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Randomized Algorithms for Probabilistic Robustness
with Real and Complex Structured Uncertainty

Giuseppe C. Calafiore, Fabrizio Dabbene, and Roberto TeRglow, IEEE

Abstract—in recent years, there has been a growing interest complexity issues of feedback system; see [5], [7], [15], [28],
in developing randomized algorithms for probabilistic robustness and [30]. The contribution of these papers is to demonstrate
of uncertain control systems. Unlike classical worst case methods, jhat several problems in linear robust control are NP-hard,
these algorithms provide probabilistic estimates assessing, for in- S . . .
stance, if a certain design specification is met with a given proba- which in turn implies that they fare not PraCF'Ca”y tractable,
bility. One of the advantages of this approach is that the robustness Unless the number of uncertainties entering into the feedback
margins can be often increased by a considerable amount, at the system is very limited. To avoid this drawback, many other
expense of a small risk. In this sense, randomized algorithms may contributions attacked the same problem following a parallel
be used by the control engineer together with standard worst case line of research, with the goal of computing upper and lower
methods to obtain additional useful information. . ! w N :

The applicability of these probabilistic methods to robust con- bounds (instead of the “true vz_;tlue) 9f the robustness margin
trol is presently limited by the fact that the sample generation is for very general feedback configurations. In other words, the
feasible only in very special cases which include systems affectedfocal point of these papers is to develop either necessary or
by real parametric uncertainty bounded in rectangles or spheres. gufficient conditions for robust stability and performance. The
Sampling in more general uncertainty sets is generally performed ;e feature of these bounds is that their evaluation generally
through overbounding, at the expense of an exponential rejection . : - .
rate. requires the solution of convex programs which can be easily

In this paper, randomized algorithms for stability and per- Performed, for example, by means of interior point methods
formance of linear time invariant uncertain systems described [6]. However, the issue of conservatism is still present.
by a general M-A configuration are studied. In particular, In order to overcome these difficulties, a different paradigm
efficient polynomial-time algorithms for uncertainty structures has recently emerged. This new paradigm studies uncertain
A consisting of an arbitrary number of full complex blocks and e ; L
uncertain parameters are developed. feedback systems from a probabilistic _p_0|nt of view; see, e.g.,

[3], [13], [25], [31], [41], and [43]; additional references can
be found in the survey papers [38] and [39]. This framework
is not alternative to worst case robust control, but it provides
useful and complementary information to the control engineer.
I. INTRODUCTION In this setting,A is indeed bounded in a given set, but it is

HE most frequently used configuration for robustnesdS0 @ random matrix with a given probability distribution. In
analysis and design of complex uncertain feedback S)}Els way, both probabilistic and deterministic information is
tems is the so-called/-A model; see, e.g., [42]. This modelcaptured. _ o
consists of a given plari¥/, which possibly includes weighting In this paper, the clasg of so-c'alled rgdlally symmetric dI'StI‘I-
functions and a controller, and an uncertain block diagon@tions over the uncertainty set is studied. Roughly speaking, a
matrix A. With this feedback configuration, different desigrfad'a_"y symmetric distribution has the property that the density
methodologies can be implemented and several performaffi¢action fa of A depends only on the spectral normaf see
objectives can be analyzed. In addition, since the structup€ction Il and [4] for a rigorous definition, and the papers [2]
of A is very general, various sources of uncertainty, such ggq [3] for 'further guidelines on the choice qf the d.|str'|but'|on.'
parametric, nonparametric, structured and unstructured, can/bés class includes as a special case the uniform distribution in
easily taken into account. For these reasonsMhes configu- & bounded support set d_eflned asin classu?al worst case robust
ration is a valuable tool for both practitioners and theoreticiarfé2ntrol. That is, we consider the set of matricesvhose spec-
so that powerful and useful results have been developed®fi@l norm is bounded by > 0
the last few years. At the same time, however, classical worst
case robust control has also shown some limitations when the {Aa:o(A) < p}
control system is affected by general uncertainty structures

A. To investigate these limitations, many papers focused ¥fierea(A) = max;o;(A) = ||All5. In addition, the matrix
A is structured so that it contains real and complex parameters
. . , and real and complex full blocks; see Section Il for a precise
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and study the stability oft + BA(I — DA)~1C. Frequency accuracy and confidencé. Formally, for anye € (0,1) and
domain and state space interpretations of such stability teéts (0, 1), if
have been provided in th& -A setting see, e.g., [32] and [42].

For example, ifM (s) = C(sI — A)~'B + D, Ais stable and log 2
the well-posedness condition @ holds, then 6

= 2e2

{A: A+ BA(I — DA)™'Cis stablé
— [A: det(I — AM(jw)) #0, Yo € R).

then

Prob — DN <e}p>1-06.
We remark that, wher\ consists of a single block, the size of lp(e) =Px(p)l < o 2

the smallest destabilizing perturbation is often called the sta-an obvious but crucial observation which follows immedi-
bility radius [21], [32]. In this sense, this paper studies the probgtely from the Chernoff bound is that is independent of the
bilistic version of the stability radius problem for the case whegumber and dimension of the uncertain blocks infhenatrix
the system is affected by general uncertainty structdted.  and of the size of the bounding set [24], [37]; similar statements
parallel line of research, not directly related to the problem fogzn pe also made whefs consists of parametric uncertainty
mulation and results given in this paper, is focused on the coghy [33]. The same conclusion holds when dealing with more
putation of the stability radius of systems subject to stochasggphisticated bounds arising in Learning Theory; see [40]. In ei-
perturbations; see [19]. ther case, since checking the stabilityof BA*(I— DAY ~1C
Formally, for fixedp > 0, we let can be performed in polynomial-time, it follows that the overall
. P complexity is also polynomial-time, provided that the cost of
p(p) = Prob{A+ BA(I - DA) 'Cisstablg (1) e generation of each matrix samplé is polynomial-time.
With these motivations, the main objective of the paper is to
efficiently generate matrix samples in the spectral norm ball ac-
cording to a radially symmetric distribution and the structure of
A. We remark that the methods developed here are fundamen-
tally different from the asymptotic techniques available for ex-

Given a probability levep*, the probabilistic stability margin @mple in [26] for general convex sets, which are of limited use,

p(p*) gives the maximum size of the perturbatidn measured since the number of samples given by the Chernoff bound is in
according to the spectral norm, so that the probability) is 9general relatively small.

at leasp*. Oncep(p) is computed, the next step is to construct We now summarize the main results of the paper. In Sec-
the probability degradation functigri.e., the plot of the prob- tion Il, we introduce definitions and notation and we also show

ability of stability as a function of the radiys This plot may that the problem of generating samples of the structured ma-

be compared with the classical worst case stability margin  trix A is equivalent to sample generation in independent sets,
obtaining each consisting of a full block matrix or a vector of parame-

ters. Since the problem of the generation of random vectors has
p(p") > 1/p been already solved in [9] and [10], we study the case of a full
block real or complex matriX\. The starting point of this anal-
for anyp® € [0,1]. This fact in turn implies that the marginysis is the singular value decomposition/®f That is, we write
computed with probabilistic methods is always larger than the — ¥ V*, whereU and V' are unitary matrices antl is
classical worst case margin, at the expense of a risk expresgeflagonal matrix containing the singular valuesXafSubse-

and, for giverp* € [0, 1], we define theprobabilistic stability
margin

p(p*) = sup{p: p(p) > p*}.

