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a b s t r a c t

We propose an anchorless distributed technique for estimating the centroid of a network of agents from
noisy relative measurements. The positions of the agents are then obtained relative to the estimated
centroid. The usual approach to multi-agent localization assumes instead that one anchor agent exists
in the network, and the other agents’ positions are estimated with respect to the anchor. We show that
our centroid-based algorithmconverges to the optimal solution, and such a centroid-based representation
produces results that are more accurate than anchor-based ones, irrespective of the selected anchor.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Several multi-agent tasks require the knowledge of the agents’
positions in a common reference frame, e.g., for combining
information taken by a camera network [1], or for algorithms
explicitly involving the communication of positions, or that
specifically require the knowledge of the centroid [2]. In these
cases, the common frame is a necessary tool for combining spatial
information acquired by the different agents. Therefore, it is
interesting to place the origin or the global frame, in our case the
centroid of the positions, where it provides more accurate results.
Typically, agents start at unknown locations, they do not share any
common frame, and they can only measure the relative positions
of nearby agents. Here, we address the localization problem,
which consists of combining these relative measurements to build
an estimate of the agents’ positions in a common frame. We
focus on the position estimation problem and assume that all
the local frames have a common orientation, because the agents
have a sensor (e.g., a compass) that gives them their global
orientation, or because they have previously executed an attitude
synchronization [3] or a motion coordination [4] strategy to align
their orientations.
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Several localization algorithms rely on range-only [5,6], or
bearing-only [7] relativemeasurements of positions. Alternatively,
each agent can locally combine its observations and build an es-
timate of the relative full-position of its neighbors using e.g., the
approach described in [8,9] for 3D scenarios. When full-position
measurements are available, the localization problembecomes lin-
ear and can thus be solved by using linear optimization meth-
ods [10–12].Weaddress this latter scenario,where agentsmeasure
the relative p-dimensional full-position of their neighbors, being
the measurements corrupted with noise. There exist works that
compute not only the agents’ positions but also their orienta-
tions [13], and that track the agents’ poses [14]. A related prob-
lem is formation control [4,15–17],where agentsmove to positions
satisfying a set of desired inter-agent restrictions (range-only,
bearing-only, full-positions, or relative poses). Although some
works discuss the effects of measurement noises in the final re-
sult [4], formation algorithms usually assume that both the mea-
surements and the inter-agent restrictions are noise free [15–17].

Both formation control and localization problems can be solved
up to a rotation and a translation. This ambiguity disappears
when the positions of a subset of anchor agents is given in some
absolute reference frame. The density and placement of anchors
have an important effect on the accuracy of the solutions for the
bearing-only and range-only cases [7,5]. In the full-position case,
a single anchor is enough. Its placement influences the accuracy
of the final results, and the estimation errors at the agents are
usually analyzed as a function of their distances to the anchor [18].
However, it is common to assume that the first agent is the anchor
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placed at the origin of the common reference frame and make
the other agents compute their positions relative to the anchor.
Here, instead, we discuss the use of the centroid of the team as
the common frame. We show that the centroid-based algorithm
produces more accurate results than any anchor selection.

The centroid of the team or a weighted average of the agents’
positions has been previously used as the common frame in the
contexts of localization from noise-free measurements [13] or
formation control [17]. The rendezvous and formation control
strategies in [15] are shown to conserve the centroid of the initial
configuration. These previous works have in common that the
measurements are noise-free, whereby the centroid can be easily
obtained. In this paper we define the centroid in the presence of
noisy measurements. To our knowledge, the centroid has not been
applied to the problem of localization from noisy relative position
measurements yet. As we show next, using the centroid as the
reference frame for the multi-agent localization problem does not
introduce additional complexity in the algorithm and it provides
more accurate results.

The contributions of this paper are: (i) We propose a novel
strategy where the agents compute their states, in presence of
noisy measurements, relative to the centroid in a distributed
fashion. (ii) We formally prove that this strategy leads the system
to the same optimal centroid solution that would be obtained
by a centralized system. (iii) An additional contribution refers
to the computation of the anchor-based states with the Jacobi
algorithm [19,10].Weprovide a proof for convergence (Theorem2)
under independent measurement noises with general covariance
matrices, not necessarily diagonal or equal.

The paper is organized as follows. Section 2 presents the multi-
agent estimation problem. Section 3 discusses the estimation
relative to an anchor. Section 4 presents the centroid-based
estimation problem and Section 5 presents our distributed
solution. Section 6 shows the performance of the algorithm.

