ALGA 2005

Parati, 1-3 Agosto 2005

Intersection Formulas in Grassmann Varieties

Letterio Gatto, Taíse Santiago
Dipartimento di Matematica

Flexes of Rational Curves

Flexes of Rational Curves

How many projectively non equivalent rational curves in \mathbb{P}^{3} of degree $d+3(d \geq 0)$ have flexes at $2 d$ marked points?

Flexes of Rational Curves

How many projectively non equivalent rational curves in \mathbb{P}^{3} of degree $d+3(d \geq 0)$ have flexes at $2 d$ marked points?

Any such curve can be gotten by projecting a rational normal curve in \mathbb{P}^{d+3} from a \mathbb{P}^{d-1} which intersects the osculating plane at the marked points. Therefore the sought for number is that of the \mathbb{P}^{d-1} 's having such a behaviour.

This problem can be translated into a problem of

This problem can be translated into a problem of Schubert Calculus.

This problem can be translated into a problem of Schubert Calculus.

The numerical answer amounts to compute

$$
\sigma_{2}^{2 d}
$$

in the Grassmannian $G(d, 4+d) \cong G(4,4+d)$.

This problem can be translated into a problem of Schubert Calculus.

The numerical answer amounts to compute

$$
\sigma_{2}^{2 d}
$$

in the Grassmannian $G(d, 4+d) \cong G(4,4+d)$.

Once d is given, the package Schubert perform the computations in a reasonable time up to $d=10$. However:

This problem can be translated into a problem of Schubert Calculus.

The numerical answer amounts to compute

$$
\sigma_{2}^{2 d}
$$

in the Grassmannian $G(d, 4+d) \cong G(4,4+d)$.

Once d is given, the package Schubert perform the computations in a reasonable time up to $d=10$. However:
how may look a formula for it?

Similar enumerative problems have been already solved in the celebrated treatise by Schubert (1885):

Similar enumerative problems have been already solved in the celebrated treatise by Schubert (1885):

ANZAHL-BESTIMMUNGEN FOR LINEARE RÅUME
 BELIEBIGER DIMENSION

von
H. SCHUBERT in hamburg.

Similar enumerative problems have been already solved in the celebrated treatise by Schubert (1885):

ANZAHL-BESTIMMUNGEN FOR LINEARE RÅUME
 BELIEBIGER DIMENSION

von
H. SCHUBERT
in HAMBURg.

The most famous is certainly

Similar enumerative problems have been already solved in the celebrated treatise by Schubert (1885):

ANZAHL-BESTIMMUNGEN FOR LINEARE RÃUME
 BELIEBIGER DIMENSION

von
H. SCHUBERT
in HaMburg.

The most famous is certainly:

$$
\begin{gathered}
\text { how many projective } k \text {-planes meet }(1+k)(n-k) \text { linear } \\
\text { subspaces of } \mathbb{P}^{n} \text { of codimension } 2 ?
\end{gathered}
$$

Similar enumerative problems have been already solved in the celebrated treatise by Schubert (1885):

ANZAHL-BESTIMMUNGEN FOR LINEARE RÅUME
 BELIEBIGER DIMENSION

von
H. SCHUBERT
in hamburg.

The most famous is certainly:

> how many projective k-planes meet $(1+k)(n-k)$ linear subspaces of \mathbb{P}^{n} of codimension 2 ?

Or alternatively:
what is the degree of the Plücker embedding of the

$$
\text { grassmannian } G\left(k, \mathbb{P}^{n}\right) ?
$$

The answer is:

The answer is:

$$
a_{0}=n-p-1, \quad a_{1}=n-p+1, \quad a_{2}=n-p+2, \ldots, a_{p}=n
$$

setzt. In beiden Fallen ergiebt sich abereinstimmend:

$$
\begin{equation*}
\frac{|(p+1)(n-p)| \underline{1}|\underline{2}| \underline{3} \cdots \mid \underline{p}}{|\underline{n}| n-1|n-2 \cdots| \underline{n-p}} . \tag{27}
\end{equation*}
$$

