DIMENSION OF FAMILIES OF DETERMINANTS SCHEMES

Rosa M. Miró-Roig

Abstract

This talk describes joint work with Jan O. Kleppe. A scheme $X \subset P^{n+c}$ of codimension c is called *standard determinantal* if its homogeneous saturated ideal can be generated by the maximal minors of a homogeneous $t \times (t + c - 1)$ matrix and X is said to be *good determinantal* if it is standard determinantal and a generic complete intersection. Given integers $a_0, a_1, \ldots, a_{t+c-2}$ and b_1, \ldots, b_t we denote by $W(\underline{b}; \underline{a}) \subset \operatorname{Hilb}^p(P^{n+c})$ (resp. $W_s(\underline{b}; \underline{a})$) the locus of good (resp. standard) determinantal schemes $X \subset P^{n+c}$ of codimension c defined by the maximal minors of a $t \times (t + c - 1)$ matrix $(f_{ij})_{j=0,\ldots,t+c-2}^{i=1,\ldots,t}$ where $f_{ij} \in k[x_0, x_1, \ldots, x_{n+c}]$ is a homogeneous polynomial of degree $a_j - b_i$.

In the talk I will address the following three fundamental problems :

- (1) To determine the dimension of $W(\underline{b};\underline{a})$ (resp. $W_s(\underline{b};\underline{a})$) in terms of a_i and b_i ;
- (2) To determine whether the closure of $W(\underline{b}; \underline{a})$ is an irreducible component of Hilb^{*p*}(P^{n+c}); and
- (3) To determine when $\operatorname{Hilb}^p(P^{n+c})$ is generically smooth along $W(\underline{b};\underline{a})$.

Concerning question (1) I will give an upper bound for the dimension of $W(\underline{b};\underline{a})$ (resp. $W_s(\underline{b};\underline{a})$) which works for all integers $a_0, a_1, ..., a_{t+c-2}$ and $b_1, ..., b_t$, and we conjecture that this bound is sharp. The conjecture is proved for $2 \le c \le 5$, and for $c \ge 6$ under some restriction on $a_0, a_1, ..., a_{t+c-2}$ and $b_1, ..., b_t$. For questions (2) and (3) we have an affirmative answer for $2 \le c \le 4$ and $n \ge 2$, and for $c \ge 5$ under certain numerical assumptions.