2. Preliminaries

Consider a set of n ∈ N agents. Each agent i ∈ {1, . . . , n}
has a p-dimensional state xi ∈ Rp and it observes the states of
a subset of the agents relative to its own state, xj − xi. These
states can be, for instance, positions in cartesian coordinates,
orientations, speeds, accelerations, or current times. There are
m relative measurements. This information is represented by a
directed graph G = (V, E), where the nodes V = {1, . . . , n} are
the agents, and E contains the m relative measurements, |E | = m.
There is an edge e = (i, j) ∈ E from i to j if agent i has a noisy
relative measurement ze ∈ Rp of the state of agent j, ze = xj −

xi + ve, where ve ∼ N

0p×p, Σze


is a Gaussian additive noise. We

let z, v ∈ Rmp and Σz ∈ Rmp×mp contain the information of the m
measurements,1

z = (zT1, . . . , z
T
m)T , v = (vT1, . . . , v

T
m)T ,

Σz = blkDiag(Σz1 , . . . , Σzm).
(1)

Each agent i communicates with both, its in and out neighbors Ni
in G, so that the communication graph Gcom = (V, Ecom) is the
undirected version of G,

Ecom = {{i, j} | (i, j) ∈ E or (j, i) ∈ E},

Ni = {j | {i, j} ∈ Ecom}.

We assume that G is weakly connected; equivalently, Gcom is
connected.

1 A = blkDiag(B1, . . . , Br ) returns a matrix A defined by blocks with Aii = Bi and
Aij = 0 for i ≠ j.
The estimation from relative measurements problem consists
of estimating the states of the n agents from the measurements z.
Any solution is determined only up to an additive constant. Con-
ventionally [10] one agent a ∈ V , e.g., the first one a = 1, is
established as an anchor with state x̂aa = 0p. We call such ap-
proaches anchor-based and add the superscript a to their associ-
ated variables. Vector z is ameasurement of the true relative states
xaVa ∈ R(n−1)p of the non-anchor agents Va

= V \ {a} relative to
a, z =


Aa

⊗ Ip
T xaVa , where the noises satisfy v ∼ N(0, Σz), and

where Aa
∈ R(n−1)×m is the incidence matrix of G but without the

row associated to the anchor,

Aa
i,e = −1 if e = (i, j), Aa

i,e = 1 if e = (j, i), and

Aa
i,e = 0 otherwise.

Thus, the Best Linear Unbiased Estimator x̂aVa ∈ R(n−1)p of the
states of the non-anchor agents Va relative to the anchor a are
given by the following Weighted Least Squares approximate solu-
tion [10],

x̂aVa = Σx̂a
Va


Aa

⊗ Ip

Σ−1

z z,

Σx̂a
Va =


(Aa

⊗ Ip)Σ−1
z (Aa

⊗ Ip)T
−1

.
(2)

From now on, both x̂aV = (0T
p , (x̂

a
Va)

T )T and Σx̂aV = blkDiag (0p×p,

Σx̂a
Va ), include the estimated state of the anchor a as well.

3. Distributed estimation relative to an anchor

We are interested in distributed strategies where each agent
i iteratively estimates its own state in Eq. (2) through local
interactions with its neighbors Ni. Among the different existing
methods for estimating the states x̂aV relative to an anchor, we use
the Jacobi algorithm [10], although other distributedmethods such
as the Jacobi Overrelaxation [19], or the Overlapping Subgraph
Estimator [20] could alternatively be applied. The approach in [11],
based on the cycle structure of the graph, could be used as well,
although it requires multi-hop communication.

Considering Eq. (2), it can be seen that computing x̂aVa is
equivalent to finding a solution to the system Υ x̂aVa = η, being
η and Υ the information vector and matrix associated to x̂aVa and
Σx̂a

Va ,

η =

Aa

⊗ Ip

Σ−1

z z, Υ =

Aa

⊗ Ip

Σ−1

z

Aa

⊗ Ip
T

. (3)

This can be solved with the Jacobi method [19], which first
decomposes Υ = [Υij] into D,N as follows:

D = blkDiag (Υ22, . . . , Υnn), N = D − Υ , (4)

so that system Υ x̂aVa = η becomes (D − N)x̂aVa = η, and
equivalently x̂aVa = D−1N x̂aVa + D−1η. The Jacobi method [19]
iteratively computes a solution for x̂aVa = D−1N x̂aVa + D−1η, by
initializing a variable x̂aVa(t) ∈ R(n−1)p with an arbitrary value
x̂aVa(0), and updating it at each step t with the following rule,

x̂aVa(t + 1) = D−1N x̂aVa(t) + D−1η. (5)

