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How many projectively non equivalent rational curves in P3 of
degree d + 3 (d > 0) have flexes at 2d marked points?

Any such curve can be gotten by projecting a rational normal
curve in P41+3 from a P4—1 which intersects the osculating plane

at the marked points. Therefore the sought for number is that
of the P4~ 1's having such a behaviour.
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Schubert Calculus.

The numerical answer amounts to compute

o3¢

in the Grassmannian G(d,4+d) = G(4,4 4+ d).

Once d is given, the package Schubert perform the computations
in @ reasonable time up to d = 10. However:

how may look a formula for it?
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Similar enumerative problems have been already solved in the
celebrated treatise by Schubert (1885):

ANZAHL-BESTIMMUNGEN FOR LINEARE RAUME

BELIEBIGER DIMENSION

YON

H. SCHUBERT

in HAMBURM.

The most famous is certainly:

how many projective k-planes meet (1 + k)(n — k) linear
subspaces of P" of codimension 27
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Similar enumerative problems have been already solved in the
celebrated treatise by Schubert (1885):

ANZAHL-BESTIMMUNGEN FOR LINEARE RAUME

BELIEBIGER DIMENSION

YOX

H. SCHUBERT

fon HAMBURG.

The most famous is certainly:

how many projective k-planes meet (1 + k)(n — k) linear
subspaces of P™ of codimension 27

Or alternatively:
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what is the degree of the Pliicker embedding of the
grassmannian G(k,P")?
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T he answer is:
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T he answer is:

Q=n—p—1, G, =0—p+ I, y =n—p+ 2, ...

getzt. In beiden Fallen ergiebt sich @bereinstimmend:

(p+ 1Xn—p)|1]|2]3...|p

nn—1|n—2...1n—p

_

(27)
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T he answer is:

QG =n—p—1, "l=ﬂ_P+I? u._,=ﬂ—11-}-2,...,ﬂl,=ﬂ

setzt. In beiden Fallen ergiebt gich Gbereinstimmend:

27) e+ 1)n —p)[1]2]3---[p
(27 |E|n-—l|,n-2..1n—p '
In modern language:
d’“’”_/al NGtk )l = nl(n—1)-...-(n—k)! (1)

For a proof of (1) one can look at the classical book of Hodge-
Pedoe (see also Fulton's Intersection Theory). It is via induction:
then one should figure out the formula in advance.
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A special case of (1) is very popular: how many lines do intersect
4 others in P3? Putting n=3 and k=1 in (1) one gets 2.

In the same vein, another problem is:

find the number of lines intersecting 4 subspaces of
codimension n in general position in P2nt1

It amounts to compute

/aﬁ N [G(2,2n + 2)]

The above number is n+ 1: see Griffiths&Harris and/or Donagi.
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General Question

Is it possible to generalize equation (1) and to find an expression
for any top intersection product of Schubert cycles?

T he answer is yes, if one writes Schubert’'s formula how he prob-
ably wrote it, before getting the final form (1).

To get such an expression, our tool is Schubert Calculus on
Grassmann Algebras (SCGA) of an A-module M (rather than on
a Grassmann variety!).

What is this?
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SCGA 1

SCGA(M) is the datum of an A-algebra homomorphism:
Dy =Y Dit' : AM — A\ M[[t]

i>0
l.e. such that
Di(a A B) = Dya AN Dy, Va,B€ \M (2)

which we called the fundamental equation of Schubert Calculus
on a Grassmann algebra.
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Eq. (2) is equivalent to:

Dp(anp) = > Dp o\ Dy, B (3)
hi4ho=h
h; > 0

which is the ht" order Leibniz rule, holding for all h > 0.
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The set of all Dy, defining a Schubert Calculus on A M, form a
group HS;(A\ M) with respect to the product

Dt * Et — Z Z (Dz ) Ej)th.
h>0i+j=h
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SCGA(M) is based on (3) (Pieri's Formula!) and on integration
by parts (the counterpart of Giambelli's formula):
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The set of all Dy, defining a Schubert Calculus on A M, form a
group HS;(A\ M) with respect to the product

Dt * Et — Z Z (DZ ) Ej)th.
h>0i+j=h

SCGA(M) is based on (3) (Pieri's Formula!) and on integration
by parts (the counterpart of Giambelli's formula):

h

DpaAB= > Dy _;(aAD;B) (4)
1=0

where D; is the formal inverse of D; € HS;(A\M).
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SCGA 2

Here are some formulas of SCGA:

n No 711 Np_1 ny N2 n,
Ditan®= > | ) DDty ... Dy *a A DYDY .. D},
no,ni,...,Np
no+ni+...+ny=n
(5)
where the multinomial coefficient (no nl” nh) is defined via the
equality:

n no n n
(ao—l—al—l—...—l—ah)n=2( )aooall...ahh

no,Mn1,y...,Np
where ng +n1 + ... + ny.
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In particular

Dianp) =Y (Z) Dha A D3
h=0
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In particular

n

Manp) =S (Z) Dha A D3

h=0
1+k
Moreover, for all (ag,aq1,...,ar) € A M
k
Di(agNag A ANag) = Y aiAapA...ADioaj A... Aoy,
j=0

from which one easily gets:
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In particular

n

Manp) =S (Z) Dha A D3

h=0
1+k
Moreover, for all (ag,aq1,...,ar) € A M
k
Di(agNag A ANag) = Y aiAapA...ADioaj A... Aoy,
j=0

from which one easily gets:

DY (apMhaiA. .. Aag) =) ( "

)D?an/\D?lal/\. , ./\D?kozk
no,nN1y..., Nk
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One may write many others similar formulas, easily proven by
induction and basic algebra experience.

