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Robust Filtering for Discrete-Time Systems with Bounded The main contribution of this note is to extend the above mentioned

Noise and Parametric Uncertainty set-membership approach to the case when structured uncertainty af-
fects the system matrices. A similar approach has been considered in
Laurent El Ghaoui and Giuseppe Calafiore [24], whereunstructureduncertainty described by a “Sum Quadratic

Constraint” is assumed on the system.
] o ] The key result presented is that ellipsoids of confidence of minimal
Abstract—This note presents a new approach to finite-horizon guaran-

> ; X . _“size” (sum of semiaxis lengths or volume) can be recursively com-
teed state prediction for discrete-time systems affected by bounded noise . L S . . .
and unknown-but-bounded parameter uncertainty. Our framework han-  Puted in polynomial time, via interior-point methods for convex opti-
dles possibly nonlinear dependence of the state-space matrices on the un-mization [21]. A similar problem, stated in the contextstétic sys-
certain parameters. The main result is that a minimal confidence ellip- tems, is explored in [9], while pure state prediction (without measure-
soid fpr Fhe state, consisten_t with the meast_]red output‘and_ the un_certainty ment information) is studied in [10].
description, may be recursively computed in polynomial time, using inte-
rior-point methods for convex optimization. With = states, uncertain pa-
rameters appearing linearly in the state-space matrices, with rank-one ma- A. Notation

trix coefficients, the worst-case complexity grows a@(I(n +1)**). With . . . .
unstructured uncertainty in all system matrices, the worst-case complexity ~ FOr asquare matriX’, X' > 0 (resp.X > 0) means¥ is symmetric,

reduces toO(n®"®). and positive—definite (resp. semidefinite). For a malifi<’ . denotes
Index Terms—Convex optimization, Kalman filtering, LMIs, set-mem- any qrtl:logonal ComE)TIement 6, i.e., a matrix of maximal rank §UCh
bership filtering, unknown-but-bounded uncertainty. thatUU, = 0, andU" denotes the (Moore—Penrose) pseudo-inverse
of U.
Ellipsoids will be described a8(E, ) = {z:x =&+ Ez, ||z|| <
I. INTRODUCTION 1}, wherei € R" is the center, an® € R™" is theshape matrix

This note is concerned with the problem of state estimation and ffif the ellipsoid. This representation can handle “flat” ellipsoids, such
tering for discrete-time systems subject to unknown-but-bounded nofpoints or mtervals.TAn alternative description mvolyes thequuared
and parameter uncertainty affecting possigrysystem matrix. The Shape matrix” = EE®, P = 0:€ = {a: P = (¢ — #)(x — )" }.
problem of state estimation for systems with uncertainty goes back\%ﬁ'en}jr> 01' the previous expression is also equivalent te= {u:
the early days of automatic control and signal processing, and sevéfar ) _P_ G ‘) < 1} ) )
approaches exist in the literature up to this date, e.g., the stochastié € ‘Size” of an ellipsoid is a function of the squared shape métrix
approach (Kalman filtering theory), thé... filtering theory, and the @ndWwill be denoted (). Throughout this notef( P) is eitherTr(P),
deterministic, or set-membership, approach. which correspc_md_s to the sum of squares of the semiaxes lengths, or

It is now well known that the standard Kalman filter [1] requires alfg det(P’), which is related to the volume.
accurate model of the process under consideration, and assumes only
additiveuncertainty on the process and measurement equations, in the Il. PRELIMINARIES AND SETUP
form of Gaussian noise. If these requirements are not met, the Kalman . . . .
filter may lead to poor performance, see for instance [26]. This fact mo-Wve consider the following class of uncertain discrete-time systems
tivated further research in the direction of robustness in the stochastic

setting, see, e.g., [4], [14], [23], [28]. Thit Tk
Robust filtering has also been extensively studied itHan frame- { " } = M(Ag) | wr 1)
work. In this setting, the exogenous input signal is assumed to be energy | Uk
bounded rather than Gaussian. A, filter is designed such that the
worst-case “gain” of the system is minimized, [15], [19]. where it is assumed that the initial state belongs to a given el-