The previous variable x̂aVa(t) converges to x̂aVa if the Jacobi matrix
J = D−1N has spectral radius less than or equal to one, ρ(J) =

ρ(D−1N) < 1. The interest of the Jacobi method is that it can be
executed in a distributed fashion when the information matrix Υ
is compatible with the graph (if j ∉ Ni then Υij = Υji = 0p×p),
and when in addition the rows of Υ and of η associated to each
agent i ∈ Va only depend on data which is local to agent i. Next,
the general anchor-based estimation algorithm [10] based on the
Jacobimethod is presented. It allows each agent i ∈ V to iteratively
estimate its own x̂ai within x̂aVa = (x̂a2, . . . , x̂

a
n)

T in a distributed
fashion.
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Algorithm 1. Let each agent i ∈ V have a variable x̂ai (t) ∈ Rp

initialized at t = 0 with x̂ai (0) = 0p. At each time step t , each
agent i ∈ V updates x̂ai (t) with

x̂ai (t + 1) =


j∈Ni

MiBijx̂aj (t) +


e=(j,i)∈E

MiΣ
−1
ze ze

−


e=(i,j)∈E

MiΣ
−1
ze ze, (6)

where Mi and Bij are p × p matrices with Mi = 0 for i = a,
Mi = (


j∈Ni

Bij)
−1 for i ≠ a, and

Bij = Σ−1
ze if either e = (i, j) ∈ E, (j, i) ∉ E,

or e = (j, i) ∈ E, (i, j) ∉ E .

Bij = Σ−1
ze + Σ−1

ze′
, if both e = (i, j) and e′

= (j, i) ∈ E . (7)

The convergence of this estimation algorithm has been
proved [10, Theorem1] forweakly connectedmeasurement graphs
with independent relative measurements, under the assumption
that either

(i) The covariance matrices of the measurements are exactly
diagonal; or

(ii) All measurements have exactly the same covariance matrix.

However, we would like our algorithm to be applicable to a wider
case of relative noises, in particular to independent noises, with
not necessarily diagonal or equal covariance matrices. Next we
use results on block matrices [21], see Appendix, to prove the
convergence of the Jacobi algorithm for this more general case.

Theorem 2. Let the measurement graph G be weakly connected,
(Gcom connected), Σz1 , . . . , Σzm be the covariance matrices, not
necessarily equal or diagonal, associated to m independent p-
dimensional measurements, and Σz be their associated block-
diagonal covariance matrix as in Eq. (1). Then, the spectral radius of
D−1N, with D and N as in Eqs. (3)–(4), is less than 1, that is,

ρ(D−1N) < 1. (8)

Proof. In order to prove (8) we use the definitions and results in
Appendix. We first analyze the contents of Υ and show that Υ

is of class Zp
n−1 according to Definition 7 in Appendix. Then, we

use Lemma 8 and Theorem 9 to show that Υ is of class Mp
n−1 as

in Definition 7. Finally, we show that Υ + Υ T
∈ Mp

n−1 and use
Theorem 10 to prove (8). Note that the subscript n− 1 used in this
proof instead of n comes from the fact thatΥ = [Υij], with i, j ∈ Va

and |Va
| = n − 1.

We first analyze the contents of the informationmatrixΥ given
by Eq. (3). Each block Υij of the information matrix Υ is given by

Υii =


j∈Ni

Bij; Υij = −Bij if j ∈ Ni, j ≠ i;

Υij = 0 if j ∉ Ni, j ≠ i;
(9)

for i, j ∈ Va, whereBij is given by Eq. (7). Note thatBij is symmetric
and that Bij ≻ 02 and thus −Bij ≺ 0 and symmetric. Therefore,
matrix Υ is of class Zp

n−1 according to Definition 7.
Now we focus on Lemma 8. We are interested in showing that,

given any subset of agents J ⊂ Va, there exists i ∈ J such that

2 A ≻ B (A ≽ B) indicates that matrix A − B is positive-definite (positive-
semidefinite). Equivalently, ≺, ≼ are used for negative-definite and negative-
semidefinite matrices.

j∈J Υij ≻ 0. First we analyze the case J = Va. Observe that Υ

does not have rows or columns associated to the anchor agent a,
i.e., Υ = [Υij] with i, j ∈ Va. On the other hand, for each agent i
that has the anchor a as a neighbor, a ∈ Ni, the block Υii includes
Bia. Therefore,


j∈Va Υij ≽ 0 for all i ∈ Va, specifically

j∈Va

Υij = 0 if a ∉ Ni, and
j∈Va

Υij = Bia ≻ 0, when a ∈ Ni.
(10)