in probability. quently, for random matriced with radially symmetric distri-
In order to computep(p) with randomized algorithms, we bution, we compute the probability density functions (p.d.f.) of
generateV matrix samples fu, fs, and fy- of U, &, andV/, respectively; see Theorems 1
L oao N and 2 in Section lll. Basically, in these two theorems we prove
ALA%..A that fiy and fy are distributed according to the so-called Haar

invariant distribution, whilefy, is a multivariate polynomial re-
lated to the determinant of a Vandermonde matrix. For the com-
plex case, in Section IV we exploit the specific structure of this
I(Ai) _ { 1, if A4+ BA! (I _ DN)_l C'is stable {J.d.f. together with the yvelll-known cpnditional method, in or(_jer.
0 o construct a polynomial-time algorithm for sample generation;
see Algorithm 1. For the real case, the problem turns out to be
and compute the empirical probability more difficult and not easily tractable with these techniques and
N arejection-based algorithm is presented in Section V. However,
. 1 i this algorithm uses the specific structurefefand its rejection
prlp) = N Z I(A ) ) rate improves significantly upon that obtained by a straightfor-
=t ward set overbounding; see also [11]. In Section VI, we study
We recall that the Chernoff bound [14] gives the sample 8ize a numerical example of a flexible structure with one complex
so that the empirical probabilityy (p) is “close” top(p) with  block and two repeated real uncertain parameters and compute

in the set{ A: 5(A) < p} according tofa (A) and the structure
of A. Then, we construct an indicator function

otherwise

7
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the probability degradation function using the proposed tech-Radially Symmetric DensitiesFor A € F™™, we consider
niques. Concluding remarks are given in Section VIl and thbke class of probability densitiesy that depend only on the
Appendix contains the proofs. largest singular value oA

1. DEFINITIONS AND NOTATION Fr ={fa: fa(B) = fa(@(2)- )

In this paper, we denote by” the transpose ah € F»™, We remark that the uniform density in the spectral norm ball

and byA* its conjugate transpose, whefeis either the com- Bo(p) of radiusp > 0is in the classFx, i.e.,
plex fieldC or the real fieldR. The notatiorfA]; », indicates the
(¢, k)th element ofA and, ifm = n, |A| represents the abso- UlB-(p)l € Fr-
lute value of the determinant &X; 7,, denotes the x n identity We now introduce another and more general class of density
matrix, the subscript is omitted when the dimension can be danctions. This is the clas§r > Fx of density functions
duced from the context. The spectral norm ball of ragius 0 which depend only on the singular valuesAf We call this
is defined as classunitarily invariant The name follows from the fact that if
A € C™™ has a unitarily invariant p.d.f., theBA ~ A and
By(p) ={A e F*"™:5(A) < p}. (2) AW ~ A, for any given unitary matrice@ andW.

Unitarily Invariant Densities: Let A € F™™, the class of
Similarly, we denote the norm balls in the Frobenius @gd unitarily invariant p.d.f.s is defined as
norms asBr(p), Boo(p). )

The symbol’(x) denotes the standard Gamma function and, Fr ={fa(d) = fa(@)}. (6)

for continuity, we let

A. Structured Random Uncertainties

-1 . . . . .
r <aj 5 ) As discussed in Section |, the matriis used to describe var-
— = 7/ =2, ious perturbations affecting the control system. In robust con-
Iz —1) trol, the class of allowable perturbations is usually defined as in
z=1 [42]

Re_al and Complex Ranc_iom Matrices: re_al random A = {blockdiag [q1 1, .., q. L., A1, ..., 0]} (7)
matrix A € R™™ is a matrix of random variableg\]; 4,
i =1,...,n;k = 1,...,m. The probability density function whereg; € F,i = 1,..., s are scalar parameters with multi-
fa(A) is defined as the joint probability density of the eleplicity 71,...,7,, andA; € F"™i, 4 = 1,...,b are possibly
ments ofA. A complex random matrixA € C™™ is defined repeated full blocks. The structured matsixs restricted to the
asA = Re(A) + jIm(A), whereRe(A) andIm(A) are real Set
random matrices. The p.d.fa(A) is defined as the joint p.d.f. N o
of Re(A) andIm(A). Ba(p) ={A € A:5(A) < p} (8)

The notationA ~ fA means that\ is a random matrix with that denotes the set of perturbationsdnwith size at mosp.
probability densityf4; X ~ Y is also used to indicate that thegijrst we notice that

two random matriceX andY have the same p.d.f.

Uniform Density: For a measurable s&t A ~ {[S] means T(A) = max{||q||oc, (A1), ..., T(A)}
thatA is a random matrix with uniform density over the et )
That is whereq = [q1,-..,¢s]" and||q]|lcc = max;|q]|. Then, (8)
implies that the vectog is bounded in the set
SR ifAeS
Fa(A) = US] = { vl(s) ! 3) {a: lldlloe < p} )
0, otherwise and the full blocks; are restricted in
yvherevol(_S) is the volume of the sef. If S'is ir_1 a Iingar space (A (A < p, i=1,....b. (10)
isomorphic taR¢, we denote by volume thé-dimensional eu- ' '
clidean measure af. In this paper, we make the following assumptions.
Singular Value Decomposition (SVDGiven A € F™™, Assumption 1:The vectorg and the blocks\; are random
m > n, we use the following normalized form of the SVD ofvector and matrices with independent density functions.
A Assumption 2:The p.d.f. of each matrix block; € F":"™
is unitarily invariant.
A=UXV* 4) The independence assumption implies that the sampling

problem in the ballBa (p) is equivalent to sampling indepen-
wherel/ € F™" andV € F""" have orthonormal columns, dently the sets (9) and (10). For the vector case, sampling in
and¥ = diag(oy,...,0n), Withoy > 02 > --- > g, > 0. the set (9) can be easily obtained with the techniques described
The columns ol are normalized so that the first nonvanishingn [9] and [10], for a class of probability densities having radial
component of each column is real and positive. symmetry with respect td,, norms. The sampling problem
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TABLE | where
REJECTIONRATES FORSQUARE COMPLEX MATRICES
n]2 3 3 5 6 8 10 12 Ju(U) =ui{v: U*Un: i (12)
o | 12 8,640 870,912,000 2016 2026 5eb4d 1e95 2eld8 m—n
:er 8 468 178780  4e8 6el2 223 1e37 leb4 fe(®) =Tefa(®) H ”iQ oo
i=1
I (2-ad) (13)
with several full blocks turns out to be much more difficult and 1<i<k<n
is the main objective of this paper. Also in this case, however, H(V)y=U{V:V*V =1,[V]; >0,
the problem is reduced to sampling the set (10). For this reason, i=1,....n}] (14)
in the next sections we focus on the case of a single full matrix
block A. That is, forA € F™™ we study sample generation in andY¢ is a normalization constant given by
the setB3,(p) according tofa(A).
To further motivate the results of this paper, suppose that one e — 2nqgmn (15)
wants to generate uniform samples of square complex matrices = n ’
in B,(1), using the classical method of rejection from an outer I (n = #)tm — k!
k=1

bounding set, where the sample generation is easier, as sug-

gested in [24]. This is typically done considering for instanceh fis gi . di
the following outer bounding sets The proofis given in Appen X A. . .
Remark: Since the probability of two singular values being

nn. equal is zero, without loss of generality, in the theorem we con-
BF(\/ﬁ) B {A € Alle = \/ﬁ} sic(]jerstrictinequalitiesinthe (?rdering gfthe singular values. For
a similar reason, we exclude the cd$g;] = 0, and impose
Boo(1l) ={A € C"": ||Alloo < 1} the normalization conditiofiv; ;] > 0 on every first element
of the columns ofV. This is in agreement with classical liter-
For these sets, it is well-known thé&,(1) C Bg(y/n) and ature on this topic; see, e.g., [1] where strict inequalities in the
B,(1) C Buo(1); see [22]. Uniform sample generation B  ordering of the eigenvalues of symmetric matrices and a normal-
and inB., can be easily performed using the methods describg@tion condition on the eigenvectors matrix are considered. No-
in [10]. The samples that fall outside the £gtare then rejected. tice that the strict ordering of the singular values, together with
Therejection ratey, which is the expected number of samplethe normalization condition, make the mapping betwaAesmnd
that should be generated in the outer set in order to find opeX, V one-to-one. This property is used in the proof of the the-

and

sample in3,, is simply given as the ratio of volumes orem. In addition, we remark that in the literature the uniform
density over the unitary group is known as the Haar invariant
o vol(Br(v/n)) oy = vol(Bx(1)) distribution [1]. The Haar invariant distribution is the only dis-
vol(B,(1)) ’ vol(B,(1)) tribution with the property that it/ is distributed according to

o ) ‘Haar, themQU ~ U for any unitary@. The relation (12) there-
Table | shows that these rejection rates increase exponentigfys states that’ € C™" is distributed according to the Haar
with the dimensiom. The volumevol(5,(1)) is computed ac- jnyariant distribution for the unitary group. Similarly, the uni-
cording to the formula (22) derived in Section IV, while the for¢qrm gensity over the normalized unitary matrices is known as
mulas for the volumes of the Frobenius and infinity norm ballg,e ~onditional Haar distribution.
can be found for instance in [10]. o The following theorem studies the case whkiis a real ma-

