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Robust Filtering for Discrete-Time Systems with Bounded
Noise and Parametric Uncertainty

Laurent El Ghaoui and Giuseppe Calafiore

Abstract—This note presents a new approach to finite-horizon guaran-
teed state prediction for discrete-time systems affected by bounded noise
and unknown-but-bounded parameter uncertainty. Our framework han-
dles possibly nonlinear dependence of the state-space matrices on the un-
certain parameters. The main result is that a minimal confidence ellip-
soid for the state, consistent with the measured output and the uncertainty
description, may be recursively computed in polynomial time, using inte-
rior-point methods for convex optimization. With states, uncertain pa-
rameters appearing linearly in the state-space matrices, with rank-one ma-
trix coefficients, the worst-case complexity grows as ( ( + ) ). With
unstructured uncertainty in all system matrices, the worst-case complexity
reduces to ( ).

Index Terms—Convex optimization, Kalman filtering, LMIs, set-mem-
bership filtering, unknown-but-bounded uncertainty.

I. INTRODUCTION

This note is concerned with the problem of state estimation and fil-
tering for discrete-time systems subject to unknown-but-bounded noise
and parameter uncertainty affecting possiblyeverysystem matrix. The
problem of state estimation for systems with uncertainty goes back to
the early days of automatic control and signal processing, and several
approaches exist in the literature up to this date, e.g., the stochastic
approach (Kalman filtering theory), theH1 filtering theory, and the
deterministic, or set-membership, approach.

It is now well known that the standard Kalman filter [1] requires an
accurate model of the process under consideration, and assumes only
additiveuncertainty on the process and measurement equations, in the
form of Gaussian noise. If these requirements are not met, the Kalman
filter may lead to poor performance, see for instance [26]. This fact mo-
tivated further research in the direction of robustness in the stochastic
setting, see, e.g., [4], [14], [23], [28].

Robust filtering has also been extensively studied in anH1 frame-
work. In this setting, the exogenous input signal is assumed to be energy
bounded rather than Gaussian. AnH1 filter is designed such that the
worst-case “gain” of the system is minimized, [15], [19].

The approach taken in this note is derived from the deterministic in-
terpretation of the discrete-time Kalman filter given in [3]. The deter-
ministic filter in [3] was shown to give a state estimate in the form of an
ellipsoidal set of all possible states consistent with the given measure-
ments and a deterministic additive description of the noise. The idea of
propagating ellipsoids of confidence for systems with ellipsoidal noise
goes back a long way; precursors in this field include Kurzhanski [16],
Schweppe [25], whose ideas were later developed by Chernousko [6],
Maskarov and Norton [18] and Ovseevich [22]. These authors consider
the case with additive noise, assuming that the state-space process ma-
trices are exactly known, in parallel to Kalman filtering; see [17] for a
study of this parallel.
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The main contribution of this note is to extend the above mentioned
set-membership approach to the case when structured uncertainty af-
fects the system matrices. A similar approach has been considered in
[24], whereunstructureduncertainty described by a “Sum Quadratic
Constraint” is assumed on the system.

The key result presented is that ellipsoids of confidence of minimal
“size” (sum of semiaxis lengths or volume) can be recursively com-
puted in polynomial time, via interior-point methods for convex opti-
mization [21]. A similar problem, stated in the context ofstatic sys-
tems, is explored in [9], while pure state prediction (without measure-
ment information) is studied in [10].

A. Notation

For a square matrixX,X � 0 (resp.X � 0) meansX is symmetric,
and positive–definite (resp. semidefinite). For a matrixU , U? denotes
any orthogonal complement ofU , i.e., a matrix of maximal rank such
thatUU? = 0, andU y denotes the (Moore–Penrose) pseudo-inverse
of U .

Ellipsoids will be described asE(E; x̂) = fx: x = x̂+Ez, kzk �
1g, wherex̂ 2 n is the center, andE 2 n;n is theshape matrix
of the ellipsoid. This representation can handle “flat” ellipsoids, such
as points or intervals. An alternative description involves the squared
shape matrixP = EET , P � 0: E = fx: P � (x � x̂)(x � x̂)T g.
WhenP � 0, the previous expression is also equivalent toE = fx:
(x � x̂)TP�1(x � x̂) � 1g.

