table 2. 

Table 2. Coefficients of convective schemes. 

I I I I I I 
Scheme &Jw ku KP IEe 

As reviewed by various authors (see, for example, [41]), the odd leading-order terms (as in 
the case of second-order schemes) have dispersive effects-i.e., they alter the frequency content 
of a signal-without involving numerical diffusion. On the other hand, even leading-order terms 
(as in the QUICK scheme) have a diffusion effect, which generally stabilizes the computation. 
removing wiggles but reducing the signal in amplitude. The accuracy of the above-mentioned 
diffusive schemes is summarized in Table 3. 

Notwithstanding the above general considerations, it is not appropriate to make universal 
assertions regarding the relative performance of these schemes since their performance may vary 
in the presence of different physical problems and according to different time-marching schemes, 
turbulent models (see [7,8,42]), grid density (see, for example, [8]), and computational-domain 
extent (i.e., 2D or 3D). The physics of the investigated flow seems to be significantly sensitive both 
to numerical diffusion effects (markedly affecting the small vertical structures around the deck) 
and to numerical dispersion effects (i.e., it appears to cause phase errors between the different 
shedding frequencies). 

Table 3. Accuracy of convective schemes. 

Scheme 

Second-Order Central I---- Second-Order Upwind 

QUICK 

Leading Term Effect 
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However, even though a number of studies have been devoted to the evaluation of these schemes, 
in the present paper a parametric study is performed using both the laminar form and the LES 
approach. 

4. APPLICATION AND RESULTS 

4.1. Simulations Without Turbulence Modelling 

The simulations assume the experimental conditions adopted by Reinhold et al. [14] during 
the section-model tests (see Table l), except for incoming turbulence intensity It = 0. The angle 
of incidence of the flow is zero. 

4.4.1. Effects of grid spacing and discretization schemes on the flow field 

The effects of the near-wall cell thickness yw in 2D simulations without turbulence modelling 
are discussed in this section. To do this, three grid systems are taken into account. These are 
characterized by a nondimensional grid spacing adjacent to the solid boundary equal to yw = 
1.3e - 2, yu, = 2.0e - 3, and yw = 2.2e - 4 (width B = 1) and will be designated in what follows 
respectively by lam-l, lam-2, and lam-3. The performance of these three systems is first evaluated 
in conjunction with a second-order upwind scheme for convection terms. 

cell number 
1.3~2 2.Oe-3 2.2e-4 

45512 

28767 

25865 
0.01 0.001 Y$ o.ooo1 

(aI @I 

Figure 4. Near-wall cell thickness versus total number of cells (a); grid system near 
the deck (b). 

The reduction of the first cell width involves an increased number of control volumes in the 
neighbourhood of the wall. The outer part of the computational domain retains the same grid. 
Figure 4a shows the evolution of the total number. of cells of the model versus near-wall cell 
thickness. The close-up view of the grid system near the deck is also shown in the case of the 
most refined mesh (lam-3 Figure 4b). 

In order to establish a relationship between the grid spacing and the simulated instantaneous 
flow pattern, Figure 5 shows the time history of the lift force in the range 25.6 < At < 27.6, 
where the nondimensional time is expressed as t = TUo/B. A number of instants are selected 
on the time track, and the instantaneous streamline patterns are plotted for each model. The 
coarsest mesh provides a steady solution, i.e., without fluctuations of the lift force. The flow 
remains completely attached to the deck on the side surfaces, as shown by the streamline pattern 
just below the diagram. The other grid systems enable observation of major fluctuations of the 
lift force. 

The time history of the lift coefficient CL related to the medium level of refinement appears very 
regular, suggesting that just one mechanism plays a dominant role in the vortex-shedding process. 
The flow-pattern visualizations in the left-hand side column confirm the above hypothesis. The 
separation bubble at the lower surface is very large, but the level of vorticity in the recirculation 
region seems too low to involve vortex shedding. Consequently, the vortex does not interact 
with the vortex developing in the near-wake region. Local maxima in the lift track (t = 26.0 
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Figure 5. Time history of the lift coefficient and instantaneous streamlines. 

and t = 26.4) are regularly observed when this vortex is shed in the wake. Conversely, the minima 
(t = 26.2 and t = 26.7) are related to the maximum development of the vortex close to the wall. 

The grid spacing lam-3 enables detection of a fundamental feature of the flow, namely the 
interaction and merging between the vortices travelling along the lower surface and the vortices 
emerging at the downstream edges. The first maximum (t = 25.9) and minimum (t = 26.2) 
substantially match those simulated by means of the grid lam-2. But subsequently the lift force 
in the lam-2 model performs one period of oscillation between the instants t = 26.2 and t = 26.7: 
whereas the CL~ just covers a half period (local maximum at t = 26.7). The streamlines clearly 
show the merging of the vortices at that moment. The most refined grid also detects the separation 
bubble downstream of the windward edge at the upper surface and the clockwise circulating flow 
in the upper area of the deck wake. However, the role played by these structures in the vort,ex- 
shedding process does not seem to be of primary importance. 