Table I clearly shows the inefficiency of the rejection methogl;,

and motivates the need for more sophisticated techniques fofrpagrem 2:Let A € R*™. m > n > 2 be factored as

direct generation of samples & (o). in (4), withoy, > 03 > -+ > o, > 0, and[V]y,; > 0, for
+=1,...,n. The following statements are equivalent.
[ll. PROPERTIES OFUNITARILY INVARIANT DISTRIBUTIONS 1) The p.d.f.fa(A) is unitarily invariant, i.e.fa € Fr.
In this section, we study the properties of the class of densities2) The joint p.d.f. oft, 32, and V" is
Fr, for full block complex and real matrices. In particular, we
present two key results relating the probability dengity A) Josv(U.S V) = fu(U) fs(X) fr(V) (16)
with the probability density functions of the matridés>:, and
V of the SVD of A. We first consider the complex case. where
Theorem 1:Let A € C»™ m > n > 2, be factored as
in (4), with oy > 05 > -+ > o, > 0,and[V]y; > 0, for  fu(U) =U[{U: UTU =1I}] 17)
¢ = 1,...,n. The following statements are equivalent. .
1) The p.d.f.fa(A) is unitarily invariant, i.e.,fa € Fr. Fo(¥) =Trfa(®) H i H (o7 —0k)  (18)
2) The joint p.d.f. oft/, =, andV is =t Lsi<ksn
AV =U[{V:VTV =1, [V]1; >0i=1,....n}]

Josyv (U V) = fuU)fs(E)fv(V) (11) (19)
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andTg is a normalization constant given by with
Tc
Ke=———-——. 22
) ’f;l (k=1 © 7 Vol(B,(1)) (22)
(8r)yim-1/2 " “ 2 L .
R= " on(miD)/2 T 1) H TE—1) The value of the normalization constafiic is related to the

k=m—n+1 solution of a multiple integral known as the Selberg integral (see
(20) [27] and [35] for details on the derivation), and is given by
The proof is given in Appendix B.

Remark: Similar comments to those of the complex case can Ke —on H Fim+i+1)
be made regarding the distribution of the matriteandV". We c= 2G4+ 0ré+m—-n+1)
remark that Theorem 2 is a generalization of the results reported =0
in [1] and [27], which deal with the special case of real and/e remark that from (22), using (15) and (23), we can compute
symmetric matrices. Related results can also be found in [d0]closed form the volumeol(B,(1)) of the complex spectral
and [23]. ball of unit radius.

In the next sections, we provide algorithms, based on The-For our subsequent developments, it is convenient to remove
orems 1 and 2, for the generation of uniform samplego& the ordering condition on the singular values. The so-obtained
F™™ in the spectral norm ball of unit radius, (1). We notice unorderedp.d.f. is given by
that uniform samples i8,, (o) are simply obtained multiplying
by p the samples generated uniformly 3 (1). As discussed f(‘”(z) KC H g2mmmH H (o7 - 02)2 (24)
in [9] and [10], any radially symmetric density in the spectral i=1 1<i<k<n
norm may be generated starting from the uniform density on

B,(1). The relation between the uniform density and a genet’f@ere,() < O 5 Li=1, oo The f{;\ctorial term in the above .
radially symmetric density on the suppdi(p) is given in the equation is simply obtained observing that the ordered case is
following lemma one of then! possible permutations of theunordered singular

Lemma 1:Let A € F™™ be a random matrix with uni- v&lues. We now introduce the change of variables
form distribution ovei3,(1), and letz € R be an independent 2 i=1.2

n—1

(23)

random variable with p.d.ff. (=) over the suppoff0, p]. Define A S
the random matrix Applying the rule of change of variables for probability densities
(68) in Appendix F, the p.d.ff,, of the random vector =
A=_2_A (€1, 22 z,]7 is given by
E(A) - 1 yrr e dbn
Then, the p.d.f.f5(A) is radially symmetric in3,(p), i.e., fol) =1 [ o™ ] @i-a)?  (29)
fa(A) = fa(r), wherer = 5(A), r € [0,p], and in partic- =1 lsicksn
K, = K
By = — L0 R
. vol(B,(p))r—td We remark thatf,(z) can be written in terms of the
. . . determinant of a Vandermonde matrix. Given a vector
whered is the dimension of ™. z = [o1,z 2n]T, we let
A proof of this lemma may be found in [9] and [10]. TRzt
1
IV. UNIFORM SAMPLE GENERATION: COMPLEX CASE L
. 2 )
In this section, we show how to generate the samples of com- X = Xi(w;) = xf , i=1,....n
plexA, by first generating the samples of the SVD factGrg, :
V according to their respective densities, and then constructing gz L
A = UXV*. We first concentrate on the generation of the sin- !
gular values of full block matriced € C™™. and, fori = 1,...,n, we define the truncated Vandermonde
matrix V; as
A. Generation of the Singular Values Vi = Vi(er,ma, . wi) = [y, Xo, ., AL (26)
Assume that the matrid € C™™ is uniformly distributed .
over the seB3, (1), see (3). Then from Theorem 1 the p.d.f. 0f:learly,v depends only on the variables, x2, . .., z;, while
Yis V,, is the standard Vandermonde matrix assomated with the

vector . Then, by well-known properties of Vandermonde
n ) determinants, we writg,.(z) as
fz(z) =Kc¢ H ai?(m—n)-l-l H (aig _ 0’%) 7

= 1icksn fol@) = KaVal? [T oy (27)
1>01>00>--->0,>0 (21) I[l )
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We now concentrate on the generation of random samples dis€orollary 1: Letxy, zo,. .., z;_; be fixed, then the marginal
tributed according to (27). density (31), evaluated ity , o, . . ., z;_1, IS given by the poly-
A standard method for random generation with multivariatgomial inx;

distributions is the so-called conditional method [17], [34]. The

2(n—1)

basic idea of this method is to generate the first random variable, pilx;) = Gz " Z bzt (32)
then generate the next one conditional on the first one, and so ‘ =0
forth. _In other word_s, the conditional method_ reducesati- The coefficients, are given by
mensional generation problem#oone-dimensional problems.
However, it requires the computation of the marginal densities, by = bx(x1,...,%i—1)
which is often a very difficult task [18]. For the sake of com- Z [Wi_i]ne, k=0,...,2(n—1) (33)
pleteness, the conditional method is recalled below. (remh+2) ’
The Conditional Method:A joint p.d.f. f,.(x) can be written ]
as being
Ky (n—1)!
fm(.’tl,...,l’n) Ifl(.Tl)fQ(.’L’Q|.’L’1)...fn(.’1'n|.’1'1....’1'n_1) C(0: |M| ; WOIM
where f;(z; | «1,...,2,—1) are the conditional densities, de-and, fori = 2,...,n
fined as the ratio of marginal densities
g Ci1 =Ci 1(3?17-- ) Tj 1)
filas | aicy) = ) (o) Kaln =0 g H (34
fica(zr, .o zit) |M| i—l Ly
The marginal densitieg; (1, . .., z;) are defined as Wi_i =Wi_1(z1, .. .,xz_l)
=M - MV, Z, VI M (35)
fi(xlv'“v / /fa} L1y & dxz+l dwnv Zi 1 =2Z;_ 1(.’1’1,.. -Ti—l)
i=1,. (29) =V MV, (36)
A vectorz with density f,.(x) can therefore be obtained generMoreover the following recursion holds:
ating sequentially the;’s, i = 1, ... ,n, wherez; is distributed 1 2(n—1)
according to the univariate densify(z; | z1,...,%;_1). pi(®;) = pi—1(xi-1) pe— a7y beaf. (37)
k=0