Since Gcom is connected, a ∈ Ni for at least one agent i ∈ Va. Now
consider a proper subset J  Va. Note that for each i ∈ J  Va,
j∈J

Υij = 0 if Ni ⊆ J, and
j∈J

Υij =


j∈Ni\J

Bij ≻ 0, otherwise.
(11)

Since Gcom is connected, given any proper subset J  Va of agents,
there is always an agent i ∈ J that has at least one neighbor outside
J or that has the anchor a as a neighbor, for which


j∈J Υij ≻

0. Therefore Lemma 8 holds, and by applying Theorem 9 taking
u2, . . . , un = 1 we conclude that matrix Υ ∈ Mp

n−1. Since Υ is
symmetric, then Υ + Υ T

∈ Mp
n−1, and by Elsner and Mehrmann

[21, Theorem 4.7] we conclude that ρ(D−1N) < 1. �

Corollary 3. Let G be weakly connected, equivalently Gcom con-
nected, Σz1 , . . . , Σzm be the covariance matrices associated to m in-
dependent p-dimensional measurements, and Σz be their associated
block-diagonal covariance matrix as in Eq. (1). Consider that each
agent i ∈ V executes the Algorithm 1 to update its variable x̂ai (t).
Then, for all i ∈ V ,

lim
t→∞

x̂ai (t) = x̂ai , (12)

converges to the anchor-based centralized solution x̂ai given by Eq. (2).

4. Centroid estimation

The accuracy of the estimated states x̂aV , Σx̂aV in anchor-based
approaches depends on the selected anchor a. Instead,we compute
the states of the agents x̂cenV , Σx̂cenV

relative to the centroid given by
the average of the states,

x̂cenV = (I − Hcen) x̂aV,

Σx̂cenV
= (I − Hcen) Σx̂aV (I − Hcen)

T ,
(13)

where Hcen =

1n ⊗ Ip

 
1n ⊗ Ip

T
/n.

The interest of this representation is that the states of the agents
x̂cenV , Σx̂cenV

with respect to the centroid are the same regardless of
the anchor agent, i.e., the centroid solution is unique. Additionally,
as the following result shows, it produces more accurate estimates
than the ones provided by any anchor selection. We compare the
block-traces3 blkTr of their covariance matrices [18].

Proposition 4. The covariance matrices of the centroid-based Σx̂cenV

and anchor-based Σx̂aV estimates satisfy, for all anchors a ∈ V ,

blkTr

Σx̂cenV


≼ blkTr


Σx̂aV


, Tr


Σx̂cenV


≤ Tr


Σx̂aV


. (14)

3 The block-trace of a matrix defined by blocks P = [Pij] with i, j ∈ {1, . . . , n} is
the sum of its diagonal blocks, blkTr(P) =

n
i=1 Pii
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Proof. Let Pij andQij be the p × p blocks of, respectively, the anchor
and the centroid-based covariances,Σx̂aV = [Pij],Σx̂cenV

= [Qij]with
i, j ∈ V . The block-trace of the anchor-based covariance matrix is

blkTr

Σx̂aV


=

n
i=1

Pii. (15)

Considering Eq. (13), each block in the main diagonal of the
centroid-based Σx̂cenV

covariance matrix, for all i ∈ V , is given by

Qii = Pii −
1
n

n
j=1


Pij + Pji


+

1
n2

n
j=1

n
j′=1

Pjj′ , (16)

and its block-trace blkTr

Σx̂cenV


=

n
i=1 Qii =

n
i=1 Pii −n

i=1
n

j=1
Pij
n is

blkTr

Σx̂cenV


= blkTr


Σx̂aV


− (1n ⊗ Ip)TΣx̂aV (1n ⊗ Ip)/n. (17)

Since Σx̂aV is symmetric and positive-semidefinite, then (1n ⊗

Ip)TΣx̂aV (1n ⊗ Ip) ≽ 0, and thus blkTr

Σx̂cenV


− blkTr


Σx̂aV


≼

0, as in Eq. (14). Observe that the trace of the block-trace of
a matrix A is equal to its trace, Tr(blkTr(A)) = Tr(A). Since
blkTr