The pressure distribution on the lower surface at the above-mentioned instants is presented 
in Figure 6. These results confirm the differences between the models lam-2 and lam-3. In the 
former model the pressure fluctuations are always separated by the sharp corner at x/B = 0.8 
without interaction. When the finest grid is used, the pressure fluctuations move backward, 
reducing the extent of the separation bubble. Owing to the larger amount of vorticity produced 
at the separation point, the pressure at x/B = 0.8 does not remain constant, but reaches a 
deep trough when the vortices at the lower surface pass the edge. It should be noted that as 
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Figure 6. Instantaneous distributions of the pressure coefficient Cp on the lower 
surface. 

the grid spacing is enlarged, the model just simulates one large eddy on the side surface. This 
approximation does not involve major problems in the simulation of flow around bluff cylinders 
with sharp corners characterized by massive separation and large-sized vortices. Instead, in the 
case of semibluff sections, a coarse mesh completely conceals the small vertical structures at the 
basis of the vortex-formation process, thus leading to a fundamental error. A number of grid 
points is required both in order to ensure a cell size smaller than the smallest vortex length and to 
prevent an excessive amount of numerical diffusion related to the discretization scheme adopted 
for the diffusive terms. 

In order to extend the discussion to the integral flow parameters in time and space, a statistical 
treatment of the results is called for. Figure 7a shows the CD and CL time traces simulated with 
the model lam-3. As may be readily appreciated, the signals are completely random. In a case 
of this sort, as has already been pointed out by Taylor [19], the extent of the sampling window is 
very important for the extraction of meaningful statistical parameters. To optimize the sampling 
extent, the computations run as long as the lower Strouhal number Sti remains constant (see 
Figure 7b). Generally speaking, a sampling extent of 30 nondimensional time units is found to 
be required in order to assume stationarity of the signal. Since the first ten units are strongly 
affected by the impulsive initial condition, each simulation was conservatively extended to 50 
nondimensional time units. 

In what follows, the main statistical parameters of the aerodynamic behaviour of the deck are 
discussed. 

‘D-‘L St 
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I I 
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Figure 7. Optimization of the extent of sampling-time. 
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Figure 8. Effects of grid spacing on Strouhal number 

The power spectral densities (PSD) of the lift coefficient for the unsteady solutions (models 
lam-2 and lam-3) are plotted in Figure 8 versus the nondimensional frequency (i.e., Strouhal 
number). The PSD obtained from the model lam-2 is characterized by three main peaks. In effect 
the higher peaks correspond to frequencies that are integer multiples of the first frequency (i.e.. 
superharmonics). This means that the physical frequency remains unique in accordance with the 
flow visualizations shown in Figure 5. The mean peaks in the PSD obtained from lam-3 are fewer 
in number. The corresponding Strouhal numbers are physically due to the different shedding 
mechanisms that have been described above. However, the ratio between the main Strouhal 
numbers (Stz/Stl z 2) remains quite different from the experimental one (St,/%, x 1.67). 

The mean values of the drag and lift coefficients obtained in the computational simulations are 
compared with the experimental results in Figure 9. The standard deviation around the mean 
value is indicated by means of error bars. Even though the description of the flow field provided 
by Figure 5 is qualitatively complete and refers to a very likely situation, the mean values of the 
coefficients are not in close agreement with experiments. 
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Figure 9. Effects of grid spacing on aerodynamic coefficients. 
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The mean value of the drag coefficient increases consistently with the shear-layer separation 
and the vortex shedding around the deck. In particular, the drag component involved in the flow 
circulation in the near-wake area is generally predominant in such quasibluff geometries. 

In order to relate the drag value and the characteristics of the wake, Figure 10 presents the 
effect of grid spacing on the across-wind extent of the wake and on the velocity defect at two 
locations in the wake (0.005B and 0.5B from the trailing edge). The coarsest grid does not predict 
any recirculation, so that the deck behaviour is close to the one of a fully streamlined section 
and is characterized by a very low drag value. The profiles predicted using the other models 
are quite similar. The model lam-3 further reduces the velocity defect in the neighbourhood 
of y/B = 0 and emphasizes the wake extent in the range -0.2 < y/B < -0.1 because of the 
wider separation bubble at the lower surface of the deck. It may be noted that the results are 
in good agreement with the computational prediction of Larsen [18] using DVM. Even though 
the & value approaches the section-model result, it remains somewhat underestimated. This is 
certainly due to the absence of deck equipment in the models. 

I I 
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I I I I I 1 = 1.3~_2 .._._ 
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(a) (b) U&Jo - x/B = 1.005. (c) I&/U0 - x/B = 1.5. 

Figure 10. Effects of grid spacing on mean z-velocity defect in the wake. 