The following theorem and its corollary provide a closed form

expression for the marginal densities of the multivariate densifyre proof of this result is reported in Appendix D. We now make
function f,(z) defined in (27). These results provide a direca few remarks regarding Theorem 3 and Corollary 1.
computation of the conditional densities that are needed for theRemarks:

application of the conditional method.
Theorem 3: Let f.(x) be given by (27), then the marginal

1)

density
1 1
fi(xlv"'vxz):/ / fm(xlv"'vxn)dxi-l—l---dxn
0 0
(30)
is equal to
— ( T —-n
filwyy ooy wi) = Ky |M| |y MV|H @)

whereV; is defined in (26), and/ = R~!, beingR a constant
symmetric matrix defined as

1
r+fb+m—n—1’

(R]re = rl=1,...,n.
The proof of this theorem is reported in Appendix C.

Therefore, to compute the marginal density (31), one first
needs to compute the determingM! MV;|. To this end,
we now express this determinant separating the variables
z1,...,x;_1 from the variabler;, as detailed in the following

corollary.

The contribution of Theorem 3 is to give a closed form so-
lution for the multiple integral (30). In particular, in order
to apply the conditional method, it is useful to express
fi(z1, ..., x;) in the form of (32), where we separate the
variableszy, z», ..., x;_1 from the variabler;. In fact,

at theith step of the conditional method, the variables up
toi — 1 are given, and only the dependenceagnis re-
quired. In this case, (32) represents a polynomial in the
x; variable, whose coefficients, and the multiplicative
constant”;_; can be easily computed according to (33)
and (34), once the values of, zo, ..., 2;_; are known.
We observe that fak > 2 the quantitieg Zy| andZ,:1
appearing in (34) and (35) can be computed recursively,
so that no matrix inversion or determinant computation is
required. In particular, we have

. Zioy  VE MXy
XMWV, XEMX,

Using the block matrix inversion formula, we obtain
Z,'as shown in the equation at the bottom of the next
page, and

|Zx| = 6x|Zx—1|

wheres,, = X' W1 X is a positive number.
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3) We notice that combining (28) and (37), a closed form ex- In this algorithm, eachr; is generated according to a uni-
pression for the conditional density can also be obtainedariate polynomial density. Standard and efficient algorithms
for the generation of samples distributed according to a given
polynomial density are available in the literature. Among these
techniques we recall the classical inversion method [17], [34].

2(n—1)
filzi|z1, ... xim) = K" ™" Z bi(xe,. .. x)ah
k=0

where B. Generation of Haar Samples
(n— 1)

K, = CoML
(n—i+ 171 fori=2,...,n.

In this subsection, we concentrate on the generation of the
(38) samples ot/ andV according to the distributions (12) and (14).
We first consider the problem of generating uniform Haar
samples of unitary» x n matrices. From the discussion fol-
An explicit algorithm for the generation of samples of the sirnewing Theorem 1, we have that the distributionléfmust be
gular values distributed according to the p.d.f. (24) is now givethe same of the distribution & U, for any given unitary matrix
Algorithm 1 (Singular Values Generationf random vector ¥, Consider a random matri¥ € C*" = Re(X)+j Im(X),

fori=1

0 = [01,09,...,0,]" distributed according to (24) can be gensych that the elements e(X) andIm(X) are independent
erated via the following algorithm. and normally distributed with zero mean and variance equal to
one. The invariance property of the normal distribution under
¢ Initialization. unitary transformations implies that, for any unitary matiix
>i«— 1;Wo«— M; where M is defined in the distribution of W X is the same as the distribution &f.
Theorem 3. Now, we letX = QR be theQ R factorization ofX, where the
¢ Generation. diagonal entries oR are set to be real and positive in order to
>Let by« Z Wicilresk=1,...,2(n —1).  make the representation unique. Thenj}aX ~ X, it follows
{r+é=k+2} that W@ ~ @Q; that is, @ is distributed according to the Haar
> Generate z; according to the invariant distribution.
polynomial density This discussion suggests the following simple algorithm for
2(n—1) the generation of samples from the Haar invariant distribution.
filwi oy, .. xim1) = K™ Z bkxf Algorithm 2 (Generation of Haar Samplesf random uni-
k=0 tary matrix 4 € C%4 distributed according to (12) can be gen-
where K; is given by (38). erated via the following algorithm.
¢ Check.
>if i =n then goto [End]. ¢ Build  X. 7
o Update. > Construct ~ X® X3 ¢ R%%, where each
> Construct ~ &; = [1,4,...,2/ '] and entry of X% and X°¥ is an
V= [AL - & independent gaussian variable with
>Llet & «— XTW, 14, zero mean and variance equal to one.
>If i=1 then Z — 6. >X — X®4+ X7
>If ¢ > 1 then ¢ QR.
> 77— > [@, R] — QR(X).
_ _ o _ > Q — Qdiag(e™?1, ¢7I%2 .. ¢7I%), where
Z2+ Z0VEMXXEMY, 1 27 6 ¢; is the p(hase of the (i,i)) element
—(Z A VE MX)T /6 of R.
_Zi,_—ll V7‘,T_1M-Xi/6i ¢ End. Return H «— Q.
1/6; This algorithm is one of the simplest methods for the gen-
> |Zi| «— &) Zi_1]. eration of uniform unitary matrices. Other known methods are
>W;, — M- MV,Z'VIM. based, for example, on products of elementary Euler transfor-
¢ Loop. mations; see, e.g., [44].
>4« i+ 1; goto [Generation]. We remark that the Haar distribution may be introduced also
¢ End. for rectangular matrice¥ € C™ ™ having orthogonal columns.
>Return o = [\/1,..., /T, |1 In this case, it can be observed that uniform sampleX @fn

Zl:—ll + Z;jlvg—lMXkXEMkalzl:l/6k _Z;jlvg—lMXk/ék

ZA_1 =
" - (ZIZE1V1€71MXk)T/5k 1/8
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be obtained from uniform samples of a square< m unitary In order to decouple the domain of the variables of the bounding
matrix, neglecting the lasth — » columns. This fact follows density, we introduce the change of variable

from properties of the unitary group; see for instance [23, Ch. o

5] = 04—

We next consider the generation of conditional Haar samplf%sF '
of m x n matricesV’. Notice first that the normalization condi-
tion [V],; > 0 may be written a§” = V' D, whereV € C™"
is a (nonnormalized) unitary matrix, arid is a diagonal uni-
tary matrixD = diag(e=7% ..., ¢77%), where#; is the phase d
of [V];;. Using a technique similar to the one in the proof of oi(z) = H Lh- (43)
Theorem 1, it can be shown that¥if is distributed according k=1
to the Haar distribution, thel is distributed according to the Applying the rule of change of variables for probability
conditional Haar distribution. Samples of matrices drawn frogtensities (68) in Appendix F, the p.d.f, of the vector
the latter distribution may therefore be obtained normalizing the= [z1, 72, ... ,xn]t is
samples drawn from the Haar distribution. n

(@) = foor(a), .. on(@) [T = (44)

=1

i=1,...,nandog = 1. Notice that the domain of the new
variablesz; is the interval(0, 1] for ¢ = 1,...,n. The inverse
transformation is given by

V. UNIFORM SAMPLE GENERATION: REAL CASE

ing (42), btain a bounding function f;
We consider first the generation of the singular values offul]fsmg( ) we obtain a bounding function ()

block matricesA € R™™ and then the generation dfandV'. fz(z) < ~f.(2) (45)