Σx̂cenV


− blkTr


Σx̂aV


≼ 0, the elements in the main

diagonal of blkTr

Σx̂cenV


are smaller than or equal to the ones in

the main diagonal of blkTr

Σx̂aV


so that

Tr(Σx̂cenV
) = Tr(blkTr(Σx̂cenV

)) ≤ Tr(blkTr(Σx̂aV )) = Tr(Σx̂aV ). �

In particular, fromEq. (17), Tr(Σx̂aV )−Tr(Σx̂cenV
) =

1
n

n
i=1

n
j=1

Tr(Pij). Note that the previous result holds when the anchor state
x̂aa is set to a general value, not necessarily 0. It also holds when
there is more than one anchor. Consider that the first k agents are
anchors. In this case, matrix Σx̂aV = [Pij] has its blocks Pij = 0 for
i, j ∈ {1, . . . , k}, and Eq. (17) gives blkTr(Σx̂cenV

) = blkTr(Σx̂aV ) −n
i=k+1

n
j=k+1 Pij/n, where

n
i=k+1

n
j=k+1 Pij/n ≽ 0.

We propose an algorithm that allows each agent i ∈ V to
compute its state x̂ceni with respect to the centroid in a distributed
fashion, where x̂cenV = ((x̂cen1 )T , . . . , (x̂cenn )T )T is given in Eq. (13).
These states sumup to zero, x̂cen1 +· · ·+x̂cenn = 0, since (1n⊗Ip)(I−
Hcen) = 0, and for neighboring agents i and j satisfy x̂ceni = x̂cenj −

x̂aj + x̂ai , where x̂aV = ((x̂a1)
T , . . . , (x̂an)

T )T . Thus, a straightforward
solutionwould consist of firstly computing the anchor-based states
of the agents x̂aV , and in a second phase initializing the agents’
variables so that they sum up to zero, x̂ceni (0) = 0, for i ∈ V ,
and updating them at each step t with an averaging algorithm that
conserves the sum:

x̂ceni (t + 1) =


j∈Ni∪{i}

Wi,j(x̂cenj (t) − x̂aj + x̂ai ) (18)

for i ∈ V , where W = [Wi,j] is a doubly stochastic weight matrix
such that Wi,j > 0 if (i, j) ∈ E and Wi,j = 0 when j ∉ Ni.
Besides, Wi,i ∈ [α, 1], Wi,j ∈ {0} ∪ [α, 1] for all i, j ∈ V , for some
α ∈ (0, 1]. More information about averaging algorithms can be
found at [22–24]. The term −x̂aj + x̂ai is the relative measurement
ze with e = (j, i) for noise free scenarios, and the optimal or
correctedmeasurement [11] ẑe for the noisy case, ẑ = (A ⊗ Ip)T x̂aV ,
with ẑ = ((ẑ1)T , . . . , (ẑm)T )T . In what follows we propose an
algorithm where, at each iteration t , (18) is executed not on the
exact x̂ai , x̂

a
j , but on themost recent estimates x̂ai (t), x̂

a
j (t) obtained

with Algorithm 1.
5. Distributed centroid estimation algorithm

Now we are ready to present the distributed algorithm for
estimating the states of the agents relative to the centroid.

Algorithm 5. Let each agent i ∈ V have an estimate of its own
state relative to the centroid, x̂ceni (t) ∈ Rp, initialized at t = 0 with
x̂ceni (0) = 0. At each time step t , each agent i ∈ V updates x̂ceni (t)
with

x̂ceni (t + 1) =


j∈Ni∪{i}

Wi,j(x̂cenj (t) + x̂ai (t) − x̂aj (t)), (19)

where x̂ai (t), x̂
a
j (t) are the most recent estimates that agents i and

j have at iteration t of the variables in Algorithm 1 and Wi,j are the
Metropolis weights of Gcom as defined in [24].

Theorem 6. Let all the agents i ∈ V execute the Algorithm 5 and
let G be weakly connected, equivalently Gcom connected. Then, the
estimated states x̂ceni (t) at each agent i ∈ V asymptotically converge
to the state of i relative to the centroid x̂ceni given by Eq. (13),

lim
t→∞

x̂ceni (t) = x̂ceni . (20)

Let ecen(t) =

(x̂cen1 (t) − x̂cen1 )T , . . . , (x̂cenn (t) − x̂cenn )T

T be the error
vector containing the estimation errors of the n agents at iteration t.
For fixed graphs G, Gcom the norm of the error vector after t iterations
of Algorithm 5 satisfies

∥ecen(t)∥2 ≤ λt
eff(W)∥ecen(0)∥2

+ 2p(n − 1)σJλ
t
eff(W)

t
k=1


ρ(J)

λeff(W)

k

, (21)

where J is the Jacobi matrix J = D−1N, with D and N computed as in
Eqs. (3)–(4), σJ is a constant that depends on the initial Jacobi error
and on J. W is the Metropolis weight matrix [24], and ecen(0) is the
initial error at t = 0.