Instead, mesh refinement considerably reduces the lift forces acting on the deck. It may be 
noted that as the grid spacing becomes smaller, the computed & moves out of the range of 
the measured values, and its standard deviation increases. Hence, mesh refinement enables a 
qualitative reproduction of the vortex-shedding process but also appears to reduce accuracy 
in predicting the mean lift force. The same apparent discrepancy may be noted in other 2D 
simulations (e.g., [21]; see Table 1). Even though Kuroda assumed the same grid spacing near 
the wall, the error regarding the lift coefficient is somewhat different from the present results. 
This difference points t,o the dependence of numerical damping both on grid spacing and on the 
convective scheme. To clarify this aspect, the levels of performance of the finest grid are evaluated 
in the case where second-order upwind and QUICK schemes are employed. 

The distributions obtained for the mean Cp and for the std (Cp) are compared in Figure 11. 
The agreement between the lift coefficient measured and the lift coefficient obtained from the 
“Yw zz 1.3e - 2-2nd upw” model is seen to be merely fortuitous. From a comparison of the 
unsteady solutions it is found that as the mesh becomes more refined and the order scheme is 
higher, the diffusion effect is progressively reduced and does not overcome the very small viscous 
diffusion of the flow. Hence, the extent of the separation bubble at the lower surface is shortened, 
and the separated layer past the upper leading edge is better predicted. Despite the major gain 
in precision that is obtained, the size of the separation bubbles remains somewhat larger than 
the measured value. 

Two main limitations remain in 2D laminar simulations. First, it is clear that further refine- 
ments of the near-wall mesh or the adoption of higher-discretization schemes do not represent 
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Figure 11. Effects of numerical diffusion on mean Cp and std (Cp) distributions. 

realistic solutions. In fact, the evolution of the aerodynamic coefficients versus near-wall cell 
thickness (see Figure 9) seems to indicate that further refinement does not bring about any sig- 
nificant improvement. On the other hand, the reduction of numerical damping by the highest 
diffusive schemes is such that wiggles appear (see Figure 11 “yW = 2.2e - 4-QUICK” model), and 
the stability of the computations seems to be no longer assured. Second, the failure to model 3D 
effects remains. In particular, the well-known diffusion in the spanwise direction and the energy- 
transfer mechanism towards higher frequencies as a result of vortex stretching [7] continue to be 
neglected. 

4.2. Statistical Approach 

The most refined grid selected in the laminar simulations is retained in the sequel of the present 
paper. The grid spacing near the wall complies with the requirements for correct application of 
the two-layer model (wall unit y+ = 1). Table 4 summarizes the main integral parameters 

obtained by applying the standard k - E model (STD), the RNG model and the Reynolds stress 
model (RSM). Both the STD and RNG models fail to predict the unsteadiness of the flow. This 
error can no longer be chiefly put down to the numerical damping that results from the combined 
effect of grid size and discretization scheme on account of the previous optimization. It follows 
that the reasons for the lack of lift fluctuations (std (Cn) = 0) are to be sought rather in the 
formulation of the turbulence models adopted. 

Table 4. Statistical approach: integral parameters. 

Model CD CL std(C~) St 
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Recently, Shimada and Ishihara [3] have proposed an interesting explanation of the severe 
limitations of these models in correctly simulating the fluctuating pressure field around elongated 
rectangular sections. Franke and Rodi [31] argue that in vortex-shedding flows an instantaneous 
quantity 4 can be separated into 

C/.)(t) = G + 6 + Cj’ (14) 
9’ 

Indicating by @’ the total fluctuation (i.e., periodic 6 plus stochastic 4’) around the time-mean 
value $‘, its variance can be expressed as 

a& = CT; + a& (15) 

In particular, the above equation (15) can be rewritten for the velocity component Vi as follows: 

The stochastic component of the velocity is evaluated by means of the turbulent kinetic energy k 
and then related to the turbulent viscosity ut. It follows that the value of the variance strictly 
depends on the reliability of one of the weakest and most debatable assumptions of the model, 
namely, the isotropic turbulent viscosity itself. Furthermore, the stochastic component of the 
pressure is not explicitly modelled in any RANS model, so that 

and 

std (CL )RANS < std (CL). 

The statistical approach yields good results in the case of massively separated flow in which 
periodic fluctuations predominate. These conditions do not apply to the present application, 
where the relative contribution of the stochastic component becomes noticeable. Moreover, in 
this case the very small eddies observed without turbulence modelling are probably assumed in 
the stochastic field by the statistical approach. As a result, these models yield higher levels of 
eddy viscosity around the deck and in the wake. This may damp the fluctuating motion to such 
an extent as to cause the observed lack of unsteadiness. 

The RSM model furnishes an unsteady solution, even though one characterized by an extremely 
reduced value of the standard deviation of the lift coefficient and a unique Strouhal number 
(Figure 12a). This frequency content is due to the single eddy in the wake of the deck (Figure 12b). 
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Figure 12. MM-time history of lift coefficient (a) and instantaneous streamlines (b). 
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As a result, the RSM model affords scant improvement in the simulation of the flow as com- 
pared to the two-equation closure. This is probably due to the formalism adopted by Lien and 
Leschziner [34] for modelling the turbulent-diffusion term 

D; = & Ic (_!$!?J$). 

In fact, the above approach is once more based upon the concept of isotropic turbulent viscosity it. 
and the value of the free constant Crk = 0.82 is obtained by applying the generalized gradient- 
diffusion model to a case that is rather different from the present one, i.e., a plane homogeneous 
shear flow. 