A. Generation of the Singular Values wheref (x) is the dominating probability density, given by

Assume that the matrid € R™™ is uniformly distributed Julx) = H (1+ /3i)xfz- (46)
over the sef5,(1); see (3). Then, from Theorem 2 the p.d.f. of o1 ’
s

andg; = (m+n)(n—i+1)—nn+1)+ii —1)+n—1i;i =

n 1,...,n. The constant is given by
o) =Ke [[or™ I (o7 -0i), Ke
i=1 1<i<k<n V= 47
1>201>00>--->0,>0 (39) H(1+/37)
=1

ith : - .
W We remark that the density functigf),(z) is such that the:;'s

Tr are independent. Therefore, the generation of a random vector
vol(B,(1)) (40) distributed according tg,,(x) may be efficiently performed ac-
cording to the techniques described in [17]. We report below an
The normalization constadty is related to the solution of the algorithm for the generation of random samples of the vegtor

Kg =

Selberg integral, and is given by which is based on-dimensional rejection from the dominating
density f.(x).
Kg =nlr"™/? Algorithm 3 (Singular Values Generation)A random vector
< m+ L) o =loy,00,...,0,]% distributed according to (39) can be gen-
n—1 I'{1 =+ . . .
2 a1) erated via the following algorithm.
gp<§+i>r<w>p<l+i>' ( .
9 9 9 2 ¢ Generation.
>For ¢=1,...,n: Generate w; ~U[[0,1]],
We remark that from (40), using (20) and (41), we compute in ~ and compute xz; = wd/1+9),

closed form the volume of the real spectral ball of unit radius® Computation of  t. _
In this case, the closed form computation of the multiple in- >t «— (f,(z)/f=(x)) with f_(z) given by

tegrals needed for the application of the conditional method (46) and  f.(x) given by (44).

cannot be performed with the techniques developed for the cofn-Rejection.

plex case. In this section, we develop an algorithm based on the > Generate u ~ U[[0,1]].

rejection method from a dominating density; see [17]. First, we > If wut <1, compute o(z) according to

find an appropriate bounding function for the probability den- (43) and return o.

sity of the singular values. It can be shown that (39) is bounded ©> Else goto [Generation].

from above as follows
" It can be shown [17] that the expected value of the rejection

f=(2) < Kg H Ui?(n—i)+m—n_ (42) rate, i.e., the expected number of iterations needed to produce a

1 valid vector, is given byy. This fact can be used to compare the
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TABLE 1l 1.01 . T T T T T
COMPARISON OFREJECTIONRATES FORSQUARE REAL MATRICES ; : : : :

n | 2 3 4 5 6 7 8
v | 1.5 5 43.75 1102 84893 27 1lel0
vy ! 3 267 640 4ded 6e6  2e9 2el2

L) IRTUPRUNTS SR, e o NG B J

08BE v ee e O X A .
rejection ratey of Algorithm 3 with the one obtained by simply : ' : : :
overbounding the ségf, (1) with the Frobenius balBr(/n).
The two rejection rates and~x are compared in Table I, for
square real matrices of order From Table II, we see that the
proposed algorithm improves upon the standard rejection frc
the Frobenius norm ball. We notice, however, that the grow
is still nonpolynomial and this is in contrast with the algorithn
derived for the complex case, which is polynomial-time. Furthi :
researchis therefore needed to derive aresultsimilarto Theor %% 04 e biisic adhe o8 oes o7
3 for the computation of the marginal densities in closed form;
see the new framework proposed in [12] for the solution of thgy 1. Estimated probability degradation functia).
real case.

Next, we present an algorithm similar to Algorithm 2, for the
generation of orthogonal matrice$ distributed according to 1akinge = 6 = 0.01, by means of the Chernoff bound, we ob-
the Haar density. This algorithm is based on the QR decomgglnedN > 26 492. Subsequently, for this sample size, using

probability d

o

©

<
T
i

sition and is reported also in [36]. thg algorithmg given in Section 1V, we estimqted the proba-
bility degradation functiom(p) for 100 values op in the range
B. Generation of Haar Samples [0.35, 0.70]. This plot is shown in Fig. 1 together with the lower

. . bound of the deterministic robustness margin. From this plot,
Algorithm 4 (Generation of Haar Samplesf random or- : P
. o ; we observe that if a 2% loss of probabilistic performance may
thogonal matrixd € R?-7 distributed according to (12) can beb | d. then th bil . be | d of
enerated via the following algorithm € tolerated, then the stability margin may be increased of ap-
9 ’ proximately 56% with respect to its deterministic counterpart.
In fact, the risk adjusted stability margin fgr* = 0.98 is

¢ Generation of  X. p(0.98) ~ 0.62. In addition we notice that the estimated prob-
> Construct X € R%?, where each entry ability is equal to one up tp ~ 0.47. We conclude that in this
of X is an independent gaussian example the upper and lower bounds.oépproximately coin-
variable with zero mean and variance cide, so thatl /.. is a nonconservative deterministic measure of
equal to one. robustness but this measure turns out to be quite conservative in
> [Q, R] — QR(X). a probabilistic sense.
> Q — Qdiag(sy, s2,...,,), where s; is the From the computational point of view, the proposed proba-
sign of the  (¢,i) element of R. bilistic algorithm is polynomial-time. The computational cost is
¢ End. Return H < Q. proportional to the cost of generating one sample of uncertainty,
and a crude Matlab implementation of the algorithms in Sec-
VI. NUMERICAL EXAMPLE tion IV required aboug x 10* flops for generating one sample

. . . Oof A, € CH4,
We considered an example concerning a five masses spring-

damper model with parametric uncertainty on the stiffness and

damping parameters, and complex uncertainty due to unmod- VIl. CONCLUSION
eled dynamics [8]. This flexible structure may be modeled as
an M-A configuration, withM (s) = C(sI — A)"'B + D, In this paper, we studied randomized algorithms for robust-

where the matriced, B, andC are given in Appendix H, and ness analysis in the presence of general uncertainty structures.

D = 0. The matrixA consists of two repeated real parameterghis approach may be used in conjunction with standard

q1, g2 and one full complex block; € C** worst-case techniques, in order to obtain additional information
about the probabilistic degradation of system performance

als 0 0 when the uncertainty level goes beyond the deterministic
A= 8 QQOI5 AO margin. In particular, polynomial-time algorithms for the gen-
1

eration of matrix samples have been presented for the complex

For thisAM-A system, lower and upper bountigu+ and1/,~  €ase- For the real case, a rejection algorithm was proposed,
of the robustness margih/y have been computed with theWhile a different framework for a closed form solution has been

Matlab ;-Analysis and Synthesis Toolbox obtaining introduced in [12]. _
Current research is directed toward the extension of the

1/t ~1/p~ ~0.394. proposed approach to the synthesis of probabilistic robust
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controllers and to the development of probabilistic optimizatiodl/* I/ + U/*dl/ = 0. Similarly, if m > n, S,, can be partitioned
algorithms. as

APPENDIX Sy = [ S'i }
Q

A. Proof of Theorem 1 where S, = V*dV € C™" is skew-Hermitian, and} =
Consider the transformation given by the SVD offt’*V; ¢ C*™ " The matrixZ is finally rewritten in the form

A = UXV*, defined in (4). The strict inequalities in the

ordering of the singular values, together with the imposed Z = [Su3 — £8, + d% | 2]

normalization conditions on the columns &f, make the “ v '

mapping betweer\ and/, %, V' one-to-one; see for instance

[22, Section 7.3]. The joint p.d.f. in the new variabléss, v Clearly, ifm = n thenS, = S, andZ = [Su; — X5, +dx]. _
may be obtained applying the rule (68) in Appendix F, Let now examine the number of free variables that describe

the quantities of interest. The mateixis described by means of
2nm real variables. The unitary matrix is described by means

fozv(U 5, V) = fa(Z)J (U5, V3 A). (48)  of n. = n? real variablesY. is described by means of its
diagonal entries, therefokéis described by the remainimg, =
The differential ofA is given by 2nm—n?—n real variables. Since an x n complex matrix with
orthogonal columns is described Bym — n? variables [23],
dAA=dUZV*+UdEV* 4+ UZdV*. (49) we notice that the normalization imposed in (4) on the columns

of V fixes n of the free variables. The differentialé’, dV, dx
If m > n, letV; € C™™=" besuchthal’ = [V'| Vi]is unitary, &€ described by the_s*ame number of free \_/ariablé,s Hsand
otherwise ifm = n let V = V. Then, multiplying (49) by > ThereforeS, andS,, = [S7 | ] are described by, andn.,
on the left and by on the right, we obtain varlables,_respectlvely. S_ln@bl is real _dlagonal, we choose its
n free variables as the diagonal entrigs= do;, 1 < ¢ < n.
Since S, is skew-Hermitian, we choose thg, free variables
pk | 1, as the coefficients of the standard orthonormal basis of