The “size” of an ellipsoid is a function of the squared shape matrixP ,
and will be denotedf(P ). Throughout this note,f(P ) is eitherTr(P ),
which corresponds to the sum of squares of the semiaxes lengths, or
log det(P ), which is related to the volume.

II. PRELIMINARIES AND SETUP

We consider the following class of uncertain discrete-time systems

xk+1

yk
=M(�k)

xk

wk

vk

(1)

where it is assumed that the initial statex0 belongs to a given el-
lipsoid E(E0; x̂0), andwk 2 n , vk 2 n are unknown-but-
bounded noise signals, which are assumed to belong to a unit sphere,
i.e.,kwkk � 1, k vkk � 1, 8k. This formalism allows us to consider
the case when independent and norm-bounded signals affect the state
dynamics and the sensor equations separately, as in the deterministic
version of the classical Kalman filtering setup, see, e.g., [3], [25]. The
case of noise signals bounded in ellipsoids is of course a trivial exten-
sion of this setup.

The uncertainty on the system matrices is assumed to be represented
in linear fractional representation (LFR) form, i.e., for any given�

M(�) =M +
L1

L2
�(I �H�)�1[R1 R2 R3 ] (2)

where

M =
A B 0

C 0 D

andA,B,C,D,L1,L2,R1,R2,R3, andH 2 n ;n are given ma-
trices. The uncertainty matrix� is in general time-varying and struc-
tured, and satisfies a given norm bound� 2 �1

:
= f� 2 �:
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k�k � 1g, where� is a subspace ofn ;n , called thestructure sub-
space. We also introduce the linear subspaceB(�), constructed from
the subspace�, and referred to as thescaling subspace

B(�) = (S; T; G): 8� 2�; S� = �T; G� = ��T
G
T

:

(3)

The above linear fractional representation of the uncertainty has great
generality and is widely used in control theory, see for instance [13].
This framework includes the case when parameters perturb each coef-
ficient of the data matrices in a polynomial or rational manner, as seen
in the representation lemma given in [8], as well as more classical un-
certainty models, such as norm-bounded unstructured uncertainty, and
additive perturbations on the state and measurement equations.

Well-Posedness Assumption:We will make the standing assump-
tion that the representation (2) is well-posed over�1, meaning that
det(I�H�) 6= 0 for all � 2�1. A well-known sufficient condition
for well-posedness, which also arises in� analysis problems [13], is
given by

9S; T; G: H
T
TH +H

T
G+G

T
H � S;

(S; T; G) 2 B(�); S � 0; T � 0: (4)

If the system is well posed, we can rewrite the system equations equiv-
alently as

xk+1 =Axk +Bwk + L1pk;

yk =Cxk +Dvk + L2pk

qk =R1xk +R2wk +R3vk +Hpk

pk =�qk; � 2�1 (5)

wherepk; qk are perturbation signals.
Quadratic Embedding of LFRs:The main advantage of LFRs is that

it enables to approximate an uncertain input–output relation by a set of
quadratic constraints. This fact is stated in the following lemma, whose
proof is omitted for brevity.

Lemma 1: For arbitrary vectorsp; q, the property

p = �q; for some� 2�1 (6)

implies that the following quadratic inequalities in(p; q) hold: For
every(S; T; G) 2 B(�), with S � 0, T � 0

q

p

T
T G

GT �S

q

p
� 0: (7)

Moreover, when� = n ;n (unstructured uncertainty) the above
quadratic embedding is nonconservative, meaning that property (7) im-
plies (6). 4

Using the above result, we can devise a quadraticouterapproxima-
tion for the system equations (5), valid for every triple(S; T; G) 2
B(�), with S � 0, T � 0

xk+1 =Axk +Bwk + L1pk

yk =Cxk +Dvk + L2pk

qk =R1xk +R2wk +R3vk +Hpk

0 �
qk

pk

T
T G

GT �S

qk

pk
: (8)

The above (outer) quadratic approximations for LFRs, when used in
conjunction with theS-procedure (see for instance [5]) is a key element
in our approach. General results on the tightness of this embedding are
given in [2], [12].