4.3. The Large Eddy Simulation Approach 

The adoption of the LES approach, albeit somewhat burdensome, is necessary to overcome the 
substantial difficulties involved in simulating the turbulent flow around the GBEB deck using the 
statistical approach. 

4.3.1. Optimization of computational parameters 

The effects of two computational parameters are investigated in what follows, namely, the 
interval for time advancement At and the discretization scheme for the convective terms. 

Table 5 summarizes the main integral results obtained by varying the above-mentioned param- 
eters; the bold style highlights the particular parameters that change. The results obtained using 
the models les-1 and les-2 do not significantly differ from one another. It follows that the largest 
time step is still smaller than the characteristic time of the smallest vortex directly simulated 
by the mesh adopted. On the other hand, the increase in At markedly reduces the number of 
iterations required at each step (-40%) to reach convergence (threshold for residuals fixed at 
5.e - 4). For this reason the value At = 1.e - 2 is adopted in the subsequent simulations. 

Table 5. Computing conditions and integral parameters. 

Model At Scheme C, 

les- 1 l.e-3 2nd up 0.10 
les-2 l.e-2 2nd up 0.10 
les-3 1.e - 2 QUICK 0.10 

les-4 1.e - 2 2nd cnt 0.10 ! 
CD 

+ 0.067 
+ 0.066 
+ 0.075 
+ 0.071 

St 

0.272 - 0.113 

0.272 - 0.107 

0.202 -- 0.101 

0.124 - 0.164 

0.197 - 0.292 

In a way similar to the one adopted for simulations without turbulence models, the remaining 
part of this subsection is devoted to clarifying the performance of various discretization schemes 
in conjunction with LES and to selecting the most efficient scheme for the ensuing runs. As 
compared to the second-order upwind scheme, the QUICK scheme enables the fluctuations of the 
lift force to be increased and the mean computed value of the lift force to be brought closer to 
the experimental data. This trend is clarified by the distribution of the mean pressure coefficient 
and the distribution of its standard deviation in Figure 13. 

The differences between the QUICK scheme and the second central scheme are less marked, at 
least as regards the mean Cp distribution at the lower surface of the deck. However, the separation 
bubble at the upper surface is only detected by the second central scheme, even though the suction 
remains somewhat underpredicted. Another two characteristics of the simulated flow argue in 
favour of the latter convective scheme. 

The first is the transverse extension of the wake downstream of the deck (see Figure 14a). 
The profiles obtained from applying the second upwind scheme and the QUICK scheme do 
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Figure 14. Mean r-velocity defect in the wake (a); Strouhal number (b). 

not, substantially differ from one another. Instead, the second central scheme emphasizes the 
contribution of the vortices ~1 to the velocity defect. 

The frequency content of the lift force predicted by means of the second central scheme (see 
Table 5 and Figure 14b) is spread over a wider range (0.1 < St 2 0.2) than the one predicted 
by the other schemes. This result is hardly surprising if the dispersive effect of the odd-order 
leading term is borne in mind. Furthermore, the main Strouhal number in the second central 
simulation is the lower one (St = 0.124), which is related to merging between the vortices at the 
lower surface and at the leeward edges. Instead, the upwind schemes attribute most of the energy 
to the higher shedding frequency (St x 0.2), which is exclusively due to the vertical structures 
emerging at the leading edge. 

All the above-mentioned characteristics are due to the smaller numerical diffusivity related to 
the second-order central scheme, and thus, to its capability for describing the effect of the small 
vertical structures at the lower surface of the deck. For these reasons, the second-order central 
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scheme seems to be the most adequate one for the present application. This result confirms the 
conclusions reached by Breuer [42] concerning the numerical effects on large-eddy simulation in 
the case of flow past a circular cylinder. 

4.3.2. Effects of the Smagorinsky constant 

The subgrid model developed by Smagorinsky introduces only one free input parameter: 
namely, the so-called Smagorinsky constant Cs. Consequently, the arbitrariness of the model 

is substantially reduced as compared to the statistical approach (five semiempirical constants are 
required in the standard k-E model). However, the Smagorinsky constant plays a very important 
role in LES because its value may considerably affect the turbulent viscosity. 

The value of Cs has been optimized by several authors in the case of 3D simulations and has 
generally been set at Cs = 0.1. On the other hand, it is our opinion that the optimization of the 
subgrid model has not been taken into due consideration in 2D simulations. 

Generally speaking, the presence of a subgrid model makes a substantial difference with re- 
spect to direct numerical simulation and potentially enables application of the LES approach to 
2D simulations in the case of homogeneous spanwise fluctuations. In particular, an adequate 
tuning of the free parameter of the subgrid model could enable reproduction of the characteristic 
effects of the vertical structures generally observed in 3D configurations [S]. In order to verify 
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Figure 15. Time histories of CL and mean streamlines. 



816 L. BRUNO AND S. KHRIS 

the advisability of such a procedure, a number of values of the Smagorinsky constant in the 
range 0.05 I Cs i: 0.2 were tested for the present case study. 