_ . . the space of. x n skew-Hermitian matrices. In particular
Now, using the rule G.2 in Appendix G, we have that

J(U, S, V;A) = J(dU,d%, dV;dA), and applying the chain n
rule for Jacobians G.1, we have further S, = Z (R BE + 13.B3) + Z 1> D;
1<i<k<n i=1

Z = U*dAV = [U*dUX | 0] + [d2 | 0] + 2dV*V.  (50)

J(AU,dE, dV;dA) = J(dU,d%, dV; Z)J(Z; dA). ]
whereBX% | B3, andD; are the elements of the basis. Denoting
Since by G.5J(Z;dA) = 1, we have that the Jacobian we ar®Y Eix ann x n matrix having one in positiofi, k) and zero

interested in is equal to otherwise, the elements of the basis are defined as
J(U,E, Vi A) = J(dU,dE,dV; Z). (51) B?,Ei%(Eik—Eki), 1<i<k<n
Next, we rewrite (50) in the form B = % (Eik + Eri), 1<i<k<n
D; = jEy, 1<:<n. (53)

Z =[9,2|0]+ [dx|0] + =57

where Similarly, considering that the matrix, =[S} | Q]* is the first

S, =UU e €™, S, =V*dV e C™™. (block) column of thelm x m) skew-Hermitian matri®’*dV’,
we choosen? — n free variables/}; , 3 such that
Since, by G.5, the Jacobial{dl/, d%, dV; S,,, d%, S.,) is equal
to one, applying again the chain rule, we have . n -
S, = Z (L/?,EB?,E + 1/[,2B[,2) + Z hi(l/SR, v3)D;
=1

J(dU,d%, dV; Z) 1<i<k<n

= J(dU, dE,iV; Sy A%, 50)J (S, A%, 503 Z) whereh;(1® %) is some function of the variable€', »~. The
= J(5u,d¥, 5y; Z). (52)  remainingn, — (n? — n) = 2n(m — n) free variablesg® , ¢
are needed to descrilsg
We now concentrate on the evaluation .6fS.,,, d%, S,; Z).
First, notice thats, is skew-Hermitian. This is easily 1

seen by differentiating the identity/*UU = I, obtaining [@lir = /2 (@ +jgix), 1sisnml<ks<m-—n.
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The (i, k) element ofZ may now be expressed as Now, from (48), (51), and (52) if follows that
( (u?z —i—ju;‘\}e) rfk/\/i — (1/?2 —1—‘7'1/5&‘) UZ/\/Q Josv(U, S V)
1<i< k <n — s 2(m—n)+1 2 242
5 g = fa(¥)2rt=m H 7 H (o7 —a%)".
(—pf + i) on/ V2 + (1 —gvid) oif V2 i=1 1<i<k<n
1<k<i<n 54
(% = 4)

i+ {midigi - ﬂ?i(’/%’ V2o From (54), we immediately obtain th&t ¥, V are statistically
i=kls<isn independent, and therefore (11) is proved. It also follows that
(R +3jq3) oi/ V2 andjfy- are constant over their respective domains, which proves
L r=k-n;1<i<n n<k<m. (12) and (14). Finally, integrating (54) with respectdd and
dV we get the marginal density (13) as

To compute the Jacobiah(S,,,dY, S, ; Z), we construct the . .
scheme of partial derivatives shown at the bottom of the page, fx(3) = / / Jusv (U, X, V)dU dV

where where "
=Tcfa®) [[ 2" I (- o?)*

1 . . .
C = 7 blockdiag(diag(os,...,0,),diag(os, ..., on), ..., i} L<i<h<n
diag(op_1,00),0n) (55)
D= L blockdiag(o1 1, 1,000 —2,...,00_2l3,0,_1) whereY ¢ is a constant computed as follows. I&t(n) be the
\/15 unitary group of order., and letC,, ,, be the complex manifold
F = — blockdiag(o1 Lny—n,02lm—n, - o, 0n—1Lm—n, Coin =V € C™" : V*V =1;[Vl1;, >0,i=1,...,n}
V2 Then, the volumes of these two sets are given by (see for in-
Ondm—n)- stance [23])
The matrix of partial derivatives is block triangular, therefore _ n(nt1)/2 . 1
the matrices?®, H™ do not affect the value of its determinant, vol(Gu(n)) = (27) kI:[l (n —k)!
which is given by (27r)rnn—n(n—l)/2 n 1
¢ -p|| ¢ D vol(Cmn) = (2n)" I (m— k)
<q . _ 2 - s = m — .
J(Su,dX, S,; Z) = |X] |F)| D CH—D —C" k=1
Therefore, from (55)
Using Schur complement, we have that
Te = 247 vol(Gy (n))vol(Cy )
J(S,,d%, S,; Z) _ 2t
_ 2| 2 22 i '
= [lFP|e” - o7 [ (7 - &)(m - k)
= gn=m TT o2 [ (02— 0})”. -
el ‘ 1<i<k<n This concludes the proof of Theorem 1. O

Re([Z]:x Im([Z]:x
Re(1Z):) Wm((Zl) | Re((Zlw)  Re((Zlw) | ma(Z)a)  Im((Z]e) ) )
. . . . . i 1 <2< my 1< <n;
1<:<n 1<i1<n | 1<i<k<n 1<k<i<n |1<i<k<n 1<k<i<n -~ - -
- T B - - - - - - - 1<n<k<m 1<n<k<m

" 0 0 0 0 0
M 4 _4 0

1<i<n

®
ik 0 0 c -D 0
v

. 0 % -D C 0

1<i<k<n
s 0 0 0 c D 0 0
v

ik 0 s D _c

1<i<k<n

®

e 0 0 0 0 0 0
o 0 0 0 0 0 0 F
1<i<k<n
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B. Proof of Theorem 2 The (i, k) element ofZ may now be expressed as

This proof follows the lines of the one given for Theorem 1.

o . PikOk — Vigoi, 1 <i<k<n
Indeed, the derivation up to the expressiorZads

— Ok + Vo, 1<k<i<n

= - [Z]ix = < i i=k1<i<n
Z= Bz s il Qir s, r=k—n; 1< <n;
is identical to the complex case, considering that all the involved n<k<m.

gquantities are now real, arttj,, S,, are skew-symmetric. In par-

! i To compute the Jacobiah(S,,,d¥, S, ; Z), we construct the
ticular, we have again that

scheme of partial derivatives shown at the bottom of the page,

JU, S, V) = J(S,,d%, S,; Z). (56) where where
1 o ,
We now examine the number of free variables that describe the= 72 blockdiag(diag(os, . .., 0y,), diag(os, ..., 00), .-,

quantities of interest. The matrix is described by means ofn
real variables. The orthogonal matiikis described by means
of n, = (n/2)(n—1) real variablesY. is described by means of D = — blockdiag(c1l,—1,020h—2, ..., 0n—212,0,_1)
its n diagonal entries, therefolé is described by the remaining \/15

ny =nm—(n/2)(n—1) —n=n(m—-n)+(n/2)(n—-1) F=——blockdiag(o1lm_n,T2Lmn,--Tn_1lm_n,
real variables. The differentiad&’/, dV, d% are described by the V2

same number of free variables as, respectiviglyy’, and .. Fndim—n)-

Therefore,s,, andSZ = [ST'| Q] are described by, andn,,
variables, respectively. Sine& is diagonal, we choose its
free variables as the diagonal entrigs= do;, 1 < ¢ < n

diag(0n—1,0n),0n)