The answer is:

$$
a_{0}=n-p-1, \quad a_{1}=n-p+1, \quad a_{2}=n-p+2, \ldots, a_{p}=n
$$

setzt. In beiden Fallen ergiebt sich abereinstimmend:
(27)

$$
\frac{|(p+1)(n-p)| \underline{1}|\underline{2}| \underline{3} \cdots \mid \underline{p}}{|\underline{n}| n-1|\underline{n-2} \cdots| \underline{n-p}} .
$$

In modern language:

$$
\begin{equation*}
d_{k, n}=\int \sigma_{1}^{(1+k)(n-k)} \cap[G(k, n)]=\frac{1!2!\cdot \ldots \cdot k!((1+k)(n-k))!}{n!(n-1)!\cdot \ldots \cdot(n-k)!} \tag{1}
\end{equation*}
$$

For a proof of (1) one can look at the classical book of HodgePedoe (see also Fulton's Intersection Theory). It is via induction: then one should figure out the formula in advance.

A special case of (1) is very popular: how many lines do intersect 4 others in \mathbb{P}^{3} ? Putting $n=3$ and $k=1$ in (1) one gets 2 .

In the same vein, another problem is:
find the number of lines intersecting 4 subspaces of codimension n in general position in $\mathbb{P}^{2 n+1}$

It amounts to compute

$$
\int \sigma_{n}^{4} \cap[G(2,2 n+2)]
$$

The above number is $n+1$: see Griffiths\&Harris and/or Donagi.

General Question

Is it possible to generalize equation (1) and to find an expression for any top intersection product of Schubert cycles?

General Question

Is it possible to generalize equation (1) and to find an expression for any top intersection product of Schubert cycles?

The answer is yes, if one writes Schubert's formula how he probably wrote it, before getting the final form (1).

General Question

Is it possible to generalize equation (1) and to find an expression for any top intersection product of Schubert cycles?

The answer is yes, if one writes Schubert's formula how he probably wrote it, before getting the final form (1).

To get such an expression, our tool is Schubert Calculus on Grassmann Algebras (SCGA) of an A-module M (rather than on a Grassmann variety!).

General Question

Is it possible to generalize equation (1) and to find an expression for any top intersection product of Schubert cycles?

The answer is yes, if one writes Schubert's formula how he probably wrote it, before getting the final form (1).

To get such an expression, our tool is Schubert Calculus on Grassmann Algebras (SCGA) of an A-module M (rather than on a Grassmann variety!).

What is this?

SCGA 1

SCGA(M) is the datum of an A-algebra homomorphism:

$$
D_{t}:=\sum_{i \geq 0} D_{i} t^{i}: \bigwedge M \longrightarrow \bigwedge M[[t]]
$$

i.e. such that

$$
\begin{equation*}
D_{t}(\alpha \wedge \beta)=D_{t} \alpha \wedge D_{t} \beta, \quad \forall \alpha, \beta \in \bigwedge M \tag{2}
\end{equation*}
$$

which we called the fundamental equation of Schubert Calculus on a Grassmann algebra.

Eq. (2) is equivalent to:

$$
\begin{equation*}
D_{h}(\alpha \wedge \beta)=\sum_{\substack{h_{1}+h_{2}=h \\ h_{i} \geq 0}} D_{h_{1}} \alpha \wedge D_{h_{2}} \beta \tag{3}
\end{equation*}
$$

which is the $h^{\text {th }}$ order Leibniz rule, holding for all $h \geq 0$.