Figure 15 compares the time histories of the lift coefficient in the range 19 5 t 5 29 and the 
mean streamlines obtained by applying a selected number of Cs values. The value Cs = 0.1 
represents a watershed for the quantities examined. 

As the value of the Smagorinsky constant exceeds 0.1-0.125, 

(i) the separation bubble at the lower surface is abruptly reduced (0.125 5 Cs < 0.15); 
(ii) the merging of the vortices wl and 212 (see Figure 1) vanishes; 

(iii) the mean value of the lift coefficient increases; 
(iv) the oscillations of the the lift coefficient diminish; and 
(v) the time history of the lift coefficient approaches a perfect sinusoid (Cs = 0.2). 

Instead, as the value of the Smagorinsky constant becomes smaller than 0.125-0.1, the evolution 
previously observed is not altogether respected. In particular, 

(9 

(ii) 
(iii) 

(iv) 
(v) 

the length of the separation bubble at the lower surface gradually reduces (0.05 < Cs 
0.125); 
the recirculating zone downstream of the upper windward edge appears; 
the mean value of the lift coefficient increases; 
the fluctuations of the lift coefficient diminish; and 
the frequency content of the lift coefficient appears to spread over a larger range in t 
direction of the higher frequencies. 

;he 

To provide a better description of these trends and to clarify the reasons behind them, the 
step in the variation of the value of Cs is further reduced. The evolution of the drag and lift 
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coefficients and of the Strouhal numbers versus the Smagorinsky constant are plotted in Figure 16. 

The discontinuities in the evolutions of CD and CL evolutions clearly appear at Cs z 0.145. 
so revealing a significant case sensitivity to this parameter. At the lowest values of Cs the 
aerodynamic parameters present the best agreement with the experimental measurements. The 
evolution of the Strouhal numbers is obtained by evaluating the reduced frequencies corresponding 
to the main peaks in the PSD of the lift force for each simulation. The diagram confirms that as 
the value of Cs decreases, the frequency content is more spread out and the upper bound of thP 
range increases. Consistently with the diagrams of the aerodynamic coefficients: for Cs > 0.140 
the simulated Strouhal numbers do not at all match the values measured in wind-tunnel tests. 
Once again, the best agreement is obtained in the range 0.075 < Cs < 0.095. 

The mean Cp distribution on the deck surface in Figures 17 and 18 makes it possible to identify 
the reasons for the aforesaid variation in the global aerodynamic behaviour of the deck and to 
schematically delineate three main ranges for the Cs value. 

In the upper range (0.2 5 Cs 5 0.145) the flow is fully attached to the wall of the deck, and 
no significant fluctuations of the pressure can be observed. Low values of the drag coefficient and 
positive lift forces characterize the aerodynamic behaviour of the deck. The unsteadiness of the 
flow is exclusively due to the vortices emerging at the downstream corners. The vortices are shed 
at high frequencies, and the interaction between eddies is restricted to the upper and lower ones 
in the near wake. 

At values of the Smagorinsky constant in the range 0.140 5 Cs < 0.115, the separation bubble 
at the lower surface is predicted even though its length is largely overestimated. For Cs = 0.140 
the value of std (Cp) is very low at x/B = 0.8, which indicates that there is not yet any interaction 
between the vortices w1 and 212. As the value of the Smagorinsky constant is further reduced. 
interaction is set up and increases progressively; however, if we examine the Strouhal numbers 
we find that vortex merging does not yet represent the main mechanism in vortex shedding. 
The flow at the upper surface still remains attached to the wall. The drops in the pressure 
distributions, again on the upper surface, can be explained by considerations that regard the 
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1 I 
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Figure 17. Cp and std (Cp) distributions on the deck-Q 2 0.1 
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energy conservation of the flow. Finally, as the Smagorinsky constant is reduced from Cs = 0.1 to 
Cs = 0.05, the suction at the lower surface diminishes so much that it matches the experimental 
measurements. On the upper surface, the flow is separated past the leading edge. Three main 
subranges of shedding frequencies may be identified: the first range corresponds closely to the 
experimental one (0.11 < St < 0.16); the second range (St x 0.2) remains quite constant as Cs 
varies in the range 0.05 < Cs < 0.1; the upper bound of the third range constantly increases 
as Cs decreases. 

From an overall analysis of the above results, it is possible to interpret the effects of the 
Smagorinsky constant. The results observed for Cs > 0.1 are hardly surprising if we bear in 
mind the expression of the subgrid-scale eddy viscosity uses (equations (9) and (10)). As the 
Smagorinsky constant increases, the subgrid eddy viscosity is progressively overestimated, and 
its diffusion effect obscures the small-scale eddies at the root of the unsteadiness of the flow. It 
should be pointed out that the effects of the Smagorinsky constant in this range of values are 
similar to the effects of the numerical diffusion due to the grid spacing and the discretization 
schemes investigated above. 