III. ROBUST PREDICTIVE FILTER

The aim of the robust predictive filter is to determine a confidence
ellipsoidE(E+; x̂+) for the state at the next time instantxk+1, given
the measurement information at the time instantk, and given thatxk
belongs to a current ellipsoid of confidenceE(E; x̂). Therefore, we
look for P+; x̂+ such that

(xk+1 � x̂+)
T
P
�1

+ (xk+1 � x̂+) � 1 (9)

whenever a) (1) holds for some�k 2 �1, b) xk is in E(E; x̂), and
c) the noise termswk; vk are bounded in unit spheres, i.e.,kwkk � 1,
kvkk � 1.

The following theorem contains our main result for the computation
of the one-step-ahead confidence ellipsoid.

Theorem 1: An ellipsoid of confidenceE+ = E(P+; x̂+) can be
obtained by solving the optimization problem in the variablesP+, x+,
�x, �w, �v , S, G, T

minimizef(P+) subject to

(S; T; G) 2 B(�); S � 0; T � 0; �x; �w; �v � 0

P+ �1(x̂+)	

	T�T
1 (x̂+) 	T (�(�x; �w; �v)�
(S; T; G))	

� 0

(10)

where

�1(x̂+)
:
= [Ax̂ � x̂+ AE B 0 L1 ]

and

	 = [Cx̂� yk CE 0 D L2 ]?; (11)

�(�x; �w; �v)
:
=diag(1� �x � �w � �v; �xI; �wI; �vI; 0);

(12)


(S; T; G)
:
=�T T G

GT �S
�; (13)

�
:
=

R1x̂ R1E R2 R3 H

0 0 0 0 I
(14)

andf(P+) measures the size of the ellipsoid, eitherf(P+) = TrP+,
or f(P+) = log detP+. 4

Proof: See Appendix A.
When the ellipsoid size is measured by the trace function, the ellip-

soid update reduces to a semidefinite programming (SDP) problem. In
this case, the update can be performed in polynomial-time using re-
cently developed interior-point algorithms [21], [27] and related soft-
ware [11]. However, the complexity of the algorithm (using a gen-
eral-purpose SDP code) is still high, mainly due to the presence of
O(n2) variables appearing inP+, which makes the complexity of the
problem grow asO(n6:5), wheren is the number of states (see [27]
for details on complexity of SDP’s). In the case of minimum-volume
ellipsoids, the above formulation is not even convex inP+.

We remark that the previous result provides a set-valued (ellipsoidal)
estimate for the state, which could be useful for instance in robust op-
timization-based control, model validation [24], and robust collision
avoidance applications [7]. On the other hand, if a noise-free estimate
of the state is desired, then the confidence-set information could be ne-
glected, and the centers of the confidence ellipsoids could be taken as
optimal estimates of the system states.

Notice also that, in the case when no uncertainty is present on the
system matrices, and only the deterministic disturbanceswk; vk act
on the system, the results given by Theorem 1 coincide with those pro-
vided by classical deterministic ellipsoidal bounding algorithms, see
for instance [18] and references therein.
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We next show how to eliminate the variableP+, and transform the
problem into a convex optimization problem with much better com-
plexity properties. This alternative formulation will handle both the
trace and volume as objective functions.

A. Decoupled Filtering Recursions

In this section, we give explicit expressions for the shape and center
of E+, in terms of the optimal values of a certain convex optimization
problem. This results in decoupled equations that are similar in spirit to
the standard Kalman predictor equations. This new formulation will be
used later to obtain an algorithm with better complexity properties than
the general problem obtained in Theorem 1. The following technical
lemma will be needed in the sequel.