Proof. First of all, we derive the expression for the convergence
rate in Eq. (21). We express Algorithm 5 in terms of the er-
ror vectors associated to the centroid ecen(t) and the anchor-
based ea(t) ∈ R(n−1)p estimation methods (Algorithms 1 and 5),
ecen(t) =


(x̂cen1 (t))T , . . . , (x̂cenn (t))T

T
− x̂cenV , with x̂cenV =


(x̂cen1 )T ,

. . . , (x̂cenn )T
T

given by Eq. (13), and ẽa(t) =

x̂a2(t)

T , . . . , x̂an(t)
T
T

− x̂aVa , with x̂aVa =

(x̂a2)

T , . . . , (x̂an)
T
T given by Eq. (2), where for

simplicity we let the agent i = 1 be the anchor a. We let ea(t) be
(0T

p , ẽa(t)
T )T . Recall that


j∈Ni∪{i} x̂

a
i (t) = x̂ai (t) and that the esti-

mated states relative to the centroid x̂cenV are x̂cenV = (I−Hcen)x̂aV as
in Eq. (13). Algorithm 5 becomes

ecen(t) = (W ⊗ Ip)ecen(t − 1)

+ ((In − W) ⊗ Ip)ea(t − 1) + P x̂aV, (22)

where the term P that is multiplying x̂aV is

P = I − (W ⊗ Ip) − (I − (W ⊗ Ip))(I − Hcen)

= (I − (W ⊗ Ip))Hcen. (23)

We use the fact that (W ⊗ Ip)Hcen = Hcen, and the previous expres-
sion gives P = 0 and Eq. (22) becomes

ecen(t) = (W ⊗ Ip)ecen(t − 1) + ((In − W) ⊗ Ip)ea(t − 1)

= (W ⊗ Ip)tecen(0)

+

t−1
k=0

(W ⊗ Ip)t−k−1 
(I − W) ⊗ Ip


ea(k). (24)



R. Aragues et al. / Systems & Control Letters 61 (2012) 773–779 777
0

(a) Ground truth scenario. (b) Measurements of R19’s position.

Fig. 1. (a) 20 agents (circles) are placed randomly in a region of 10 m × 10 m meters. (b) Each agent i measures ze (crosses and ellipses) the relative position of its
out-neighbors j (arrows), with e = (i, j), being the measurement noise proportional to the distance to j.
Then, the norm of the error ecen(t) satisfies

∥ecen(t)∥2 ≤ λt
eff(W)∥ecen(0)∥2 + 2

t−1
k=0

λt−k−1
eff (W)∥ea(k)∥2, (25)

where we have used the fact that ∥

(W − I) ⊗ Ip


∥2 ≤ 2 since W

is the Metropolis weight matrix.
We analyze now the norm of error ∥ea(t)∥2, which is related

to the error vector of the Jacobi algorithm ẽa(t) ∈ R(n−1)p by
ea(t) = (0T

p , ẽ
T
a (t))

T . Let J be the Jacobi matrix, and VJ =
vp+1(J), . . . , vnp(J)


and λJ = Diag


λp+1(J), . . . , λnp(J)


be its as-

sociated eigenvectors and eigenvalues so that J = VJ λJ V−1
J , and

∥vi(J)∥2 = 1. The error vector ẽa(t) evolves according to

ẽa(t) = J ẽa(t − 1) = J t ẽa(0). (26)

For each initial error vector ẽa(0) there exist σp+1, . . . , σnp such
that

ẽa(0) =

np
i=p+1

σivi(J),

and then the error vector ẽa(t) after t iterations of the Jacobi algo-
rithm given by Eq. (26) can be expressed as

ẽa(t) = VJλ
t
JV

−1
J VJ


σp+1, . . . , σnp

T
=

np
i=p+1

σivi(J)λt
i (J).