The approach taken in this note is derived from the deterministic ifs0id € (Eo. o), andwy € R™, v, € R"* are unknown-but-
terpretation of the discrete-time Kalman filter given in [3]. The detef20unded noise signals, which are assumed to belong to a unit sphere,
ministic filter in [3] was shown to give a state estimate in the form of ak€- [lwxll < 1, [l vx|l < 1, Vk. This formalism allows us to consider
ellipsoidal set of all possible states consistent with the given measuifé@ case when independent and norm-bounded signals affect the state
ments and a deterministic additive description of the noise. The idegd¥fnamics and the sensor equations separately, as in the deterministic
propagating ellipsoids of confidence for systems with ellipsoidal noi¥€rsion of the classical Kalman filtering setup, see, e.g., [3], [25]. The
goes back a long way; precursors in this field include Kurzhanski [16]2S€ of noise signals bounded in ellipsoids is of course a trivial exten-
Schweppe [25], whose ideas were later developed by Chernousko [?é?,” of this setup.

Maskarov and Norton [18] and Ovseevich [22]. These authors consider he uncertainty on the system matrices is assumed to be represented
the case with additive noise, assuming that the state-space processiiiiear fractional representation (LFR) form, i.e., for any given
trices are exactly known, in parallel to Kalman filtering; see [17] for a

study of this parallel. M(A) = M+ {? } AT—HA) 'R R Rs] ()
2

where
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[|A|l € 1}, whereA is a subspace ¢t"# "<, called thestructure sub- Ill. ROBUST PREDICTIVE FILTER
space We also introduce the linear subspdeA ), constructed from

! The aim of the robust predictive filter is to determine a confidence
the subspacd, and referred to as theealing subspace P

ellipsoid£( B4, ¢4 ) for the state at the next time instant,., given

. oy A _ N _ AT AT the measurement information at the time instanand given that:,
Ba) = {(5’ T,G:VAEA, SA=AT, GA=-A"CG } belongs to a current ellipsoid of confideng¢E, #). Therefore, we
(3) look for P;, #, such that

The above linear fractional representation of the uncertainty has great (xp41 — ;3+)TP;1(;U,€+1 —i)<1 9)
generality and is widely used in control theory, see for instance [13].

This framework includes the case when parameters perturb each cedfenever a) (1) holds for som®&, € A, b) . isin E(E, &), and
ficient of the data matrices in a polynomial or rational manner, as se€rthe noise terms,., v, are bounded in unit spheres, i.gu|| < 1,

in the representation lemma given in [8], as well as more classical Upx|| < 1.

certainty models, such as norm-bounded unstructured uncertainty, antihe following theorem contains our main result for the computation
additive perturbations on the state and measurement equations. of the one-step-ahead confidence ellipsoid.

Well-Posedness AssumptioiVe will make the standing assump- Theorem 1: An ellipsoid of confidenc&+ = £(P4+, 24) can be
tion that the representation (2) is well-posed oxer, meaning that obtained by solving the optimization problem in the varialdfes
det(I — HA) # 0forall A € A,. Awell-known sufficient condition 7., 1w, 7, S, G, T
for well-posedness, which also arisesuiranalysis problems [13], is
given by minimize f( Py ) subject to
(S, T,G)EB(A), S=0, T=0, 7o, T, 70 >0

35,7, G: H'TH+H'"G+G'H<S, )
P+ ‘ (I)l(l'_ir)qi

(S.T,G) € B(A), S>0,T»0. (4

TreT(3) ‘xlﬂ'(r(n, Tws To) =S, T, G))T

If the system is well posed, we can rewrite the system equations equiv- (10)
alently as
where
Tp+1 = Az + Bwy + Lips,
yr = Cxp + Dvg + Lapy Oy (iy) =[AZ—24+ AE B (0 L4
qr = Rixy + Rowy, + Ryvg, + Hpy and
pr = Agu, AcC A, (5) ¥=[Cé—yr CE 0 D L3]i; (11)
] ] Y (7o) Tw, 7o) =diag(l — 7o — 7w — 7o, Tol, Twl, 71, 0);
wherep;., ¢x are perturbation signals. (12)
Quadratic Embedding of LFRsThe main advantage of LFRs is that ,
it enables to approximate an uncertain input—output relation by a set of QS, T, G) = o7 { TT G } ®; (13)
quadratic constraints. This fact is stated in the following lemma, whose G =5
proof is omitted for brevity. &= {Hw RiE Ry Ry H}
. = (14)
Lemma 1: For arbitrary vectorg, ¢, the property 0 0 0 0 I
p=Aq, forsomeA € A, (6) andf(P;) measures the size of the ellipsoid, eitliéP,. ) = Tr P,
or f(P;) = logdet Py. AN
implies that the following quadratic inequalities (p, ¢) hold: For Proof: See Appendix A.
every(S, T, G) € B(A),withS >0, T =0 When the ellipsoid size is measured by the trace function, the ellip-
, soid update reduces to a semidefinite programming (SDP) problem. In
{q} { T G } {q} >0 R this case, the update can be performed in polynomial-time using re-
P GT -5 = cently developed interior-point algorithms [21], [27] and related soft-