The set of all D_{t}, defining a Schubert Calculus on $\wedge M$, form a group $H S_{t}(\wedge M)$ with respect to the product

$$
D_{t} * E_{t}=\sum_{h \geq 0} \sum_{i+j=h}\left(D_{i} \circ E_{j}\right) t^{h} .
$$

The set of all D_{t}, defining a Schubert Calculus on $\wedge M$, form a group $H S_{t}(\wedge M)$ with respect to the product

$$
D_{t} * E_{t}=\sum_{h \geq 0} \sum_{i+j=h}\left(D_{i} \circ E_{j}\right) t^{h} .
$$

SCGA(M) is based on (3) (Pieri's Formula!) and on integration by parts (the counterpart of Giambelli's formula):

The set of all D_{t}, defining a Schubert Calculus on $\wedge M$, form a group $H S_{t}(\wedge M)$ with respect to the product

$$
D_{t} * E_{t}=\sum_{h \geq 0} \sum_{i+j=h}\left(D_{i} \circ E_{j}\right) t^{h} .
$$

SCGA(M) is based on (3) (Pieri's Formula!) and on integration by parts (the counterpart of Giambelli's formula):

$$
\begin{equation*}
D_{h} \alpha \wedge \beta=\sum_{i=0}^{h} D_{h-i}\left(\alpha \wedge \bar{D}_{i} \beta\right) \tag{4}
\end{equation*}
$$

where \bar{D}_{t} is the formal inverse of $D_{t} \in H S_{t}(\wedge M)$.

SCGA 2

Here are some formulas of SCGA:

$$
\begin{equation*}
D_{h}^{n}(\alpha \wedge \beta)=\sum_{n_{0}+n_{1}+\ldots+n_{h}=n}\binom{n}{n_{0}, n_{1}, \ldots, n_{h}} D_{h}^{n_{0}} D_{h-1}^{n_{1}} \ldots D_{1}^{n_{n-1}} \alpha \wedge D_{1}^{n_{1}} D_{2}^{n_{2}} \ldots D_{h}^{n_{n} \beta}, \tag{5}
\end{equation*}
$$

where the multinomial coefficient $\binom{n}{n_{0}, n_{1}, \ldots, n_{h}}$ is defined via the equality:

$$
\left(a_{0}+a_{1}+\ldots+a_{h}\right)^{n}=\sum\binom{n}{n_{0}, n_{1}, \ldots, n_{h}} a_{0}^{n_{0}} a_{1}^{n_{1}} \ldots a_{h}^{n_{h}}
$$

where $n_{0}+n_{1}+\ldots+n_{h}$.

In particular

$$
D_{1}^{n}(\alpha \wedge \beta)=\sum_{h=0}^{n}\binom{n}{h} D_{1}^{h} \alpha \wedge D_{1}^{n-h} \beta
$$

In particular

$$
D_{1}^{n}(\alpha \wedge \beta)=\sum_{h=0}^{n}\binom{n}{h} D_{1}^{h} \alpha \wedge D_{1}^{n-h} \beta
$$

Moreover, for all $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right) \in \wedge^{1+k} M$

$$
D_{1}\left(\alpha_{0} \wedge \alpha_{1} \wedge \ldots \wedge \alpha_{k}\right)=\sum_{j=0}^{k} \alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge D_{1} \alpha_{j} \wedge \ldots \wedge \alpha_{k}
$$

from which one easily gets:

In particular

$$
D_{1}^{n}(\alpha \wedge \beta)=\sum_{h=0}^{n}\binom{n}{h} D_{1}^{h} \alpha \wedge D_{1}^{n-h} \beta
$$

Moreover, for all $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right) \in \wedge^{1+k} M$

$$
D_{1}\left(\alpha_{0} \wedge \alpha_{1} \wedge \ldots \wedge \alpha_{k}\right)=\sum_{j=0}^{k} \alpha_{1} \wedge \alpha_{2} \wedge \ldots \wedge D_{1} \alpha_{j} \wedge \ldots \wedge \alpha_{k}
$$

from which one easily gets:

$$
D_{1}^{n}\left(\alpha_{0} \wedge \alpha_{1} \wedge \ldots \wedge \alpha_{k}\right)=\sum\binom{n}{n_{0}, n_{1}, \ldots, n_{k}} D_{1}^{n_{0}} \alpha_{0} \wedge D_{1}^{n_{1}} \alpha_{1} \wedge \ldots \wedge D_{1}^{n_{k}} \alpha_{k}
$$

One may write many others similar formulas, easily proven by induction and basic algebra experience.