For Cs < 0.1, the subgrid eddy viscosity is progressively underestimated. As a result, not 
only the diffusive effects fail to conceal the small eddies but also higher frequency fluctuations 
are introduced in the 2D simulation. The spectrum of the 2D computations, which is generally 
confined within a narrow band [7], is artificially extended over a wider band. This obviously leads 
to the above-mentioned higher Strouhal number, but also affects the energy-transfer mechanism. 
In fact, in 3D simulations a number of three-dimensional features of the flow (such as, vortex 
stretching and longitudinal eddies in the wake) play an important role in the energy cascade, 
subtracting an important amount of energy from the transverse flow. Of course, these energy- 
transfer mechanisms cannot be simulated exactly in 2D analysis, but their overall effects can be 
replaced by a reduced value of the Smagorinsky constant. On the other hand, this approach 
introduces into the flow field a number of small-sized high-frequency disturbances (wavelets) 
clearly revealed by the distribution of the mean pressure coefficient (see Figure 18, in particular 
for Cs = 0.05). In this sense, the effects of the smallest value of Cs are similar to those involved 
in the numerical dispersion of certain discretization schemes. 
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Figure 19. Effects of Cs on the mean velocity defect in the wake x JB = 1.5. 

The evolution of the mean velocity defect in the wake at x/B = 1.5 versus the Smagorinsky 
constant (see Figure 19) would seem to confirm the above explanation. The wake reaches its 
maximum across-wind extension at Cs = 0.1, i.e., when the flow energy is neither diffused by an 
excessive amount of subgrid eddy viscosity (Cs > 0.1) nor dispersed in a wider band spectrum 
(Cs < 0.1). In particular, both phenomena have the same effect on the mean velocity in the 
wake, as emerges from the correspondence between the curves. 

From the results obtained it follows that a Cs value in the range 0.65 < Cs < 0.75 is more 
suitable in 2D simulations for the case study. However, the simplified geometry of the deck does 
not enable a final verdict to be issued. On the one hand, the small number of nodes obtained by 
neglecting the barriers has made possible a number of extended and useful parametric studies. 
On the other hand, the failure to meet the experimental conditions for the equipment does not 
enable a direct comparison with the experimental data, a complete validation of the approach 
here proposed or a clear singling-out of the effects of the barriers on the physics of the flow. 

4.4. Effects of Deck Equipment 

In order to overcome the above-mentioned difficulties, in what follows the deck equipment is 
introduced into the model. The close-up view of the mesh generated around the fully equipped 
section is shown in Figure 20b. The near-wall cell thickness is set at yW = 3.le - 4B. Modelling of 
the barriers involves an important increase in the number of cells (76564, +68% as compared to 
the lam-3 grid). To enable an appreciation of the computational resources involved, Figure 20a 
summarizes the evolution of CPU time versus cell number in LES simulations (HP j6000-1 proc. 
PA8600 552 MHz, SPECfp2000 433). The 2D detailed model (11 days for a computer run involv- 

l.oetS l.o& l.cle+7 

(4 (b) 
Figure 20. CPU time versus cell number (a); grid system near the detailed deck (b). 
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Figure 21. Effects of CS on Cp and std (Cp) distributions on the detailed deck 

ing 5000 time steps) is certainly more time-consuming than the basic one (six days). It follows 
that the advisability of introducing deck equipment must be carefully evaluated against the gain in 
accuracy. On the other hand, the extension of the same grid system in the spanwise direction (3D 
simulation, spanwise dimension of the computational domain set at 1 chord length B) markedly 
increases the required computational resources (CPU time of 44 years). It is evident that such a 
computational commitment is out of the question in the case of parametric studies or industrial 
applications. The above data confirm the importance of developing computational approaches 
alternative to 3D simulations in these fields. 

First of all, the parametric study on the effect of the Smagorinsky constant in 2D-LES com- 
putations is applied to the detailed deck in order to detect with a greater degree of precision the 
optimal Cs value for the case study. The analysis is restrictedly performed on the most suitable 
values of Cs previously selected in the basic simulations. 

Figure 21 shows the distribution of the mean pressure coefficient and the distribution of its 
standard deviation on the deck. The effects of the Smagorinsky constant previously observed in 
the basic geometry (see Figures 17 and 18) is generally confirmed. However, the results in some 
crucial areas of the deck indicate that the value Cs = 0.075 is the most suitable one. In fact, 
at Cs = 0.065 the length of the recirculating area on the lower surface is underestimated, and 
instabilities increase behind the barriers at the upper surface. The disagreement between the 
experimental measurements and the computational results remains at the lower surface in the 
range 0 < x/B < 0.2. If it is borne in mind that the anisotropy of the turbulence in the forebody 
region is probably the cause of this disagreement, it is hardly surprising that the Smagorinsky 
subgrid scale model proves its insufficiency. 

The models that yielded the most satisfactory results in the previous simulations (namely, the 
laminar approach, the Reynolds stress model, and the large eddy simulation with Cs = 0.075) 
are applied in what follows to the detailed deck. Table 6 compares the main integral parameters 
of the flow resulting from models with and without barriers. 

