Polynomial Rings are gl_{∞} -modules Letterio Gatto¹, Parham Salehyan²

¹ Dipartimento di Scienze Matematiche, Politecnico di Torino

 2 IBILCE, UNESP, São José do Rio Preto

The talk aims to dig up the Schubert Calculus roots of the so-called bosonic vertex representation of the Lie algebra gl_{∞} of all infinite square matrices having all entries zero but finitely many, originally due to Date, Jimbo, Kashiwara and Miwa (DJKM), obtained in the context of the infinite dimensional integrable systems [2, 3]. To this purpose, we start considering $V := \mathbb{Q}[T]$, an infinite-dimensional \mathbb{Q} vector space together with $E_{ij} \in End_{\mathbb{Q}}V$, defined by $E_{ij}(T^k) = T^i \delta_j^k$. Let gl_{∞} be the Q-linear span of the E_{ij} . Due to the isomorphism of $\bigwedge^r \mathbb{Q}[T]$ with the polynomial ring $B_r := \mathbb{Q}[e_1, \ldots, e_r]$, the latter inherits a natural structure of gl_{∞} -module, which will be explicitly described by computing the action of the generating function $\mathcal{E}(z,w) := \sum_{i,j\geq 0} E_{ij} z^i w^{-j} : B_r \to B_r[[z,w^{-1}]]$. The computations heavily rely on Schubert Calculus techniques applied not on one, but on all Grassmannians at once [1]. The method so supplies the expression of a certain operator $\Gamma_r(z, w) : B_r \to B_r[z, w^{-1}]$, whose asymptotic espression for $r \to \infty$ is exactly the one appearing in the DJKM representation.

References

- -, P. SALEHYAN, Hasse-Schmidt Derivations on a Grassmann Algebra, Springer IMPA Monographs, n. 4, 2016
- [2] V. G. KAC, A. K. RAINA, N. ROZHKOVSKAYA, Highest Weight Representations of Infinite Dimensional Lie Algebras, Advanced Series in Mathematical Physics, Vol. 29 Second Edition, World Scientific (2013)
- [3] E. DATE, M. JIMBO, M. KASHIWARA, T. MIWA, Operators approach to the Kadomtsev-Petviashvili equation, Transformation groups for soliton equations III, J. Phys. Soc. Japan, 50 (1981) 3806–3812