The matrix of partial derivatives is block diagonal and therefore
its determinant is given by

Since S, is skew-symmetric, we choose thg free variables _ C -D
ik, as the coefficients of the standard orthonormal basis of the J(Su, d%, 50 Z) = [X] | F| -D cl-
space ofr x n skew-symmetric matrices. Therefore, using the
notation introduced in (53), Appendix A, we write Using Schur complement, we have that
1<i<k<n = |2||F||C* — D?|
Similarly, considering that the matri%, = [S7 | Q]" is the first — on(l—-m)/2 H o H (07— 0f).
(block) column of thém x m) skew-symmetric matrix’*'dV/, iy \<i<h<n
we choosex(n — 1)/2 free variables/;;, such that _
Now, from (56) if follows that
SVU = Vsz?]E
lﬁgﬁn fU,E,V(Ua Ea V)
The remaining,, — n(n — 1)/2 = n(m — n) free variables, = fa@2i I o [ (67 -02). B7)
qix, are needed to descrilig i=1 1<i<k<n
o1 L<i<nm 1<k< From (57) we immediately obtain that =, V' are statistically
(@i = V2 ik =t iSRS men. independent, and therefore (16) is proved. It also follows that
yAm
1<i<n |1<i<k<n [1<k<i<n ==
- - - - - - 1<n<k<m

s

1<i<n I 0 0 0

Hiks _

1<i<k<n 0 ¢ p 0

Vik; _

1<i<k<n 0 D ¢ 0

ik

1<i<n 0 0 0 F

1<n<k<m
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andfy- are constant over their respective domains, which proviest now A be given by

(17) and (19). Finally, integrating (57) with respectdid and
dV we get the marginal density (18) as

f=(%) I/"'/fb',z,vf(lf727v) au dv

[I

1<i<k<n

n

= Tnfa(S) [[ o7

=1

(o7 — i) (58)

whereTg is a constant computed as follows. Iggt (n) be the
orthogonal group of ordet, and letR,, ,, be the real manifold
R ={V €R™: VIV = [;[V]1; >0,i=1,...,n}

Then, the volumes of the two previous sets are given by (see for

instance [23])

k-1
vol(Go(n)) = (8r)r(n=D/4 lj < )

k-1
(8r)mn/2—n(nt1)/a T @

W Ryrn) =
VolRom.n) on T(k—1)
k=m—n+1
where, for continuity, we assume
k-1
——= 2 =2

T(k—1)

k=1

From (58) it finally follows that

Tr = 2"/ 2v01(Go (n))vol( R )
k—1
(87T n(rn 1)/2 » F<—>

m

I1

2n(m+1)/2 Ik —1) (k—1)
k=m—-—n+1
This concludes the proof of Theorem 2. O
C. Proof of Theorem 3
Let us rewrite (27) in the form
fr(x) = KT|V3VN/| Nn(x)
where, fork = 1,....,n
k
o) = [ o (59

For any nonsingular matrid, A = A7 A is symmetric and

fol@) = = [VIMV, | pin(x (60)

IMI
Define further
fork=1,...,n

Zy = VMV, (61)

RO (0) O) O

ag as an_q
1 1 1 1
e |,
n—1 n—1 n—1 n—1
0 g
then
Lo(z;)
Ll(.’rz)
AX; = | Lo(z;)
Ly 1(x;)
whereLy(xz;) are polynomials of degree — 1
Lk(azz)—aék) (k)a: +a(k) 24 S)lx ’

k=0,...,

We choosed such that the polynomials,(z;),k =0,...,n—
1 form an orthogonal polynomial basis on the interval €
[0, 1], with respect to the weight functioef* ™. That is,

1 .
1, ifk=nh
Ly(z)Lp(zs)x " dx; ’ :
/0 ki) Lz, {O, otherwise

fork,h =0,...,n—1. This condition may be written in matrix

form as
1
A < / XX da:i> AT =71
0
and the integral term is easily evaluated as

1
[R],.c { / XX e da:z}
0 r,€

1
r+fl+m—n—1’
Taking the eigenvalue decomposition of the symmetric matrix
R = PAPT with P orthogonal, it follows immediately that the
orthogonality condition (62) is satisfied for

A=A"12PT
thereforeM = ATA = PA—'PT = R—L,

It is now straightforward to show that the mattty, satisfies
the conditions of the Dyson-Mehta Theorem for the integrals

n—1.

(62)

rd=1...,n.

of certain determinants; see Appendix E. In particular, we have

that
n—1
[Ze)i; = Li(wi) La(s) = (i, x))
k=0
and

1
/ (s, xp)x ™" dey = n.
0
Therefore, from Theorem 4 in Appendix E we obtain
1
/ | Z (@1, ..o x|y " dag
0

=(n—k+1)|Zp_1(x1,...

1Sincedet(Zy) is always positive, we writgZ,,| = det(Z4).

7xk—1)|- (63)
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Applying (63) recursively fok going backward fromto:+1, whereZ,,_; isthe(n — 1) x (n — 1) matrix obtained froni,,

we have that by removing the row and the column containing.
y g ng
/ / \Zo (@1 2| (o4 - 20) ™" dziss ...z, - Transformations of Random Variables
\ Let X andY be two random matrices with the same numter
(n = Ziay, ..., 2i)l. of free elements, ..., z, andy, . .., y,, respectively. Let the

p.d.f. of Y be fy-(Y"), and letX,Y be related by a one-to-one
transformatiort” = g(X). Then, [1] the p.d.ffx is

pi(w)| Zi(@1, ... 2i)|. (64) Ix(X) = fr(9(X)J(X;Y) (68)

The proof is then completed substituting (59) and (61) in thwhere the Jacobias(X;Y) is defined as

By means of (60) we obtain the marginal density

(n—14)!

fi(xlv v 7xi) = Kac
| M|

above expression. O . 9y 9y
8371 8371 8371
D. Proof of Corollary 1 % % %
Let Z; = VI MV, and recall thaV; = [V;_1 X;], then J(X;Y) = dry Oy Iz
p Ziy VE MAX; : : ;
%] = XMV, XTMAX; | oy Gy Oy
) ) Oz, Oz, Oxp,
Using the Schur rule for the above determinant we get ) )
More generally, if X;,...,X; and Yi,...,Y,, satisfy
|Zi(x1, - x)| = |Zi1(z1, .o, w4 1)) the equationsY; = g;(z1,...,2%), ¢ = 1,...,m, and
XTW_ X i=2.....n (X1, X,), (Y1,...,Y5) haye the free elements
- ' R x1,...,%p and yi,...,y,, respectively, then the Jacobian
|Z1(21)| = AT M, (65)  of the transformation frondXy, ..., Xg) to (Y1,...,Yy) wil

where the matrix be denoted ag (X, ..., Xy; Y1,...,Y,).

G. General Properties of Jacobians

For completeness, we state here some basic properties of Ja-
contains the variables up to— 1. The term&x'W,_; X; can cobians that are used in the proofs of Theorems 1 and 2. The
be written as a polynomial in the variahle, with coefficients proofs that are not reported here can be found in [16] and [29].
depending oy, ..., z;_1. It is straightforward to verify that ~ G.1: Chain rule for Jacobians
these coefficients are given by the sum of the elements of the
anti-diagonals o#V;_1, that is J(X5Y) = J(X;2)0(Z:Y).

Wii=M-MV,_Z " VE M

2(n—1) G.2: Given a matrix transformation (linear or not)
XTW,_ X, = bk 66) Y = FI(X), then the transformation of the differentials,
’ ' kz::o B (66) dY = dF(X) is linear, and
where J(X;Y) = J({dX;dY).
by, = Z [Wi_i]oe, k=0,...,2(n—1). G.3: The Jacobian of the transformation
{r+f=k+2} YV = AX
Combining the expressions (64)—(66) we therefore prove t!% m o :
ereX ¢ R A € R™™, isgiven b
statements (32) and (37). O < < IS giv y
J(X;Y) =|4|™.