The results obtained using the RSM model are of less interest than the validation of the com- 
putational approach and do not provide a significant physical insight into the flow. Nevertheless, 
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Table 6. Integral parameters with and without barriers. 

Figure 22. RSM model: time track of lift coefficient (a) and instantaneous stream- 
lines (b). 

they are briefly commented upon in what follows in order to confirm the hypothesis formulated 
regarding the weakness of the statistical approach. As in Figure 12, Figure 22 shows the time 
history of the lift coefficient and the close-up view of the instantaneous streamlines in the near- 
wake region. The computational solution is characterized by a transient phase (see Figure 22a), 
in which the low-frequency fluctuations of the lift force are due to vortex shedding in the wake 
of the deck. These fluctuations progressively vanish, and only the high-frequency (St = 4.68). 
small-amplitude (std (CL) = 0.001) fluctuations remain in the stationary solution. The final 
unsteadiness of the flow is exclusively due to vortex shedding downstream of the leeward side 
barriers, as shown in Figure 22b. Once again, the statistical approach proves its capability for 
detecting only periodic phenomena. The stochastic perturbations from the ensemble-averaged 
fluctuation-such as the perturbations induced by small-scale, complex eddies-are assumed in the 
turbulent field. It follows that the eddy viscosity considerably increases and progressively dissi- 
pates the periodic fluctuation. 

The comparison of the results obtained from the laminar and LES approaches makes it possible 
to highlight the differences related to flow modelling, as well as the common trend that results 
from barrier modelling. As may be readily appreciated from Table 6, the main effects of the 
equipment on the aerodynamic coefficients may be summarized as follows: 

(a) rise in the drag force; 
(b) drop in the mean value of the lift force and its fluctuations; 
(c) wider band of the lift spectrum (St). 

A previous work [12] has demonstrated that the contribution of small-sized items of equipment 
to bridge aerodynamics is primarily due to interference effects between the items of equipment 
and the deck. In what follows, these interference phenomena will be further distinguished as local 
effects (i.e., regarding the neighbourhood of the items of equipment) and global effects. 

As for the mean drag coefficient, the increase in its value due to the barriers is approximately 
the same in both the laminar and LES approaches (ACD x 30%). Such a major increase cannot 
be related to the direct contribution due to the details. Instead, we shall focus our attention on 
the contribution of the base region of the deck. 
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Figure 23. Velocity defect in the wake: basic and detailed deck 

Figure 23 shows the mean velocity defect along two straight lines at different locations in the 
wake. The details increase the ratio between the width of the wake at x/B = 1.005 and the 
width of the deck. As a result, the distance between vortices of different sign is augmented, and 
the deck experiences a higher drag value, which closely matches the experimental data. In this 
sense, the presence of the details increases the overall degree of bluffness of the section. 

Finally, it is to be pointed out that the introduction of the barriers in the laminar and LES 
approaches leads to rather different predictions of the abscissa of the local maximum defect along 
the straight line at x/B = 1.5. In the laminar simulations the velocity defect due to the barriers 
is not diffused along the wake, and the local velocity minimum is aligned with the upper surface. 
Instead, in LES the modelling of the barriers involves a downturn of the local velocity minimum 
and a less regular profile of the mean velocity U,. The above phenomenon would appear to have 
the same cause as the reduction in the lift coefficient and in the lower bound of the Strouhal 
range. 

In order to provide a comprehensive explanation of the above results, the mean profiles of 
the longitudinal component of the velocity U, and of the vorticity w along the straight line 
x/B = 0.328 are shown in Figure 24. The profile of the mean longitudinal velocity over the 
upper surface (y/B > 0.039) in Figure 24b confirms’that the velocity defect in the wake is due 
to the barriers, which also shed a certain amount of vorticity in their wake (Figure 24~). 

The most surprising results concern the lower side area. On account of the blockage effect of 
the upwind side barriers, the velocity increases over the lower side of the deck as compared to the 
case of the basic geometry (see Figure 24d). As the velocity U, outside the outer boundary layer 
at the separation point increases, the instantaneous flux of vorticity also increases according to 
the relation 

where ub is the corresponding velocity from the base to the same point. Hence, the vorticity 
shed downstream of the separation bubble is higher and more concentrated (see Figure 24e). 
Consequently, the vorticity, convected along the lower surface of the deck, moves downstream of 

the maximum velocity defect in the wake. Furthermore, the increased velocity of the flow involves 
a deeper suction on the lower surface of the deck (see Figure 25) both in the laminar simulation 
(0.55 < x/B < 0.65) and in the LES simulation (0.2 < x/B < 0.4). The more concentrated 
vorticity reduces the length of the separation bubble and enables the LES simulation to make 
a correct prediction of the experimental pressure distribution. Both phenomena are indirectly 
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Figure 24. Effects of Cs on the aerodynamic coefficients and on the Strouhal num- 
bers. 

involved by the barriers and contribute to reducing the value of the lift coefficient. Of course, 
the barriers also have local effects on the upper surface, which involve local maxima and minima 
in the pressure distribution. In particular, the upwind side barrier reattaches the flow past the 
upwind edge, reducing the pressure fluctuations predicted in the basic configuration (see the 
std (C,) distribution on the upper surface). The mean streamlines in Figure 26a confirm both 
the local and the global effects. 