Let σJ = maxnpi=p+1 |σi|, and ρ(J) = maxnpi=p+1 |λi(J)|. For all t ≥ 0,
the norm of the error vector ∥ẽa(t)∥2 satisfies

∥ea(t)∥2 = ∥ẽa(t)∥2 ≤ p(n − 1)σJρ
t(J). (27)

Linking this with Eq. (25) gives that the convergence rate is

∥ecen(t)∥2 ≤ λt
eff(W)∥ecen(0)∥2

+ 2p(n − 1)σJ

t−1
k=0

λt−k−1
eff (W)ρk(J), (28)

as in Eq. (21).
Now we prove the asymptotical convergence to the centroid

(20). If both the Jacobi and the general algorithm have the same
convergence rate, ρ(J) = λeff(W), then Eq. (28) gives

∥ecen(t)∥2 ≤ λt
eff(W)∥ecen(0)∥2 + 2p(n − 1)σJλ

t−1
eff (W)t, (29)

whereas for ρ(J) ≠ λeff(W), it gives

∥ecen(t)∥2 ≤ λt
eff(W)∥ecen(0)∥2

+
2p(n − 1)σJ

ρ(J) − λeff(W)
(ρt(J) − λt

eff(W)). (30)
Note that λeff(W) < 1 for connected graphs Gcom. Then, the term
λt
eff(W)∥ecen(0)∥2 in Eqs. (29) and (30) exponentially tends to zero

as t → ∞ regardless of the initial error ecen(0). For the case ρ(J) =

λeff(W), the termλt
eff(W)t in Eq. (29) is decreasing for t ≥

λeff(W)

1−λeff(W)

and thus it tends to zero as t → ∞. For ρ(J) ≠ λeff(W), the term
(ρt(J) − λt

eff(W)) in Eq. (30) asymptotically tends to zero since
λeff(W) is less than 1, and as stated by Theorem 2, ρ(J) < 1. There-
fore, limt→∞ ∥ecen(t)∥2 = 0, where ∥ecen(t)∥2 = 0 iff ecen(t) = 0,
what concludes the proof. �

We finish this section with a brief explanation about the
informationmeasured and communicated by the agents during the
execution of the algorithms presented so far. Each agent imeasures
the relative position ze, Σze , of its out-neighbors e = (i, j) in G
during an initial stage. During the general iterations of Algorithm 5
(centroid estimation) agent i communicates the following pieces of
information to its neighbors Ni: x̂ai (t) and x̂ceni (t).

In addition, agents execute a method to discover the graphs
G and Gcom, to compute the Metropolis weights Wi,j, and to
inform of their relative measurements ze, Σze to their neighbors.
It roughly consists of each agent i sending messages to all agents
j in communication range, including its measurement ze, Σze ,
with e = (i, j), if available. Agent i erases (i, j) links from G if
j is not in communication range, and {i, j} links from Gcomm if
no ze measurements between i and j exist. Finally, each agent i
counts its remaining neighbors (its degree), informs its neighbors
of its degree, and computes the Metropolis weights Wi,j, and
matrices Bij,Mi in Eqs. (6)–(7). This method is executed only once,
immediately after the sensing stage, for graphs G, Gcom with fixed
topology, as the ones considered in this paper. If the graphs were
switching, this process would need to be executed before each
iteration of Algorithm 5.

6. Simulations

We study the performance of the presented algorithm in a pla-
nar multi-agent localization scenario (Fig. 1) with n = 20 agents
(circles) that get noisy measurements (crosses and ellipses) of the
position of agents which are closer than 4 m. Each agent i ∈ V
is used as an anchor and its covariance matrix Σx̂iV

is computed.
The eigenvalues of the block-traces blkTr(Σx̂iV

) of their covariance
matrices are depicted in Fig. 2(a) (crosses). For all the possible an-
chors i ∈ V , the eigenvalues associated to the anchor-based covari-
ancematrices blkTr(Σx̂iV

) are larger (moreuncertain) than the ones
associated to the centroid-based covariance matrix blkTr(Σx̂cenV

)

(circle). Agents R3 and R12 which produce respectively the most
and the least precise anchor-based results, and agent R1 which
is conventionally used as the anchor (in blue) are studied in de-
tail. Fig. 2(b) shows the estimated states relative to the centroid
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(a) Eigenvalues of blkTr(Σx̂iV
). (b) Estimated positions.

Fig. 2. (a) The eigenvalues of blkTr(Σx̂iV
) when each agent i ∈ V is taken as the anchor (crosses) are always greater than the ones of the centroid-based blkTr(Σx̂cenV

)

representation (circle). (b) The positions estimated relative to the centroid (black crosses and ellipses) are in general more accurate and closer to the ground-truth (red
crosses) than the ones estimated by using R1 as the anchor (blue crosses and ellipses). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
(a) Anchor-based errors. (b) Last 100 iterations of (a).