ware [11]. However, the complexity of the algorithm (using a gen-

Ceral- -purpose SDP code) is still high, mainly due to the presence of
'5'(77 ) variables appearlng iRy, which makes the complexity of the
problem grow ag)(n°*), wheren is the number of states (see [27]
for details on complexity of SDP’s). In the case of minimum-volume
ellipsoids, the above formulation is not even conve¥®in

We remark that the previous result provides a set-valued (ellipsoidal)
estimate for the state, which could be useful for instance in robust op-
timization-based control, model validation [24], and robust collision

Moreover, whenA = R"» "¢ (unstructured uncertainty) the above
quadratic embedding is nonconservative, meaning that property i
plies (6).

Using the above result, we can devise a quadmrterapproxma-
tion for the system equations (5), valid for every triple 7, G) €
B(A),withS = 0,7 >0

Zpy1 = Az, + Bwp + Lipy

) = Cry + Doy + Lopy, avoidance applications [7]. On the other hand, if a noise-free estimate
qr = Rirp + Rowy + Rsvg + Hpx of the state is desired, then the confidence-set information could be ne-
; Trr @ T glected, and the centers of the confidence ellipsoids could be taken as

0 L}J {Gr —S} { } (8) optimal estimates of the system states.

Notice also that, in the case when no uncertainty is present on the
The above (outer) quadratic approximations for LFRs, when usedsystem matrices, and only the deterministic disturbamggsv; act
conjunction with theS-procedure (see for instance [5]) is a key elemerdn the system, the results given by Theorem 1 coincide with those pro-
in our approach. General results on the tightness of this embeddingided by classical deterministic ellipsoidal bounding algorithms, see
given in [2], [12]. for instance [18] and references therein.
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We next show how to eliminate the varialifg, and transform the while the optimal center of the ellipsoid is given by
problem into a convex optimization problem with much better com-

. . . . . . AL = 01 -

plexity properties. This alternative formulation will handle both the b =fi = KQsy(7es T, 70, 5, T, G)
trace and volume as objective functions. ~q12(Tes Tw, To, S, T, G). (22)
A. Decoupled Filtering Recursions Proof: Inview of the structure (18) of , we can rewrite the main

In this section, we give explicit expressions for the shape and cen%éw in (10) as
of £, in terms of the optimal values of a certain convex optimization Py ‘ fi—d+ K
problem. This results in decoupled equations that are similar in spirit to 7 p 0 23
the standard Kalman predictor equations. This new formulation will be (fi = &+) 1 Tz | > (23)
used later to obtain an algorithm with better complexity properties than Kt q12 Q22

the general problem obtained in Theorem 1. The following technical . )
lemma will be needed in the sequel. wheregi1, qi2, @22, andf, are defined in (19), and

Lemma 2: Let X;;,1 < i < j < 3 be matrices of appropriate size, K =[AE B 0 Li|¥,
with X;; square and symmetric. The problem (in variabtes?) : -
The statements of the theorem then easily follow applying Lemma 2

X Z X to the LMI (23), withZ = f; — &, and the other matrices defined
minimize f(X) subjectto | Z¥ Xy Xaz | =0 (15)  appropriately. n
X% XL X We remark that the classical well-posedness condition recalled in (4)
implies that the ellipsoid of confidence computed by means of Theorem
is feasible if and only if 2 is bounded at each step. Moreover, it is easily shown that the well-
b ¥ posedness condition (4) holds if and only if problem (20) is strictly
22 <323 . . .
~ > 0. (16) feasible. Well-posedness therefore insures boundedness of the optimal
X33 Xss ellipsoid at each step.

