DIMENSION OF FAMILIES OF DETERMINANTS SCHEMES

Rosa M. Miró-Roig

Abstract

This talk describes joint work with Jan O. Kleppe. A scheme $X \subset P^{n+c}$ of codimension c is called standard determinantal if its homogeneous saturated ideal can be generated by the maximal minors of a homogeneous $t \times(t+c-1)$ matrix and X is said to be good determinantal if it is standard determinantal and a generic complete intersection. Given integers $a_{0}, a_{1}, \ldots, a_{t+c-2}$ and b_{1}, \ldots, b_{t} we denote by $W(\underline{b} ; \underline{a}) \subset \operatorname{Hilb}^{p}\left(P^{n+c}\right)\left(\operatorname{resp} . W_{s}(\underline{b} ; \underline{a})\right)$ the locus of good (resp. standard) determinantal schemes $X \subset P^{n+c}$ of codimension c defined by the maximal minors of a $t \times(t+c-1)$ matrix $\left(f_{i j}\right)_{j=0, \ldots, t+c-2}^{i=1, \ldots, t}$ where $f_{i j} \in$ $k\left[x_{0}, x_{1}, \ldots, x_{n+c}\right]$ is a homogeneous polynomial of degree $a_{j}-b_{i}$.

In the talk I will address the following three fundamental problems :
(1) To determine the dimension of $W(\underline{b} ; \underline{a})\left(\operatorname{resp} . W_{s}(\underline{b} ; \underline{a})\right)$ in terms of a_{j} and b_{i};
(2) To determine whether the closure of $W(\underline{b} ; \underline{a})$ is an irreducible component of $\operatorname{Hilb}^{p}\left(P^{n+c}\right)$; and
(3) To determine when $\operatorname{Hilb}^{p}\left(P^{n+c}\right)$ is generically smooth along $W(\underline{b} ; \underline{a})$.

Concerning question (1) I will give an upper bound for the dimension of $W(\underline{b} ; \underline{a})$ (resp. $W_{s}(\underline{b} ; \underline{a})$) which works for all integers $a_{0}, a_{1}, \ldots, a_{t+c-2}$ and b_{1}, \ldots, b_{t}, and we conjecture that this bound is sharp. The conjecture is proved for $2 \leq c \leq 5$, and for $c \geq 6$ under some restriction on $a_{0}, a_{1}, \ldots, a_{t+c-2}$ and b_{1}, \ldots, b_{t}. For questions (2) and (3) we have an affirmative answer for $2 \leq c \leq 4$ and $n \geq 2$, and for $c \geq 5$ under certain numerical assumptions.