(c) Centroid-based errors. (d) Last 100 iterations of (c).

Fig. 3. Norm of the error with the difference between the estimates and the ground truth. (a)–(b) Results of Algorithm 1 when each node i ∈ V is used as the anchor (gray
lines). The special cases that the anchor is R1, R3 and R12 are shown in blue. The black line is the asymptotic error reachedwith the centroid-based estimation. (c)–(d) Results
of the centroid-based estimation algorithm (Algorithm 5) using all the possible anchors. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
x̂cenV , Σx̂cenV
(black crosses and ellipses) and the anchor a = R1, x̂aV ,

Σx̂aV (blue crosses and ellipses) compared with the ground-truth
positions of the agents (red crosses). The ground-truth position of
the centroid is marked with a black ‘x’. The errors and covariances
associated to the centroid-based estimates (black) are in general
smaller than the ones obtained by using R1 as the anchor (blue).

We analyze the states estimated by the n agents along 1000
iterations of the proposed algorithm (Fig. 3). Agents initialize their
states x̂ai (t), x̂

cen
i (t) with zeros and execute Algorithms 1 and 5.

We generate specific noises as the ones in Fig. 1 for 100 different
samples. For each of them, we record the norm of the error vector
containing the difference between the estimates at the n agents
and the ground-truth positions at each iteration t . In Fig. 3(a) we
show the results of Algorithm 1 when each agent i ∈ V is used as
the anchor (gray lines). The special cases that the anchor is R1, R3
and R12 are displayed in blue. The black line is the asymptotic
error reachedwith the centroid-based estimationmethod. As it can
be seen, the errors reached with the anchor-based solutions are
greater than the ones associated to the centroid. This is even more
evident in Fig. 3(b), which shows the last 100 iterations in Fig. 3(a).
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In Fig. 3(c) we show the equivalent errors for the centroid-based
estimation algorithm (Algorithm 5), using all the possible anchors
for Algorithm1. The anchor choice affects to the convergence speed
of Algorithm 5. However, the final accuracy is independent on the
selected anchor, and in all cases the error estimates (gray lines)
converge to the asymptotic centroid error (black line).

7. Conclusions

We have presented an algorithm to estimate the states of a
set of agents from noisy measurements of the relative states of
neighbors. The interest of the presented algorithm is that the states
are estimated relative to the centroid, instead of relative to an
anchor. Our algorithm consists of the simultaneous computation
of the centroid and of the anchor-based states. The anchor-based
estimation is carried out with the Jacobi algorithm and we give
theoretical and experimental proofs of convergence for general
block diagonal covariance matrices. The centroid-based approach
relies on distributed averaging of the most recent anchor-based
estimates. We give proofs of the convergence of the whole
procedure and we show that the centroid-based estimates are
more precise than any anchor-based solution.
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Appendix. Zp
n andMp

n matrices defined by blocks

The next properties are provided in [21] for matrices A ∈

Rnp× np defined by blocks, being each block Aij a p × p matrix, for
all i, j ∈ {1, . . . , n}.

Definition 7 ([21]). Matrix A is of class Zp
n if Aij is symmetric for

all i, j ∈ {1, . . . , n} and Aij ≼ 0 for all i, j ∈ {1, . . . , n}, j ≠ i. It
is of class Ẑp

n if A ∈ Zp
n and Aii ≻ 0 for all i ∈ {1, . . . , n}, and of

class Mp
n if A ∈ Ẑp

n and there exist scalars u1, . . . , un > 0 such thatn
j=1 ujAij ≻ 0 for all i ∈ {1, . . . , n}.

Lemma 8 ([21, Lemma 3.8]). Let A ∈ Zp
n and assume that ∀J ⊂

{1, . . . , n} there exists i ∈ J such that


j∈J Aij ≻ 0. Then, there
exists a permutation π such that


j≥i Aπ(i),π(j) ≻ 0, for all i ∈

{1, . . . , n}.

Theorem 9 ([21, Theorem 3.11]). Let A ∈ Zp
n , u1, . . . , un > 0, andn

j=1 Aijuj ≽ 0 for all i ∈ {1, . . . , n}. Assume that there exists a
permutation π of {1, . . . , n} such that


j≥i Aπ(i),π(j)uπ j ≻ 0 for all

i ∈ {1, . . . , n}. Then, A ∈ Mp
n .
Theorem 10 ([21, Theorem 4.7]). Let A + AT
∈ Mp

n , D =

blkDiag (A11, . . . , Ann), and A = D − N. Then ρ

D−1N


< 1.
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