In this case, problem (15) is equivalent to the problem (in varidble g Summary: Filter Recursion

only) The robust predictive filter can be implemented recursively as fol-
o . ] X Xy lows:
minimize f(X') subject to (L 33} z0 (17) 1) select a time horizo#},. Form an LFR of the system, and find a
‘ basis of the scaling subspaSéA );
and it admits unique optimal variables, given By = X5 X/, X1, 2) start with an initial ellipsoid of confidenc® = £(&o, Eo). Set
Z =X X1, X%, A E=0,E = Ey, & = io;
Proof: See Appendix B. 3) givenE. &, and current measurementsolve the convex opti-
Now, we notice that one can always chods@ such a way that its mization problem (20), and find associated optimal scaling vari-
first row is the (transpose of the) first unit vector. A suitable maifrix ablesS, T, G,
is, therefore, of the form 4) form the matrixP; and center:4 as given by (21) and (22);
110 5) find (using Cholesky factorization) a matx; such thatP; =
¥ = } . (18) ELEYL; , _
Uy | Uy 6) sett = 24, F = EL.If k > T}, exit. Otherwise, sét = k+ 1
) . . and go to Step 3.
We introduce the following notation:

Qe 7. 7 5T 6) C.I Ct?]fnplexlfy AnalySIir how the interior-point methods described
e n this section, we outline how the interior-point methods describe
=T (X, 7w, 70) = QUS, Z’ @)Y in [21] can be used to solve the optimization problem (20). We here
LI (7o, Ty 70, ST, G) - a2 Ty Ts 70, S, T, G) stress the fact that the result of Theorem 2 dramatically improves the
| qu2(res 7w 70, S, T G) Qaa(Tes T, 76, S, T, G) complexity of the SDP formulation obtained in Theorem 1. We begin

by assuming that the size function is given by the tr&d®) = Tr(P).
fi=Ai+[AE B 0 Li]¢r. (19) A General Problem: Problem (20) can be expressed as
The decoupled robust filtering equations are then given in the following inf o subject toy > Tr (KR(S)AKT) ’
theorem.
Theorem 2: Consider the convex optimization problem in the vari- Q(s) R(s) 7(s) 2 0. S(s)=0 (24)
ablesr,., 7, 7,, S, G, T 8): r(s)T q(s) ’ (s) =
inf f (KQSQI(T:, Tws T, 5, T, G)KT) subject to where vectors contains the free variables, ai{s), S(s) are sym-
Q(Tor Tws 7, S, T, G) = 0, metric matrices affine is. Here,q(s) is the scalar, lower-right block

in Q(s). The constrainS(s) > 0 reflects the original constraints on

(5. T, G)€B(A), §20, T=z0 7, 7w, 720, (20) the scaling variableS, T, andr.., 7., 7. The matrixS(s) is a block

whereK = [AE B 0 L;]¥,. If the above problem is feasible, diagonal matrix, with diagonal blocks of sizg; x u: each, where
then the optimal ellipsoid is unique. At the optimum, the optimal shape= [/t1: - - /4] is @ vector describing the uncertainty structure. We
matrix satisfies first discuss in general terms the complexity of this problem, as a func-

’ tion of the size of(s), IV; the number of free variabled/,; and the
Py = KQ;(TI, Tws Tos S, T, G)KT (21) size and structure of the matrix scalings, which is described. by
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A basic idea for solving a problem such as (24) is to associate aMinimum-Volume Ellipsoids:The above results can be extended
barrier for the feasible set, and solve a sequence of unconstrairtedthe case when a minimum-volume ellipsoid is sought. Indeed,
minimization problems, involving a weighted combination of thevhen f(P) = logdet P, we simply minimize the objective
barrier and the (linear) objective. The complexity of a path-followinipg det(K R(s) ' KT) under the constraints of problem (20), which
interior-point method as described in [21, p. 93] depends on ocan be done using path-following interior-point methods for self-con-
ability of finding a “self-concordant barrier” associated with theordant functions, as proved in [20]. Complexity estimates are similar
constraints. When such a barrier is known, the number of iteratiottsthe trace case.
grows asO(#'/?), wheref is the “parameter of the barrier.” The cost
of each iteration is proportional to that of computing the gradient

and Hessiari{ of the barrier, and solving the linear systdfal = g, IV. EXAMPLE
where the unknowd is the search direction. We note that in practice, ) ] ] )
the number of iterations is almost independent of problem size. To illustrate the results, we consider a simple numerical example

