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Flexes of Rational Curves

How many projectively non equivalent rational curves in P3 of

degree d+ 3 (d ≥ 0) have flexes at 2d marked points?

Any such curve can be gotten by projecting a rational normal

curve in Pd+3 from a Pd−1 which intersects the osculating plane

at the marked points. Therefore the sought for number is that

of the Pd−1’s having such a behaviour.
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This problem can be translated into a problem of

Schubert Calculus.

The numerical answer amounts to compute

σ2d
2

in the Grassmannian G(d,4 + d) ∼= G(4,4 + d).

Once d is given, the package Schubert perform the computations

in a reasonable time up to d = 10. However:

how may look a formula for it?
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Similar enumerative problems have been already solved in the

celebrated treatise by Schubert (1885):

The most famous is certainly:

how many projective k-planes meet (1 + k)(n− k) linear

subspaces of Pn of codimension 2?
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Similar enumerative problems have been already solved in the
celebrated treatise by Schubert (1885):

The most famous is certainly:

how many projective k-planes meet (1 + k)(n− k) linear
subspaces of Pn of codimension 2?

Or alternatively:
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what is the degree of the Plücker embedding of the

grassmannian G(k,Pn)?
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The answer is:
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The answer is:
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The answer is:

In modern language:

dk,n =

∫
σ(1+k)(n−k)

1 ∩ [G(k, n)] =
1!2! · . . . · k!((1 + k)(n− k))!

n!(n− 1)! · . . . · (n− k)!
(1)

For a proof of (1) one can look at the classical book of Hodge-
Pedoe (see also Fulton’s Intersection Theory). It is via induction:
then one should figure out the formula in advance.
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A special case of (1) is very popular: how many lines do intersect

4 others in P3? Putting n = 3 and k = 1 in (1) one gets 2.

In the same vein, another problem is:

find the number of lines intersecting 4 subspaces of

codimension n in general position in P2n+1

It amounts to compute∫
σ4
n ∩ [G(2,2n+ 2)]

The above number is n+ 1: see Griffiths&Harris and/or Donagi.
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Is it possible to generalize equation (1) and to find an expression

for any top intersection product of Schubert cycles?
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General Question

Is it possible to generalize equation (1) and to find an expression

for any top intersection product of Schubert cycles?

The answer is yes, if one writes Schubert’s formula how he prob-

ably wrote it, before getting the final form (1).

To get such an expression, our tool is Schubert Calculus on

Grassmann Algebras (SCGA) of an A-module M (rather than on

a Grassmann variety!).

What is this?
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SCGA 1

SCGA(M) is the datum of an A-algebra homomorphism:

Dt :=
∑
i≥0

Dit
i :
∧
M −→

∧
M [[t]]

i.e. such that

Dt(α ∧ β) = Dtα ∧Dtβ, ∀α, β ∈
∧
M (2)

which we called the fundamental equation of Schubert Calculus

on a Grassmann algebra.
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Eq. (2) is equivalent to:

Dh(α ∧ β) =
∑

h1 + h2 = h
hi ≥ 0

Dh1
α ∧Dh2

β (3)

which is the hth order Leibniz rule, holding for all h ≥ 0.
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The set of all Dt, defining a Schubert Calculus on
∧
M , form a

group HSt(
∧
M) with respect to the product

Dt ∗ Et =
∑
h≥0

∑
i+j=h

(Di ◦ Ej)th.
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The set of all Dt, defining a Schubert Calculus on
∧
M , form a

group HSt(
∧
M) with respect to the product

Dt ∗ Et =
∑
h≥0

∑
i+j=h

(Di ◦ Ej)th.