Lemma 2: LetXij , 1 � i � j � 3 be matrices of appropriate size,
with Xii square and symmetric. The problem (in variablesX; Z)

minimizef(X) subject to

X Z X13

ZT X22 X23

XT
13 XT

23 X33

� 0 (15)

is feasible if and only if

X22 X23

XT
23 X33

� 0: (16)

In this case, problem (15) is equivalent to the problem (in variableX

only)

minimizef(X) subject to
X X13

XT
13 X33

� 0 (17)

and it admits unique optimal variables, given byX = X13X
y
33X

T
13,

Z = X13X
y
33X

T
23. 4

Proof: See Appendix B.
Now, we notice that one can always choose	 in such a way that its

first row is the (transpose of the) first unit vector. A suitable matrix	
is, therefore, of the form

	 =
1 0

 1 	2

: (18)

We introduce the following notation:

Q(�x; �w; �v; S; T; G)
:
= 	T (�(�x; �w; �v)� 
(S; T; G))	

:
=

q11(�x; �w; �v; S; T;G) qT12(�x; �w; �v; S; T;G)

q12(�x; �w; �v; S; T;G) Q22(�x; �w; �v; S; T;G)

f1
:
= Ax̂+ [AE B 0 L1] 1: (19)

The decoupled robust filtering equations are then given in the following
theorem.

Theorem 2: Consider the convex optimization problem in the vari-
ables�x, �w , �v , S, G, T

inf f KQ
�1
22 (�x; �w; �v; S; T; G)K

T subject to

Q(�x; �w; �v; S; T; G) � 0;

(S; T; G) 2 B(�); S � 0; T � 0; �x; �w; �v � 0; (20)

whereK = [AE B 0 L1]	2. If the above problem is feasible,
then the optimal ellipsoid is unique. At the optimum, the optimal shape
matrix satisfies

P+ = KQ
y
22(�x; �w; �v; S; T; G)K

T (21)

while the optimal center of the ellipsoid is given by

x̂+ = f1 �KQ
y
22(�x; �w; �v; S; T; G)

� q12(�x; �w; �v; S; T; G): (22)

Proof: In view of the structure (18) of	, we can rewrite the main
LMI in (10) as

P+ f1 � x̂+ K

(f1 � x̂+)
T q11 qT12

KT q12 Q22

� 0 (23)

whereq11; q12; Q22, andf1 are defined in (19), and

K
:
= [AE B 0 L1]	2:

The statements of the theorem then easily follow applying Lemma 2
to the LMI (23), withZ = f1 � x̂+, and the other matrices defined
appropriately.

We remark that the classical well-posedness condition recalled in (4)
implies that the ellipsoid of confidence computed by means of Theorem
2 is bounded at each step. Moreover, it is easily shown that the well-
posedness condition (4) holds if and only if problem (20) is strictly
feasible. Well-posedness therefore insures boundedness of the optimal
ellipsoid at each step.

B. Summary: Filter Recursion

The robust predictive filter can be implemented recursively as fol-
lows:

1) select a time horizonTh. Form an LFR of the system, and find a
basis of the scaling subspaceB(�);

2) start with an initial ellipsoid of confidenceE0 = E(x̂0; E0). Set
k = 0, E = E0, x̂ = x̂0;

3) givenE; x̂, and current measurementy, solve the convex opti-
mization problem (20), and find associated optimal scaling vari-
ablesS; T; G;

4) form the matrixP+ and centerx+ as given by (21) and (22);
5) find (using Cholesky factorization) a matrixE+ such thatP+ =
E+E

T
+ ;

6) setx̂ = x̂+,E = E+. If k � Th, exit. Otherwise, setk = k+1
and go to Step 3.

C. Complexity Analysis

In this section, we outline how the interior-point methods described
in [21] can be used to solve the optimization problem (20). We here
stress the fact that the result of Theorem 2 dramatically improves the
complexity of the SDP formulation obtained in Theorem 1. We begin
by assuming that the size function is given by the tracef(P ) = Tr(P ).