Among all we quote:

$$
\begin{align*}
& D_{2}^{n}(\alpha \wedge \beta \wedge \gamma \wedge \delta)= \\
& =\sum\binom{n}{n_{1}, \ldots, n_{10}} D_{2}^{n_{1}} D_{1}^{n_{2}+n_{3}+n_{4}} \alpha \wedge D_{2}^{n_{5}} D_{1}^{n_{2}+n_{6}+n_{7}} \beta \wedge \\
& \quad \wedge D_{2}^{n_{8}} D_{1}^{n_{3}+n_{6}+n_{9}} \gamma \wedge D_{2}^{n_{10}} D_{1}^{n_{4}+n_{7}+n_{9}} \delta \tag{6}
\end{align*}
$$

the sum being over all non negative integers $\left(n_{1}, n_{2}, \ldots, n_{10}\right)$ such that $\sum n_{i}=n$.

"Classical Schubert Calculus"

It is recovered by the pair ($\wedge M, D_{t}$), where $\wedge M$ is the exterior algebra of a free \mathbb{Z}-module M of rank, say, $1+n$, spanned by $\left(\epsilon^{0}, \epsilon^{1}, \ldots, \epsilon^{n}\right)$, and D_{t} is

"Classical Schubert Calculus"

It is recovered by the pair ($\bigwedge M, D_{t}$), where $\wedge M$ is the exterior algebra of a free \mathbb{Z}-module M of rank, say, $1+n$, spanned by $\left(\epsilon^{0}, \epsilon^{1}, \ldots, \epsilon^{n}\right)$, and D_{t} is
the unique extension to a map $\wedge M \longrightarrow \wedge M[t]$ of the linear map

$$
D_{t}: M \longrightarrow M[[t]]
$$

defined by $D_{t}\left(\epsilon^{i}\right)=\sum_{j \geq 0} \epsilon^{i+j} t^{j}$, where $\epsilon^{i+j}=0$ if $i+j>n$, gotten by imposing the fundamental equation (2):

"Classical Schubert Calculus"

It is recovered by the pair ($\bigwedge M, D_{t}$), where $\wedge M$ is the exterior algebra of a free \mathbb{Z}-module M of rank, say, $1+n$, spanned by $\left(\epsilon^{0}, \epsilon^{1}, \ldots, \epsilon^{n}\right)$, and D_{t} is
the unique extension to a map $\wedge M \longrightarrow \wedge M[t]$ of the linear map

$$
D_{t}: M \longrightarrow M[[t]]
$$

defined by $D_{t}\left(\epsilon^{i}\right)=\sum_{j \geq 0} \epsilon^{i+j} t^{j}$, where $\epsilon^{i+j}=0$ if $i+j>n$, gotten by imposing the fundamental equation (2):

$$
D_{t}(\alpha \wedge \beta)=D_{t} \alpha \wedge D_{t} \beta
$$

The degree of $G\left(k, \mathbb{P}^{n}\right)$ is then given by:

$$
D_{1}^{(1+k)(n-k)}\left(\epsilon^{0} \wedge \epsilon^{1} \wedge \ldots \wedge \epsilon^{k}\right)=d_{k, n} \cdot \epsilon^{n-k} \wedge \epsilon^{n-k+1} \wedge \ldots \wedge \epsilon^{n}
$$

where

$$
d_{k, n}=\sum_{\tau \in S_{1+k}}(-1)^{|\tau|}\binom{(1+k)(n-k)}{n-k+\tau(0), n-k+\tau(1), \ldots, n-k+\tau(k)}
$$

Taking the I.c.d. and simplifying, one EASILY gets formula (1).

Another Example : Integrals in $G(2, n)$.

Another Example : Integrals in $G(2, n)$.
Let $a, b \geq 0$ such $a+2 b=2(n-1)$. Then, in $\wedge^{2} M_{1+n}$, the following equality holds:

$$
D_{1}^{a} D_{2}^{b}\left(\epsilon^{0} \wedge \epsilon^{1}\right)=C_{a, b} \cdot \epsilon^{n-1} \wedge \epsilon^{n}
$$

Another Example : Integrals in $G(2, n)$.