We can associate to problem (24) a self-concordant barrier, and fifffich has been used as a benchmark in [4], [14], [28], and is there-

its parameter. Indeed, a direct consequence of the result [21, Prfé’ﬁ‘? useful for comparison purposes. The numerical results were imple-
5.1.8] is that the function mented using the SDP formulation of Theorem 1, with a general-pur-

pose SDP code [11]

F@us)=-bg(““1*(ﬂjﬂsfdﬁj))

oo =05 ) [0
—logdet Q(s) — logdet S(s) (25) TR T 14038, | +0. 1] %
is a self-concordant barrier for problem (24), with parameéter NV + yr =[=100 10]ex +0.02vt,

1+ %, ux. Atedious but straightforward calculation shows that the . o
gradient and Hessian of the barrier can be computed in ére),  With [6x] < 1, [lwk]| < 1, |lox]] < 1, and assuming the initial state

where belongs to the ellipsoil( Ey, i), with Eq = 31, & = 0. The signal
to be estimated is(k) = [1 0]x(k). The LFR uncertainty represen-
tation specializes tdl = 0, L, = [?] L, = 0,R = [0 0.3],

A3 2 [ A2 2 . -3 3 R, = Rs = 0. The scaling subspace is in this case described by
v=N+ N, <A + Zl ”") + N, <A + Zl ”") - (29) S =T = X (ascalar){7 = 0. The system was simulated using deter-

ministic, boundary-visiting sequences for the noise and the uncertainty.
Complexity of Robust Filtering:Let us specialize the above resultsThe results obtained with the robust filter, usifgl’) = Tr(P), are
to two specific instances of robust filtering. Assume first that the ughown in Fig. 1(a). The bounds on the signgt) are obtained pro-
certainty matrixA comprised uncertain scalar parameters, each apecting the state ellipsoid along the output direction.
pearingr times on the diagonal oh (r is related to the degree to  For illustration purposes, we also estimated the sigi) using a
which each parameter appears in the state-space representation ost@dard Kalman filter, assuming a process noise variance 0.333,
system). We will express the complexity of the algorithm in terms of measurement noise varianeg = 0.333, and initial state covariance
(the order of the system)(the number of uncertain scalar parametersﬁqum to the identity. The results obtained with the Kalman filter are
andr (which measures the degree of nonlinearity). shown in Fig. 1(b), where the bounds indicateconfidence regions.
Thus, in our notation, we have, = n, = Ir. Also, S = T is This example clearly illustrates that the Kalman filter (which ne-
a symmetric, block-diagonal matrix, wittblocks, each of size x », ~ glects the uncertainty on the system matrices) may provide central es-
while G is a skew-symmetric matrix with the same structure. Thereforémates that are completely erroneous (bias). Also, the (stochastic) con-
wr = v,k =1,...,1, and problem (20) involves a total 8f, = fidence intervals provided by the Kalman filter are indeed tighter than
O(1r?) variables. The matrik)(s) is at most of row sizeV := n + their deterministic counterparts computed via the robust filter, but they
N +ny, +n, —1 = O(n+1r), the precise number depending on thélo not guarantee the containment of the true sigt).
rank of the matrix appearing in the right hand side of (18). The cost of