A General Problem:Problem (20) can be expressed as

inf � subject to� � Tr KR(s)�1KT
;

Q(s) :=
R(s) r(s)

r(s)T q(s)
� 0; S(s) � 0 (24)

where vectors contains the free variables, andQ(s), S(s) are sym-
metric matrices affine ins. Here,q(s) is the scalar, lower-right block
in Q(s). The constraintS(s) � 0 reflects the original constraints on
the scaling variablesS; T , and�x; �w; �v . The matrixS(s) is a block
diagonal matrix, withk diagonal blocks of size�i � �i each, where
� = [�1; . . . ; �k] is a vector describing the uncertainty structure. We
first discuss in general terms the complexity of this problem, as a func-
tion of the size ofQ(s),N ; the number of free variables,Ns; and the
size and structure of the matrix scalings, which is described by�.
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A basic idea for solving a problem such as (24) is to associate a
barrier for the feasible set, and solve a sequence of unconstrained
minimization problems, involving a weighted combination of the
barrier and the (linear) objective. The complexity of a path-following
interior-point method as described in [21, p. 93] depends on our
ability of finding a “self-concordant barrier” associated with the
constraints. When such a barrier is known, the number of iterations
grows asO(�1=2), where� is the “parameter of the barrier.” The cost
of each iteration is proportional to that of computing the gradientg

and HessianH of the barrier, and solving the linear systemHd = g,
where the unknownd is the search direction. We note that in practice,
the number of iterations is almost independent of problem size.

We can associate to problem (24) a self-concordant barrier, and find
its parameter. Indeed, a direct consequence of the result [21, Prop.
5.1.8] is that the function

F (�; s) =� log ��Tr KR(s)�1KT

� log detQ(s)� log detS(s) (25)

is a self-concordant barrier for problem (24), with parameter� = N +
1 + k �k. A tedious but straightforward calculation shows that the
gradient and Hessian of the barrier can be computed in timeO(�),
where

� = N
3

s +N
2

s N
2 +

k

i=1

�
2

i +Ns N
3 +

k

i=1

�
3

i : (26)

Complexity of Robust Filtering:Let us specialize the above results
to two specific instances of robust filtering. Assume first that the un-
certainty matrix� comprisesl uncertain scalar parameters, each ap-
pearingr times on the diagonal of� (r is related to the degree to
which each parameter appears in the state-space representation of the
system). We will express the complexity of the algorithm in terms ofn

(the order of the system),l (the number of uncertain scalar parameters),
andr (which measures the degree of nonlinearity).

Thus, in our notation, we havenp = nq = lr. Also, S = T is
a symmetric, block-diagonal matrix, withl blocks, each of sizer � r,
whileG is a skew-symmetric matrix with the same structure. Therefore,
�k = r, k = 1; . . . ; l, and problem (20) involves a total ofNs =
O(lr2) variables. The matrixQ(s) is at most of row sizeN := n +
nw +nv +np� 1 = O(n+ lr), the precise number depending on the
rank of the matrix appearing in the right hand side of (18). The cost of
each iteration is therefore given by (26), with

� = lr
2 3

+ lr
2 2

(n+ lr)2 + lr
2 + lr

2 (n+ lr)3 + lr
3

=O lr
2
n+ lr

2 (n+ lr)3 :

Since the parameter of the barrier (25) is� = O(n + lr), the total
complexity estimate isO((n + lr)0:5�).

Assumingr = 1 (e.g., parameters appear linearly in the state-space
matrices, with rank-one matrix coefficients) results in a total com-
plexity ofO(l(n+ l)3:5). We note that, forfixednumber of uncertain
parameters (precisely, for fixedl and r), the complexity estimate is
O(n3:5), which is comparable to the case of standard Kalman filtering.

Whenunstructured, additive uncertainty is present onA; B; C; D,
then� = [1; 1; 1; 1], and� = O(n), from which it can be easily veri-
fied that the total complexity in the unstructured case grows asO(n3:5).
As noted above, the number of iterations is almost constant in practice,
so thepractical complexity isO(n3).

Minimum-Volume Ellipsoids:The above results can be extended
to the case when a minimum-volume ellipsoid is sought. Indeed,
when f(P ) = log detP , we simply minimize the objective
log det(KR(s)�1KT) under the constraints of problem (20), which
can be done using path-following interior-point methods for self-con-
cordant functions, as proved in [20]. Complexity estimates are similar
to the trace case.