SCGA(M) is based on (3) (Pieri’s Formula!) and on integration

by parts (the counterpart of Giambelli’s formula):

Dhα ∧ β =
h∑
i=0

Dh−i(α ∧Diβ) (4)

where Dt is the formal inverse of Dt ∈ HSt(
∧
M).
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SCGA 2

Here are some formulas of SCGA:

Dn
h(α ∧ β) =

∑
n0+n1+...+nh=n

( n

n0, n1, . . . , nh

)
Dn0

h D
n1

h−1 . . . D
nh−1

1 α ∧Dn1

1 D
n2

2 . . . Dnh
h β,

(5)

where the multinomial coefficient
(

n
n0,n1,...,nh

)
is defined via the

equality:

(a0 + a1 + . . .+ ah)n =
∑( n

n0, n1, . . . , nh

)
a
n0
0 a

n1
1 . . . a

nh
h

where n0 + n1 + . . .+ nh.
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Dn
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h
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Dh

1α ∧D
n−h
1 β

29



In particular

Dn
1(α ∧ β) =

n∑
h=0

(n
h

)
Dh

1α ∧D
n−h
1 β

Moreover, for all (α0, α1, . . . , αk) ∈
∧1+kM

D1(α0 ∧ α1 ∧ . . . ∧ αk) =
k∑

j=0

α1 ∧ α2 ∧ . . . ∧D1αj ∧ . . . ∧ αk,

from which one easily gets:
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In particular

Dn
1(α ∧ β) =

n∑
h=0

(n
h

)
Dh

1α ∧D
n−h
1 β

Moreover, for all (α0, α1, . . . , αk) ∈
∧1+kM

D1(α0 ∧ α1 ∧ . . . ∧ αk) =
k∑

j=0

α1 ∧ α2 ∧ . . . ∧D1αj ∧ . . . ∧ αk,

from which one easily gets:

Dn
1(α0∧α1∧. . .∧αk) =

∑( n

n0, n1, . . . , nk

)
D
n0
1 α0∧D

n1
1 α1∧. . .∧D

nk
1 αk
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One may write many others similar formulas, easily proven by

induction and basic algebra experience.

Among all we quote:

Dn
2(α ∧ β ∧ γ ∧ δ) =

=
∑( n

n1, . . . , n10

)
D
n1
2 D

n2+n3+n4
1 α ∧Dn5

2 D
n2+n6+n7
1 β ∧

∧Dn8
2 D

n3+n6+n9
1 γ ∧Dn10

2 D
n4+n7+n9
1 δ (6)

the sum being over all non negative integers (n1, n2, . . . , n10) such

that
∑
ni = n.
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“Classical Schubert Calculus”

It is recovered by the pair (
∧
M,Dt), where

∧
M is the exterior

algebra of a free Z-module M of rank, say, 1 + n, spanned by

(ε0, ε1, . . . , εn), and Dt is
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∧
M,Dt), where

∧
M is the exterior

algebra of a free Z-module M of rank, say, 1 + n, spanned by

(ε0, ε1, . . . , εn), and Dt is

the unique extension to a map
∧
M −→

∧
M [t] of the linear map

Dt : M −→M [[t]]

defined by Dt(εi) =
∑
j≥0 ε

i+jtj, where εi+j = 0 if i + j > n,

gotten by imposing the fundamental equation (2):

34



“Classical Schubert Calculus”

It is recovered by the pair (
∧
M,Dt), where

∧
M is the exterior

algebra of a free Z-module M of rank, say, 1 + n, spanned by

(ε0, ε1, . . . , εn), and Dt is

the unique extension to a map
∧
M −→

∧
M [t] of the linear map

Dt : M −→M [[t]]

defined by Dt(εi) =
∑
j≥0 ε

i+jtj, where εi+j = 0 if i + j > n,

gotten by imposing the fundamental equation (2):

Dt(α ∧ β) = Dtα ∧Dtβ.
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The degree of G(k,Pn) is then given by:

D
(1+k)(n−k)
1 (ε0 ∧ ε1 ∧ . . . ∧ εk) = dk,n · εn−k ∧ εn−k+1 ∧ . . . ∧ εn

where

dk,n =
∑

τ∈S1+k

(−1)|τ |
( (1 + k)(n− k)

n− k + τ(0), n− k + τ(1), . . . , n− k + τ(k)

)

Taking the l.c.d. and simplifying, one EASILY gets formula (1).
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Another Example : Integrals in G(2, n).
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Another Example : Integrals in G(2, n).