each iteration is therefore given by (26), with
V. CONCLUSION

213 212 2 2 2 3 3 The main contribution of this note is a technique that is able to handle
v =)+ (7) (0 + 1) + 1) + 17 ((n 4 1r)° +17) 1) uncertaintyin all the system matrices, and &yucture information
=0 (lr'2 (n + 17‘2) (n+ 17“)3) . about the uncertainty, in filtering problems for uncertain discrete-time
systems. The estimates and their (deterministic) ellipsoids of confi-
Since the parameter of the barrier (25pis= O(n + Ir), the total dence are computed in polynomial-time using convex optimization, for
complexity estimate i€)((n + 1) v). both the minimum-volume and minimum-trace cases. The numerical
Assumingr = 1 (e.g., parameters appear linearly in the state-spacemplexity of the proposed filtering algorithms is comparable to that
matrices, with rank-one matrix coefficients) results in a total conof the standard Kalman filter. The presented results are valid over a fi-
plexity of O(I(n + 1)3'5). We note that, fofixednumber of uncertain nite time horizon; infinite horizon and convergence issues are subject
parameters (precisely, for fixedand ), the complexity estimate is of ongoing research.
O(n**), which is comparable to the case of standard Kalman filtering. The presented method seems to be mostly suitable to applications
Whenunstructuredadditive uncertainty is presenteh B, C, D, with nonstationary processes or signals. It is expected that this tech-
thenp = [1, 1, 1, 1], andd = O(n), from which it can be easily veri- nique, and the related approaches explored in [9], [10], should be ap-
fied that the total complexity in the unstructured case growig@s *).  plicable in a variety of contexts, ranging from robust failure detection
As noted above, the number of iterations is almost constant in practitee|ocalization problems, and identification of systems with structured
so thepractical complexity isO(n*). uncertainty.
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(a) Robust Filter (b) Kalman Filter

0 5 10 Time k 15 20" 0 5 10 Time K15 20

Fig. 1. Estimation of(k) using (a) the robust deterministic filter and (b) a standard Kalman filter. The thick lines reptékégnthe dotted lines represent the
central estimates, the solid lines represent the bounds on the estimates [ellipsoidal projections foBaanfidence regions, for (b)].

APPENDIX A Let now ¥ be an orthogonal complement &t, i.e., a matrix of full
PROOF OFTHEOREM 1 rank such tha®. ¥ = 0. Then, using the elimination lemma (see [5])

Applying the quadratic embedding lemma, condition (9) is satidve have that the above m.atrix. inequqlity is satisfied for some value of
fied whenever conditions a), b), and c) below it are satisfied, if thefd’ if gn_d only if the following inequality (where, does not appear)
exist (S, T, G) € B(A),with § » 0, T » 0, such that(yy, — ' Sausfied:

ﬁ”n?l (S npnever (8) holds, and. = &4 £, BB (24) PE By (5400 — U (X (7, 7 7)
Eliminating the equality constraints far.. xx+1, =«, the above - QS T, G)¥ <0.

COﬂdItIanS may ?e rierFteT- via a set of quadratic inequalities in trﬂ?sing Schur complements, the previous condition is rewritten in the
vectoré™ = [1 zi wi vi pi], namely

form

@1 (34) P (34)€ < 1 P | By (d4)T -
j.
whenever TP (i) “I’T(T(Tz-/ Tw, 7o) =SUS, T, G))¥
TaTdoe <0 which is an LMI condition in the problem variablés,, &, 7, Tw,
- SRR I 7., S, G, T. The optimal ellipsoid of confidence based on the above
QS T, G)E>0 sufficient condition is then determined minimizirfg ;. ), which re-
¢" diag(—1, 1,0, 0, 0)¢ <0 sults in the optimization problem presented in Theorem 1.  [J
¢’ diag(—1,0, 1, 0, 0)¢ <0
T . APPENDIX B
¢ diag(—1.0.0. 1, 0)¢ <0. PROOF OFLEMMA 2
Here, 2 is defined in (13), and By the Schur complement rule, the LMI constraint in (15) holds if

and only if
(:[)1(;i?+) = [:Lf -2+ AF B 0 L ]

$=[Ci—ys CE 0 D L] X =Ko Z=Zope|
(Z = Zop)" Xoo B
A sufficient condition for the previous conditions to hold is given X5 .
by the S-procedure (see, e.g., [5]): there exist nonnegative scalars {ng} (I — X33X35) =0 (29)
Tz Tys Tw, Ty SUCH that
where
M1 (24) Py 1 (#4)€ — " By B2é .
X e EUAS TG <O @D) Xope = Y13 X3 X
) ) ) o - Zopt :~¥13X3T3X21'3
whereY is defined in (12). A necessary and sufficient condition for Koo = Xop — Xos Xiy XK.

(27) to hold for all¢ is

- . . - Problem (15) is thus equivalent to the problem of minimizjf{g\)

Py (24) Py @1 () — 7y P2 P2 — V7o, Tus To) subject to the above constraints. The equality in (29) is automatically
+Q(5, T, G)<0. enforced when (16) holds, and problem (17) is feasible. When this is
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