Finally, the barriers also affect the mechanism of the vortex-formation process and the Strouhal 
numbers. Once again it is possible distinguish direct (i.e., local) phenomena and interaction 
(i.e., global) ph enomena. The former effects can be identified in the classical Karman vortex 
streets in the wake of the circular barriers. This kind of shedding is probably responsible for the 
higher frequency content of the lift force (see Figure 26b) in the detailed configuration (St from 
0.317 to 0.333). However, somewhat surprisingly the barriers also affect the lower bound of the 
Strouhal number range, namely, the shedding frequency related to the interaction between the 
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vortices vr that are shed from the separation bubble and the vortices vz that emerge past the 
leeward edge. As a result of the reduction in the length of the bubble b&.. (see Figure 26a), 
the vortices ~1 translate along a greater length to reach the leeward edge and to merge into the 
vortices ~2. Thus, the shedding period becomes longer and the associated Strouhal number is 
reduced from 0.105 2 St < 0.141 (without barriers) to 0.098 2 St < 0.122 (with barriers). 

4.5. Flow Around the Deck with Angle of Attack 

The goal of the simulations presented herein is to provide a further validation of the pro- 
posed 2D approach based upon the modified value of the Smagorinsky constant Cs = 0.075. 

The aerodynamic behaviour of the GBEB deck has been experimentally investigated at various 
angles of attack. The mean pressure distribution on the deck measured in the wind-tunnel tests 
by Reinhold et al. [14] is available in the literature 125) for an incidence of 6 degrees (wind from 
below). 
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The same setup was assumed by Enevoldsen et al. [25] in both 2D and 3D LES simulations using 
the Smagorinsky subgrid scale model. In the computational simulations, the turbulence level of 
the incoming flow was set at zero, and the value of the Smagorinsky constant was set at 0.18. 
Although Thorbek [28] states that the details were modelled in both 2D and 3D simulations. the 
local effects of the barriers cannot be found in the pressure distribution at the upper surface (see 
Figure 27a). The 3D simulation substantially improves the results obtained using the 2D model. 

Figure 27b compares the results of the present study obtained using 2D models with and with- 

out barriers. It follows that an adequate value of the Smagorinsky constant and careful modelling 
of the details-combined with a numerical scheme and a refined grid yielding low dissipation-can 
overcome the limitations of 2D LES simulation. In particular, the 2D model ensures the same 
level of accuracy as 3D simulations, while the computational costs are considerably reduced. 

5. CONCLUSIONS 

The aim of the present paper has been to discuss the reliability of 2D numerical simulation of 
vertical structures around a quasi-bluff bridge deck. 

The first part was devoted to a critical review of currently available studies on the topic. 

This was followed by a closer investigation into the various mechanisms involved in the unsteady 
flow around the Great Belt East Bridge deck. The numerical simulations have shed some light 
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on the essential physical features of the process of vortex formation. In particular, the multiple 
Strouhal numbers experimentally measured were related to distinct vortex-shedding mechanisms. 

The third part of the paper was devoted to a clarification, by means of a number of parametric 
studies, of the capacity of some models to simulate the case study. For each approach, the 
influence of a number of parameters of the computational model was examined. In the laminar 
approach, a reduced near-wall cell thickness and high-order diffusive schemes are required to 
calculate the flow field without dependence upon numerical diffusion. 

Generally speaking, the ensemble-averaged models of the turbulence do not properly simulate 
the small-scale, complex eddies at the root of the vortex-formation process. The RANS equation 
models assume such eddies into the turbulent stochastic field. It follows that the augmented eddy 
viscosity markedly dissipates the periodic fluctuations 

Referring to the large eddy simulation approach, the relevance of using low-diffusive discretiza- 
tion schemes for the convective fluxes was confirmed by the parametric analysis reported in 
Section 4.3.1. Moreover, the influence of the value of the Smagorinsky constant in the subgrid 
scale model was studied in detail. The investigation makes it possible to fix an optimal value for 
this constant, enabling the LES 2D model to take into account the effects of physical phenomena 
(vortex stretching, longitudinal vortices) that are generally observed in the case of 3D separated 
flows with homogeneous spanwise fluctuations. 

The overall accuracy of the optimised 2D model is comparable with the accuracy of 3D sim- 
ulations, while the computational effort is considerably reduced. In principle, a postetiori error 
estimates can be developed exploiting the method by Diez and Egozcue [43]. Additional estimates 
concerning convergence and stability properties can be recovered in [44]. 

Finally, the important role of deck equipment in bridge aerodynamics is emphasized. Despite 
the increased computational effort, modelling of the barriers is strongly recommended in order 
to take into due account the global effects of the barriers on the flow. 

Notwithstanding the encouraging results obtained in this study, caution must be exercised 
in extending the the proposed 2D LES approach to other classes of flow. The application of 
this approach to separated-type cylinder and streamlined sections represents a further possible 
research development. 
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