E. On the Integral of Certain Determinants

In this Appendix we report a result on the computation of th%imilarly, the Jacobian of the transformatiéh = X B, with

integral of a determinant. The proof of this theorem can be found € R™™, is given by

in [27]. J(X;Y) = |B|".
Theorem 4 (Dyson—Mehta).et Z,, € R™"™ be an x n sym-
metric matrix such that G.4: The Jacobian of the transformation
1) [Z)i; = ¥(xi, 25),1.e.,[Z]; ; depends only om; andz;; Y — AXB
2) [ (x,z)du(z) = c
3) [y(z, (Y, 2) duly) = ¢¥(z, 2); whereX € R™™, A € R»", B € R™™, is given by

wheredy: is a suitable measure ands a constant. Then .
J(X3Y) = |A["(B]".

/det(Zn) dp(zn) = (c—n+1)det(Z,—1)  (67) Remark that ifA andB are orthogonal, thed(X;Y) = 1.
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G.5: The Jacobian of the transformation Proof: To prove this, first note that, by G.I(X;Y) =
J(X;2)](Z,Y), whereZ = AX. Write the linear equation
Y — AXB % = AX in terms of the real and imaginary parts of the terms
Re(Z)| _ i Re(X)
whereX € C™™, A € C™", B € C"™™ is given by Im(Z) Im(X)
vt 19 then, by G.3,J(X;Z) = |A[*". By a similar reasoning
Notice that, if A is unitary, then it can be easily seen thht
where is orthogonal. Therefore, fot, B unitary, J(X;Y) = 1.
i Re(A) —Im(A) A Re(B) —lLm(B) H. Plant Data for the Numerical Example
" | Im(A) Re(4) |’ " |Im(B) Re(B) |’ See equations (A), (B), and (C).
[0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
—200 100 0 0 0 -2 1 0 0 0 27.3 —100 26.8 —106
100 —200 100 0 0 1 -2 1 0 0 -998 -—-173 -101 0.794
0 100 —200 100 0 0 1 -2 1 0 20.5 —-101 91.5 —83.2
0 0 100 —=200 100 0 0 1 -2 1 =384 03870 -92.9 105
0 0 0 100 =200 0 0 0O 1 =2 0 0 0 0
0 3820 1190 25 -292 0 0 0 0 0 0 —3820 —1190 —25
4| 0 210 202 1.8 —-644 0 0 0 0 0 0 -210  —20.2 —1.85
: 0 2.26 126 419 -568 0 O 0 0 0 -2.26  —126  —4.19
0 —0211 417 120 0708 0 0 0 0 0 0 0.211 =417  —120
0 0.121 —-6.34 0.899 117 0 0 0 0 —-0.121 6.34 —0.899
0 15500 12900 —484 -2210 0 0O 0 0 0 =173 —15500 —12900 378
0 14600 3150 183 -862 0 0 0 0 0 0.192 -15000 -3150 —182
0 399 3460 399 —342 0 0 0O 0 0O 205 —400 —3570 —384
0 —11.8 387 3220 203 0 0 0 0 0 —-58.4 12.7 —-380 —3320
0 775 =370 223 2090 0 O O 0O O 0 —7.75 370 —123
0 —-1.39 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1.39 0 0 0O 0 0 0 0 0 0 0 0
0 0 0 —-1.39 0 0 0 0 0 0 0 0 0 0
L 0 0 0 0 -139 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
15.8 =514 —0.931 —2.43 145 1.64 0 0 0 0
-0.171 -1.11  —-1.36 —1.17  0.120 —0.00829 0 0 0
12.6 334  —-0973 1.6l —5.78 —0.798 0 0 0 0
—64.5 —5.03 0.00790 —1.04 5.89  —0.0457 0 0 0 0
0 0 0 0 0 0 0 0 0 0
292 1 0 0 0 0 0 0 0 0
6.44 0 1 0 0 0 0 0 0 0 )
5.68 0 0 1 0 0 0 0 0 0
—0.708 0 0 0 1 0 0 0 0 0
—117 0 0 0 0 1 0 0 0 0
2230 —7.14 0.0692 —2.43 14,5 1.64 0 0 0 0
862 -0.109 -3.36 —-0.172 0.120 -0.00829 0 0 0 0
355 3.34 0.0267 —=0.393 —-4.78 —0.798 0 0 0 0
—-167 —=5.03 0.00790 —-0.0419 3.89 0.954 0 0 0 0
-3190 0 0 0 1 -2 0 0 0 0
0 0 0 0 0 0 —48.3 0 0 0
0 0 0 0 0 0 0 —48.3 0 0
0 0 0 0 0 0 0 0 —48.3 0
0 0 0 0 0 0 0 0 0 —48.3 ]
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rOo 0 0 0 0 —-0.394 0.683 —0.789 0.683 —0.394 0 0
00 0 0 0 0612 -=0612 0 0.612 —0.612 0 0
00 0 0 0 -0.577 0 0.577 0 —0.577 0 0
00 0 0 0 035 03534 0 —0.354 —0.354 0 0
0 0 0 0 0 -0.106 -0.183 -0.211 -0.183 -0.106 0 0
00 00 0 —0.394 068 —0.789 0.683 —0.394 0 0
B — 00 0 0 0 0612 -0.612 0 0.612 —0.612 0 0
00 0 0 0 —0577 0 0.577 0 —0.577 0 0
0 0 0 0 0 0.354 0.354 0 —0.354 —-0.354 0 0
00 0 0 0 —0.106 —0.183 —0.211 —0.183 —0.106 0 0
00 0 0 0 0 0 0 0 0 3820 210
00 000 0 0 0 0 0 1190  20.2
00 0 0 0 0 0 0 0 0 25 1.85
LO 0 0 0 O 0 0 0 0 0 —292 —6.44
0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 00 00
0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 00 00
0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 00 00
0 0 0 0 0 0 0 0 00 0 O ®)
0 0 0 0 0 0 0 0 00 00
0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 0 0 0 0 O
2.26  —0.211 0.121 15500 14600 399 -—-11.8 7.7%5 0 0 0 O
126 4.17 —6.34 12900 3150 3460 387 =370 0 0 0 O
4.19 120 0.899 —484 183 399 3220 223 0 0 0 O
—-5.68 0.708 117 —2210 —-862 —342 203 2990 0 0 O OJ
r 0 0 0 0 0 0.394 —-0.683 0.789 —0.683 0.394 0 O
0 0 0 0 0 —0.612  0.612 0 —0.612 0612 0 0
0 0 0 0 0 0.577 0 —-0.577 0 0.577 0 O
0 0 0 0 0 —0.354 —-0.354 0 0.354 0.354 0 O
0 0 0 0 0 0.106 0.183 0.211 0.183 0.106 0 O
0.394 —-0.683 0.789 —0.683 0.394 0 0 0 0 0 0 0
= —-0.612 0.612 0 —-0.612 0.612 0 0 0 0 0 0 0
- 0.577 0 —-0.577 0 0.577 0 0 0 0 0 0 0
—0.354 —0.354 0 0.354 0.354 0 0 0 0 0 0 0
0.106 0.183 0.211 0.183 0.106 0 0 0 0 0 0 0
0 0.0500 0 0 0 0 0 0 0 0 0 0
0 0 0.0500 0 0 0 0 0 0 0 0 0
0 0 0 0.0500 0 0 0 0 0 0 0 0
L O 0 0 0 0.0500 0 0 0 0 0 0 0
00 0 0 0 O0O0O0 0 0 0 0 7
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0 ©)
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0
00 0 0 0 000 0 0 0 0
00 0 0 OO0 O0 0 1.39 0 0 0
00 0 0 0 0 00 0 1.39 0 0
00 0 0 0 000 0 0 1.39 0
00 0 0 0 000 0 0 0 1.39]
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