IV. EXAMPLE

To illustrate the results, we consider a simple numerical example
which has been used as a benchmark in [4], [14], [28], and is there-
fore useful for comparison purposes. The numerical results were imple-
mented using the SDP formulation of Theorem 1, with a general-pur-
pose SDP code [11]

xk+1 =
0 �0:5

1 1 + 0:3�k
xk + 0:02

�6

1
wk

yk = [�100 10 ]xk + 0:02vk;

with j�kj � 1, kwkk � 1, kvkk � 1, and assuming the initial state
belongs to the ellipsoidE(E0; x̂0), withE0 = 3I , x̂0 = 0. The signal
to be estimated isz(k) = [1 0]x(k). The LFR uncertainty represen-

tation specializes toH = 0, L1 = 0

1
, L2 = 0, R1 = [0 0:3],

R2 = R3 = 0. The scaling subspace is in this case described by
S = T = � (a scalar),G = 0. The system was simulated using deter-
ministic, boundary-visiting sequences for the noise and the uncertainty.
The results obtained with the robust filter, usingf(P ) = Tr(P ), are
shown in Fig. 1(a). The bounds on the signalz(k) are obtained pro-
jecting the state ellipsoid along the output direction.

For illustration purposes, we also estimated the signalz(k) using a
standard Kalman filter, assuming a process noise variance�w = 0:333,
measurement noise variance�v = 0:333, and initial state covariance
equal to the identity. The results obtained with the Kalman filter are
shown in Fig. 1(b), where the bounds indicate3� confidence regions.

This example clearly illustrates that the Kalman filter (which ne-
glects the uncertainty on the system matrices) may provide central es-
timates that are completely erroneous (bias). Also, the (stochastic) con-
fidence intervals provided by the Kalman filter are indeed tighter than
their deterministic counterparts computed via the robust filter, but they
do not guarantee the containment of the true signalz(k).

V. CONCLUSION

The main contribution of this note is a technique that is able to handle
1) uncertaintyin all the system matrices, and 2)structure information
about the uncertainty, in filtering problems for uncertain discrete-time
systems. The estimates and their (deterministic) ellipsoids of confi-
dence are computed in polynomial-time using convex optimization, for
both the minimum-volume and minimum-trace cases. The numerical
complexity of the proposed filtering algorithms is comparable to that
of the standard Kalman filter. The presented results are valid over a fi-
nite time horizon; infinite horizon and convergence issues are subject
of ongoing research.

The presented method seems to be mostly suitable to applications
with nonstationary processes or signals. It is expected that this tech-
nique, and the related approaches explored in [9], [10], should be ap-
plicable in a variety of contexts, ranging from robust failure detection
to localization problems, and identification of systems with structured
uncertainty.
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Fig. 1. Estimation ofz(k) using (a) the robust deterministic filter and (b) a standard Kalman filter. The thick lines representz(k), the dotted lines represent the
central estimates, the solid lines represent the bounds on the estimates [ellipsoidal projections for (a), and3� confidence regions, for (b)].

APPENDIX A
PROOF OFTHEOREM 1

Applying the quadratic embedding lemma, condition (9) is satis-
fied whenever conditions a), b), and c) below it are satisfied, if there
exist (S; T; G) 2 B(�), with S � 0, T � 0, such that(xk+1 �
x̂+)

TP�1+ (xk+1 � x̂+) � 1 whenever (8) holds, andxk = x̂+Ezk,
kzkk � 1, kwkk � 1, kvkk � 1.