Let $a, b \geq 0$ such $a+2 b=2(n-1)$. Then, in $\wedge^{2} M_{1+n}$, the following equality holds:

$$
D_{1}^{a} D_{2}^{b}\left(\epsilon^{0} \wedge \epsilon^{1}\right)=C_{a, b} \cdot \epsilon^{n-1} \wedge \epsilon^{n}
$$

Using formula (5):

$$
\begin{equation*}
C_{a, b}=\sum_{b_{0}=0}^{b} \sum_{a_{0}=0}^{2 n-2 b}\binom{2 n-2-2 b}{a_{0}, 2 n-2-b-a_{0}} \cdot K_{a_{0}, b_{0}} \tag{7}
\end{equation*}
$$

where
$K_{a_{0}, b_{0}}=\binom{b}{b_{0}, n-1-a_{0}-2 b_{0}, b+b_{0}+a_{0}-n+1}-\binom{b}{b_{0}, n-a_{0}-2 b_{0}, b+b_{0}+a_{0}-n}$

Formula (7) is a new formula in Schubert calculus.

Some Computations with Mathematica 5.1

n	a	b	$C_{a, b}$	
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{2}$	0	1	0	
	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	
$\mathbf{3}$	0	$\mathbf{2}$	1	
	$\mathbf{2}$	1	1	
	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{2}$	

n	a	b	$C_{a, b}$
4	0	3	1
	2	2	2
	4	1	3
	$\mathbf{6}$	$\mathbf{0}$	$\mathbf{5}$
5	0	4	3
	2	3	4
	4	2	6
	6	1	9
	$\mathbf{8}$	$\mathbf{0}$	$\mathbf{1 4}$

n	a	b	$C_{a, b}$
6	0	5	6
	2	4	9
	4	3	13
	6	2	19
	8	1	28
	$\mathbf{1 0}$	$\mathbf{0}$	$\mathbf{4 2}$

n	a	b	$C_{a, b}$
7	0	6	15
	2	5	21
	4	4	30
	6	3	43
	8	2	62
	10	1	90
	$\mathbf{1 2}$	$\mathbf{0}$	$\mathbf{1 3 2}$

...more

n	a	b	$C_{a, b}$
8	0	7	36
	2	6	51
	4	5	72
	6	4	102
	8	3	145
	10	2	207
	12	1	297
	$\mathbf{1 4}$	$\mathbf{0}$	$\mathbf{4 2 9}$

n	a	b	$C_{a, b}$
9	0	8	91
	2	7	127
	4	6	178
	6	5	250
	8	4	352
	10	3	497
	12	2	704
	14	1	1001
	16	0	1430

n	a	b	$C_{a, b}$
10	0	9	232
	2	8	323
	4	7	450
	6	6	628
	8	5	878
	10	4	1230
	12	3	1727
	14	2	2431
	16	1	3432
	18	0	4862

Clearly $C_{a}:=C_{a, 0}=d_{1, n}$.

Clearly $C_{a}:=C_{a, 0}=d_{1, n}$.

The C_{a} are the Catalan numbers (the distinct ways one can divide a regular n-gon in triangles whose vertices are vertices of the n-gon itself).

Clearly $C_{a}:=C_{a, 0}=d_{1, n}$.
The C_{a} are the Catalan numbers (the distinct ways one can divide a regular n-gon in triangles whose vertices are vertices of the n-gon itself).

If one writes:

$$
F(t)=\sum_{n \geq 0} d_{1, n+1} \cdot \frac{t^{n}}{n!}
$$

then Taíse Santiago proves that:

Clearly $C_{a}:=C_{a, 0}=d_{1, n}$.

The C_{a} are the Catalan numbers (the distinct ways one can divide a regular n-gon in triangles whose vertices are vertices of the n-gon itself).