Let a, b ≥ 0 such a + 2b = 2(n − 1). Then, in
∧2M1+n, the

following equality holds:

Da
1D

b
2(ε0 ∧ ε1) = Ca,b · εn−1 ∧ εn
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Another Example : Integrals in G(2, n).

Let a, b ≥ 0 such a + 2b = 2(n − 1). Then, in
∧2M1+n, the

following equality holds:

Da
1D

b
2(ε0 ∧ ε1) = Ca,b · εn−1 ∧ εn

Using formula (5):

Ca,b =
b∑

b0=0

2n−2b∑
a0=0

( 2n− 2− 2b

a0,2n− 2− b− a0

)
·Ka0,b0 (7)

where

Ka0,b0
=
( b

b0, n− 1− a0 − 2b0, b+ b0 + a0 − n+ 1

)
−
( b

b0, n− a0 − 2b0, b+ b0 + a0 − n

)

Formula (7) is a new formula in Schubert calculus.
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Some Computations with Mathematica 5.1
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...more
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Clearly Ca := Ca,0 = d1,n.
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Clearly Ca := Ca,0 = d1,n.

The Ca are the Catalan numbers (the distinct ways one can

divide a regular n-gon in triangles whose vertices are vertices of

the n-gon itself).

If one writes:

F (t) =
∑
n≥0

d1,n+1 ·
tn

n!

then Táıse Santiago proves that:

F (t) = e2t(I0(t)− I1(t)),
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where by In(x) one means the nth modified Bessel functions of

the first kind, solution of :

z2y′′+ zy′ − (z2 + n2)y = 0

the modified Bessel differential equation.
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2 , is the

following equation holding in
∧4M (rkM = n+ 4):
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The generalization of formula (1) in the case of σ2n
2 , is the

following equation holding in
∧4M (rkM = n+ 4):

D2n
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where
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Flexes on Rational Curves

The generalization of formula (1) in the case of σ2n
2 , is the

following equation holding in
∧4M (rkM = n+ 4):

D2n
2 ε1 ∧ ε2 ∧ ε3 ∧ ε4 = Cn · εn+1 ∧ εn+2 ∧ εn+3 ∧ εn+4

where

Cn =
∑
τ∈S4

(−1)|τ |Cτn (8)

and

Cτn =
∑( 2n

n1, . . . , n10

)
, (9)
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the sum over all non negative n1, . . . , n10 such that:
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the sum over all non negative n1, . . . , n10 such that:

2n1 + n2 + n3 + n4 = n+ τ(1)

2n5 + n2 + n6 + n7 = n+ τ(2)

2n8 + n3 + n6 + n9 = n+ τ(3)

2n10 + n4 + n7 + n9 = n+ τ(4)
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the sum over all non negative n1, . . . , n10 such that:

2n1 + n2 + n3 + n4 = n+ τ(1)

2n5 + n2 + n6 + n7 = n+ τ(2)

2n8 + n3 + n6 + n9 = n+ τ(3)

2n10 + n4 + n7 + n9 = n+ τ(4)

To get it one has simply applied formula (6).
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Putting formulas (8) and (9) in Mathematica 5.1 and in R (a

program for statistical computing), one gets the following table:
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Mathematica 5.1. gets the table in days.
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Mathematica 5.1. gets the table in days.

The program R instead gets the table in minutes.
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Mathematica 5.1. gets the table in days.

The program R instead gets the table in minutes.

One can generate the same table using the Schubert Package

for Maple, in approximatively the same time of R.
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Thank You
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Obrigado!
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