Eliminating the equality constraints forqk; xk+1; xk, the above
conditions may be rewritten via a set of quadratic inequalities in the
vector�T = [1 zTk wT

k vTk pTk ], namely

�
T�1(x̂+)

T
P
�1
+ �1(x̂+)� � 1

whenever

�
T�T

2 �2� � 0

�
T
(S; T; G)� � 0

�
T
diag(�1; I; 0; 0; 0)� � 0

�
T
diag(�1; 0; I; 0; 0)� � 0

�
T
diag(�1; 0; 0; I; 0)� � 0:

Here,
 is defined in (13), and

�1(x̂+)
:
= [Ax̂� x̂+ AE B 0 L1 ]

�2
:
= [Cx̂� yk CE 0 D L2 ]:

A sufficient condition for the previous conditions to hold is given
by the S-procedure (see, e.g., [5]): there exist nonnegative scalars
�x; �y; �w; �v such that

�
T�T

1 (x̂+)P
�1
+ �1(x̂+)� � �y�

T�T
2 �2�

� �
T�(�x; �w; �v)� + �

T
(S; T; G)� < 0 (27)

where� is defined in (12). A necessary and sufficient condition for
(27) to hold for all� is

�T
1 (x̂+)P

�1
+ �1(x̂+)� �y�

T
2 �2 ��(�x; �w; �v)

+ 
(S; T; G) � 0:

Let now	 be an orthogonal complement of�2, i.e., a matrix of full
rank such that�2	 = 0. Then, using the elimination lemma (see [5])
we have that the above matrix inequality is satisfied for some value of
�y , if and only if the following inequality (where�y does not appear)
is satisfied:

	T�T
1 (x̂+)P

�1
+ �1(x̂+)	�	T (�(�x; �w; �v)

� 
(S; T; G))	 � 0:

Using Schur complements, the previous condition is rewritten in the
form

P+ �1(x̂+)	

	T�T
1 (x̂+) 	T (�(�x; �w; �v)�
(S; T; G))	

� 0 (28)

which is an LMI condition in the problem variablesP+, x̂+, �x, �w,
�v , S, G, T . The optimal ellipsoid of confidence based on the above
sufficient condition is then determined minimizingf(P+), which re-
sults in the optimization problem presented in Theorem 1.

APPENDIX B
PROOF OFLEMMA 2

By the Schur complement rule, the LMI constraint in (15) holds if
and only if

X �Xopt Z � Zopt

(Z � Zopt)
T ~X22

� 0

X13

X23

(I �X33X
y
33) = 0 (29)

where

Xopt =X13X
y
33X

T
13

Zopt =X13X
y
33X

T
23

~X22 =X22 �X23X
y
33X

T
23:

Problem (15) is thus equivalent to the problem of minimizingf(X)
subject to the above constraints. The equality in (29) is automatically
enforced when (16) holds, and problem (17) is feasible. When this is
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the case, problem (15) is equivalent to problem (17). We further note
that the inequality in (29) is equivalent to

X � Xopt + (Z � Zopt) ~X
y
22(Z � Zopt)

T
;

(Z � Zopt) I � ~X22
~Xy
22 = 0:

Both in the case of trace and log-determinant, the functionf(X) is
concave on the cone of positive–definite matrices. This implies that
the optimal value ofX; Z areX = Xopt, Z = Zopt, as claimed.
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On Kalman–Yakubovich–Popov Lemma for Stabilizable
Systems

Joaquín Collado, Rogelio Lozano, and Rolf Johansson

Abstract—The Kalman–Yakubovich–Popov (KYP) Lemma has been a
cornerstone in System Theory and Network Analysis and Synthesis. It re-
lates an analytic property of a square transfer matrix in the frequency do-
main to a set of algebraic equations involving parameters of a minimal re-
alization in time domain. This note proves that the KYP lemma is also valid
for realizations which are stabilizable and observable.

Index Terms—Nonminimal realization, positive-real functions.

I. INTRODUCTION

Given a square transfer matrixZ(s), the Kalman–
Yakubovich–Popov (KYP) Lemma relates an analytic property
of a square transfer matrix in the frequency domain to a set of
algebraic equations involving parameters of a minimal realization in
time domain. See the original references [7], [18], and [13], [20].
Further important developments were given in [3], [12]. The lemma
was generalized to the multivariable case in [2]. Extensions and
clarifications appeared on [5], [16], and [10]. Clear presentations and
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