
Introduction

The story told in these lecture notes begins with a rather simple observation: all
the solutions of a linear ODE with constant complex coefficients are analytic, i.e.
they can be expressed in terms of convergent power series. It is then natural to
suspect that the corresponding theory can be carried out in a purely formal way,
working in rings of formal power series with coefficients in an arbitrary Q-algebra.
This is indeed the case and, pursuing the task, one easily obtains a simple, eco-
nomical and elegant theory which offers both practical advantages and a novel
perspective for interpreting other mathematical phenomena.

One of the most relevant features of the theory is that it comes with a universal
basis of solutions for linear homogeneous ODEs of order, say, r +1 (Chapter 3). The
elements of the universal basis are formal power series with coefficients in the
polynomial ring Er := Q[e1, . . . , er+1], where the indeterminates e1, . . . , er+1 are the
coefficients of the equation. For the reader convenience, basics on formal power
series, exterior algebra and the philosophy of generating functions, through the
well known example of generating functions, are collected in Chapter 1 in order
to keep the exposition as self contained as possible.

A linear ODE of order r+1 with coefficients a1, . . . , ar+1 taken in any Q-algebra
A (for instance A = R or A = C) induces on A a natural structure of Er-algebra,
and the module of solutions to the equation is nothing else than the module of
universal solutions after extending the coefficients. In down–to–earth, yet sug-
gestive, terms this amounts to solve all the linear ODEs at once, and once and for
all.

The idea of solving linear ODEs using power series, of course, is not new, and
is taught in any standard calculus textbook – see e.g. [2, pp. 169–172]. The subject
of the present notes is also obviously related with linear recurrence sequences, see
e.g [1, Section 212]. The cutting–edge aspect is the implementation of it, which is
based on a purely algebraic language and some combinatorics inspired by the the-
ory of symmetric functions. In the present context, in particular, the knowledge
of the roots of the characteristic polynomial is no longer necessary for solving a
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linear ODE. As a matter of fact, standard bases of solutions constructed via the ex-
ponential of the roots of the characteristic polynomials are not as canonical as the
aforementioned universal ones – see Example 3.2.6. The latter, in addition, reveal
themselves especially useful for computing the exponential of a square matrix
without reducing it to Jordan normal form (Chapter 5), thus completing an obser-
vation made by Putzer [32] in 1966 (see also [2, p. 205] and relatively more recently
by Leonard [28] (1996) and Liz [26] (1998).

The motivations for investigating, jointly with I. Scherbak, the combinatorics
behind the universal ODE, come from Schubert calculus for Grassmannians, which
can be thought of as the generalization of the classical Bézout theorem4, widely
known for projective spaces, to more general Grassmann varieties G(r, Pd) that
parameterize r-dimensional linear subvarieties of the d-dimensional projective
space. In [11, 12, 14] Schubert calculus was dealt with in terms of derivations on
a Grassmann algebra. The formalism indicates a kinship with generalized Wron-
skians (Chapter 4), associated to a basis of solutions of an ordinary ODE, and their
derivatives (see also [13]). The main result of [15] is a kind of Giambelli-Jacobi-
Trudy formula for generalized Wronskians (Section 4.4). It shows that, from a for-
mal point of view, the celebrated Pieri’s formula that governs Schubert Calculus
is nothing but Leibniz’s rule for suitable derivatives of a generalized Wronskian.
The proof of such Jacobi-Trudy formula forces to look at the most general linear
ODE, which eventually led us to find, or possibly rediscover5, the universal basis
of solutions alluded above. The universal solution of the Cauchy problem for a
(in general non homogeneous, like in Section 3.4) linear ODE with constant coef-
ficients (has a number of consequences, besides those already mentioned.

For example, it shows that many properties of the matrix exponential are purely
formal and hold for square matrices with entries in any commutative ring. If, in
addition, the latter is an integral domain one can easily prove that the determi-
nant of the exponential of a square matrix is equal to the exponential of its trace.
Using this property, we show in Example 5.4.5 an amusing generalization of the
celebrated fundamental trigonometric identity cos2 t + sin2 t = 1.

In a second instance one (re)discovers in a natural way a formal Laplace trans-
form defined on A[[t]], which amounts to multiplying the coefficients of tn of a
formal power series by the factorial n! (see Sections 1.4.2 and 3.3). Combinatorial
properties of generalized Wronskians associated to a universal fundamental sys-

4Bézout’s theorem is best known for the projective plane P2. It says that if C1 and C2 are
two projective curves of degree d1 and d2 respectively, with no component in common, then they
intersect at d1d2 points, keeping intersection multiplicity into account.

5We do not know any explicit reference for this.
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tem, following [15] and [16], as well as their relationships with Schubert calculus
and derivations of a Grassmann algebra are also briefly discussed in Chapter 4.
One shows that wedging altogether the elements of a universal fundamental sys-
tem is the same as considering the Wronskian of it. The universal Cauchy for-
mula (3.11), that gives the explicit expression of the unique solution to a linear
ODE with given initial data, is a consequence of a purely combinatorial property
which exhibits an alternative basis of the ring A[[t]] of formal power series in the
indeterminate t (Chapter 2). Such combinatorial property leads in a very natural
(and probably unavoidable) way to consider linear ODEs of infinite order. These
possess a universal basis of solutions, whose elements are indexed by negative in-
tegers. The algebra Er must be replaced in this case by the algebra of polynomials
E∞ := Q[e1, e2, . . .] in infinitely many indeterminates. The latter will be inter-
preted in Chapter 7 as the Fock space of the theory of representations of infinite
dimensional Lie algebras (Oscillator Algebra, Virasoro algebra), which in turn is
isomorphic to each fermion space of total charge m: the latter can be identified with
the Q-algebra generated by certain infinite wedge products of solutions of the lin-
ear ODE of infinite order. The very natural isomorphism one obtains in this way,
based on the universal Cauchy formula for infinite–order linear ODEs, is nothing
but the so-called boson-fermion correspondence, as described for example, in the
introductory book [19] – see also [3, 27, 30].