Among all we quote:

DS5(aANBAYANS) =

=3 ( " ) D3 phetnstnag A pispretretnrg

ni,...,N10
n nx+ng+n n na+nz+n
/\D28D13 6 9,}, A D210D14 7 95 (6)
the sum being over all non negative integers (nq,n»>,...,n10) such

that > - n; = n.
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“Classical Schubert Calculus”

It is recovered by the pair (A M, D;), where AN M is the exterior
algebra of a free Z-module M of rank, say, 1 4+ n, spanned by
(9, ¢!, ... "), and Dy is
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“Classical Schubert Calculus”

It is recovered by the pair (A M, D;), where AN M is the exterior
algebra of a free Z-module M of rank, say, 1 4+ n, spanned by
(9, ¢!, ... "), and Dy is

the unique extension to a map N\ M — A M|[t] of the linear map

Dy M — MI[[{]]

defined by Dy(e') = Yj50€'Tt), where €17 = 0 if i +j > n,
gotten by imposing the fundamental equation (2):

Dt(()é N\ 6) = Dia N\ Dyf3.
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The degree of G(k,P"™) is then given by:
D§1+k)(n_k)(eo ANel AL AER) = die - RN ETETLA L AEN

where

B N (L4+k)(n—k)
dgn = (=1) <’n,—k—I—T(O),n_k‘I_T(l);-"an_k_l_T(k))

TESl+k

Taking the I.c.d. and simplifying, one EASILY gets formula (1).
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Another Example :

Integrals in G(2,n).
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Another Example : Integrals in G(2,n).

Let a,b > 0 such a+2b = 2(n —1). Then, in A> My, the
following equality holds:

D$D3(P A el) = Cap- LA En
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Another Example : Integrals in G(2,n).

Let a,b > 0 such a+2b = 2(n —1). Then, in A? My, the
following equality holds:

D$D3(P Ael) = Cap LA En
Using formula (5):

ab—z Z

bo OCLO

K 7
0 ao,2n 2—b—ap a0,b0 (7)

where

b b
Kus, = ( )=
oo = bo,n —1—ag—2bg,b+bg+ag—n—+1 bo,n — ag — 2bg, b+ bg + ag — n

Formula (7) is a new formula in Schubert calculus.
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Some Computations with Mathematica 5.1

Cﬂ,b
15
21

30
43

62
a0

b
6

a
0

10

12 (0 | 132

Cap

13
19
28

42

b

i

10

14

b | Cap

a

0
2

0

n

Cap

b
0

a
0

n
1
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.nore

Eﬂ,b

232

323

450

628

878
1230

1727

3432

1

10 | 4

12 | 3

14 | 2 | 2431

16

18 | 0 | 4862

10

91

127

178

352

497
704
1001

3

10
12
14

16 | 0 | 1430

Cab

51

72
102

145

297
429

b

1

0

a

10 | 2 | 207

12
14
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Clearly Cq := Cy 0 = d1 -
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The C, are the Catalan numbers (the distinct ways one can
divide a regular n-gon in triangles whose vertices are vertices of

the n-gon itself).
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Clearly Cq := Cy 0 = d1 -

The C, are the Catalan numbers (the distinct ways one can
divide a regular n-gon in triangles whose vertices are vertices of

the n-gon itself).

If one writes:
tn
F)= >, dint1-—
n>0 n!'

then Taise Santiago proves that:

F(t) = e (Ip(t) — I1(t)),
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where by In(z) one means the n!® modified Bessel functions of
the first kind, solution of :

the modified Bessel differential equation.
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Flexes on Rational Curves

The generalization of formula (1) in the case of a%”, is the
following equation holding in A* M (rkM = n + 4):
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Flexes on Rational Curves

The generalization of formula (1) in the case of a n is the
following equation holding in A* M (rkM = n + 4):

D%nel Ae2AeSNET = Cp - VT A T2 A 3 5 4

where
Cn= Y (-1)lcy, (8)
TES,
and
2n
CT = : 0]
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the sum over all non negative nq,..

.,n10 Such that:

50



the sum over all non negative nq,..

2n1 +no +n3 + ng
2ng + no + ng + ny
2ng + n3 + ng + ng
2n10 +ng4 +ny + ng

n—+ 7(1)
n+ 7(2)
n+ 7(3)
n+ 7(4)

.,n10 Such that:
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the sum over all non negative nq,...,n10 such that:

2n1 + no +n3 + na n—+ 7(1)
2ng +no+ng+ny = n4+7(2)
2ng +n3+ng+ng = n+7(3)
2n10 + na + n7 4+ ng n + 7(4)

To get it one has simply applied formula (6).



Putting formulas (8) and (9) in Mathematica 5.1 and in R (a
program for statistical computing), one gets the following table:
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Putting formulas (8) and (9) in Mathematica 5.1 and in R (a
program for statistical computing), one gets the following table:

C
- - H Cx
0
b 114675
1 0
" 7 4430712
3 5 B 190720530
9 8942188632
4 | 126
5 | 3396 10 | 449551230102
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Mathematica 5.1. gets the table in days.
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Mathematica 5.1. gets the table in days.

The program R instead gets the table in minutes.
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Mathematica 5.1. gets the table in days.
The program R instead gets the table in minutes.

One can generate the same table using the Schubert Package
for Maple, in approximatively the same time of R.
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Thank You
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Obrigado!
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