If one writes:

$$
F(t)=\sum_{n \geq 0} d_{1, n+1} \cdot \frac{t^{n}}{n!}
$$

then Taíse Santiago proves that:

$$
F(t)=e^{2 t}\left(I_{0}(t)-I_{1}(t)\right),
$$

where by $I_{n}(x)$ one means the $n^{t h}$ modified Bessel functions of the first kind, solution of :

$$
z^{2} y^{\prime \prime}+z y^{\prime}-\left(z^{2}+n^{2}\right) y=0
$$

the modified Bessel differential equation.

Flexes on Rational Curves

The generalization of formula (1) in the case of $\sigma_{2}^{2 n}$, is the following equation holding in $\wedge^{4} M(r k M=n+4)$:

Flexes on Rational Curves

The generalization of formula (1) in the case of $\sigma_{2}^{2 n}$, is the following equation holding in $\wedge^{4} M(r k M=n+4)$:

$$
D_{2}^{2 n} \epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4}=\mathbf{C}_{\mathbf{n}} \cdot \epsilon^{n+1} \wedge \epsilon^{n+2} \wedge \epsilon^{n+3} \wedge \epsilon^{n+4}
$$

where

Flexes on Rational Curves

The generalization of formula (1) in the case of $\sigma_{2}^{2 n}$, is the following equation holding in $\Lambda^{4} M(r k M=n+4)$:

$$
D_{2}^{2 n} \epsilon^{1} \wedge \epsilon^{2} \wedge \epsilon^{3} \wedge \epsilon^{4}=\mathbf{C}_{\mathbf{n}} \cdot \epsilon^{n+1} \wedge \epsilon^{n+2} \wedge \epsilon^{n+3} \wedge \epsilon^{n+4}
$$

where

$$
\begin{equation*}
\mathbf{C}_{n}=\sum_{\tau \in S_{4}}(-1)^{|\tau|} C_{n}^{\tau} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{n}^{\tau}=\sum\binom{2 n}{n_{1}, \ldots, n_{10}} \tag{9}
\end{equation*}
$$

the sum over all non negative n_{1}, \ldots, n_{10} such that:
the sum over all non negative n_{1}, \ldots, n_{10} such that:

$$
\begin{array}{r}
2 n_{1}+n_{2}+n_{3}+n_{4}=n+\tau(1) \\
2 n_{5}+n_{2}+n_{6}+n_{7}=n+\tau(2) \\
2 n_{8}+n_{3}+n_{6}+n_{9}=n+\tau(3) \\
2 n_{10}+n_{4}+n_{7}+n_{9}=n+\tau(4)
\end{array}
$$

the sum over all non negative n_{1}, \ldots, n_{10} such that:

$$
\begin{aligned}
2 n_{1}+n_{2}+n_{3}+n_{4} & =n+\tau(1) \\
2 n_{5}+n_{2}+n_{6}+n_{7} & =n+\tau(2) \\
2 n_{8}+n_{3}+n_{6}+n_{9} & =n+\tau(3) \\
2 n_{10}+n_{4}+n_{7}+n_{9} & =n+\tau(4)
\end{aligned}
$$

To get it one has simply applied formula (6).

Putting formulas (8) and (9) in Mathematica 5.1 and in \mathbf{R} (a program for statistical computing), one gets the following table:

Putting formulas (8) and (9) in Mathematica 5.1 and in \mathbf{R} (a program for statistical computing), one gets the following table:

n	C_{n}
0	1
1	0
2	1
3	5
4	126
5	3396

n	C_{n}
6	114675
7	4430712
8	190720530
9	8942188632
10	449551230102

Mathematica 5.1. gets the table in days.

Mathematica 5.1. gets the table in days.

The program \mathbf{R} instead gets the table in minutes.

Mathematica 5.1. gets the table in days.

The program \mathbf{R} instead gets the table in minutes.

One can generate the same table using the Schubert Package for Maple, in approximatively the same time of \mathbf{R}.

Thank You

Obrigado!

