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Abstract—In recent years, there has been a growing interest
in developing randomized algorithms for probabilistic robustness
of uncertain control systems. Unlike classical worst case methods,
these algorithms provide probabilistic estimates assessing, for in-
stance, if a certain design specification is met with a given proba-
bility. One of the advantages of this approach is that the robustness
margins can be often increased by a considerable amount, at the
expense of a small risk. In this sense, randomized algorithms may
be used by the control engineer together with standard worst case
methods to obtain additional useful information.

The applicability of these probabilistic methods to robust con-
trol is presently limited by the fact that the sample generation is
feasible only in very special cases which include systems affected
by real parametric uncertainty bounded in rectangles or spheres.
Sampling in more general uncertainty sets is generally performed
through overbounding, at the expense of an exponential rejection
rate.

In this paper, randomized algorithms for stability and per-
formance of linear time invariant uncertain systems described
by a general -� configuration are studied. In particular,
efficient polynomial-time algorithms for uncertainty structures
� consisting of an arbitrary number of full complex blocks and
uncertain parameters are developed.

Index Terms—Random matrices, randomized algorithms,
robust control, uncertainty.

I. INTRODUCTION

T HE most frequently used configuration for robustness
analysis and design of complex uncertain feedback sys-

tems is the so-called - model; see, e.g., [42]. This model
consists of a given plant , which possibly includes weighting
functions and a controller, and an uncertain block diagonal
matrix . With this feedback configuration, different design
methodologies can be implemented and several performance
objectives can be analyzed. In addition, since the structure
of is very general, various sources of uncertainty, such as
parametric, nonparametric, structured and unstructured, can be
easily taken into account. For these reasons, the- configu-
ration is a valuable tool for both practitioners and theoreticians,
so that powerful and useful results have been developed in
the last few years. At the same time, however, classical worst
case robust control has also shown some limitations when the
control system is affected by general uncertainty structures

. To investigate these limitations, many papers focused on
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complexity issues of feedback system; see [5], [7], [15], [28],
and [30]. The contribution of these papers is to demonstrate
that several problems in linear robust control are NP-hard,
which in turn implies that they are not practically tractable,
unless the number of uncertainties entering into the feedback
system is very limited. To avoid this drawback, many other
contributions attacked the same problem following a parallel
line of research, with the goal of computing upper and lower
bounds (instead of the “true” value) of the robustness margin
for very general feedback configurations. In other words, the
focal point of these papers is to develop either necessary or
sufficient conditions for robust stability and performance. The
nice feature of these bounds is that their evaluation generally
requires the solution of convex programs which can be easily
performed, for example, by means of interior point methods
[6]. However, the issue of conservatism is still present.

In order to overcome these difficulties, a different paradigm
has recently emerged. This new paradigm studies uncertain
feedback systems from a probabilistic point of view; see, e.g.,
[3], [13], [25], [31], [41], and [43]; additional references can
be found in the survey papers [38] and [39]. This framework
is not alternative to worst case robust control, but it provides
useful and complementary information to the control engineer.
In this setting, is indeed bounded in a given set, but it is
also a random matrix with a given probability distribution. In
this way, both probabilistic and deterministic information is
captured.

In this paper, the class of so-called radially symmetric distri-
butions over the uncertainty set is studied. Roughly speaking, a
radially symmetric distribution has the property that the density
function of depends only on the spectral norm of; see
Section III and [4] for a rigorous definition, and the papers [2]
and [3] for further guidelines on the choice of the distribution.
This class includes as a special case the uniform distribution in
a bounded support set defined as in classical worst case robust
control. That is, we consider the set of matriceswhose spec-
tral norm is bounded by

where . In addition, the matrix
is structured so that it contains real and complex parameters

and real and complex full blocks; see Section II for a precise
definition.

Within this framework, the main task of this paper is to
develop randomized algorithms for stability and performance
analysis of linear time invariant uncertain systems. To this
end, we consider a state space realization of ,
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and study the stability of . Frequency
domain and state space interpretations of such stability tests
have been provided in the - setting see, e.g., [32] and [42].
For example, if is stable and
the well-posedness condition onholds, then

is stable

We remark that, when consists of a single block, the size of
the smallest destabilizing perturbation is often called the sta-
bility radius [21], [32]. In this sense, this paper studies the proba-
bilistic version of the stability radius problem for the case when
the system is affected by general uncertainty structures. A
parallel line of research, not directly related to the problem for-
mulation and results given in this paper, is focused on the com-
putation of the stability radius of systems subject to stochastic
perturbations; see [19].

Formally, for fixed , we let

is stable (1)

and, for given , we define theprobabilistic stability
margin

Given a probability level , the probabilistic stability margin
gives the maximum size of the perturbation, measured

according to the spectral norm, so that the probability is
at least . Once is computed, the next step is to construct
the probability degradation function, i.e., the plot of the prob-
ability of stability as a function of the radius. This plot may
be compared with the classical worst case stability margin,
obtaining

for any . This fact in turn implies that the margin
computed with probabilistic methods is always larger than the
classical worst case margin, at the expense of a risk expressed
in probability.

In order to compute with randomized algorithms, we
generate matrix samples

in the set according to and the structure
of . Then, we construct an indicator function

if is stable
otherwise

and compute the empirical probability

We recall that the Chernoff bound [14] gives the sample size
so that the empirical probability is “close” to with

accuracy and confidence. Formally, for any and
, if

then

An obvious but crucial observation which follows immedi-
ately from the Chernoff bound is that is independent of the
number and dimension of the uncertain blocks in thematrix
and of the size of the bounding set [24], [37]; similar statements
can be also made when consists of parametric uncertainty
only [33]. The same conclusion holds when dealing with more
sophisticated bounds arising in Learning Theory; see [40]. In ei-
ther case, since checking the stability of
can be performed in polynomial-time, it follows that the overall
complexity is also polynomial-time, provided that the cost of
the generation of each matrix sample is polynomial-time.
With these motivations, the main objective of the paper is to
efficiently generate matrix samples in the spectral norm ball ac-
cording to a radially symmetric distribution and the structure of

. We remark that the methods developed here are fundamen-
tally different from the asymptotic techniques available for ex-
ample in [26] for general convex sets, which are of limited use,
since the number of samples given by the Chernoff bound is in
general relatively small.

We now summarize the main results of the paper. In Sec-
tion II, we introduce definitions and notation and we also show
that the problem of generating samples of the structured ma-
trix is equivalent to sample generation in independent sets,
each consisting of a full block matrix or a vector of parame-
ters. Since the problem of the generation of random vectors has
been already solved in [9] and [10], we study the case of a full
block real or complex matrix . The starting point of this anal-
ysis is the singular value decomposition of. That is, we write

, where and are unitary matrices and is
a diagonal matrix containing the singular values of. Subse-
quently, for random matrices with radially symmetric distri-
bution, we compute the probability density functions (p.d.f.) of

and of and , respectively; see Theorems 1
and 2 in Section III. Basically, in these two theorems we prove
that and are distributed according to the so-called Haar
invariant distribution, while is a multivariate polynomial re-
lated to the determinant of a Vandermonde matrix. For the com-
plex case, in Section IV we exploit the specific structure of this
p.d.f. together with the well-known conditional method, in order
to construct a polynomial-time algorithm for sample generation;
see Algorithm 1. For the real case, the problem turns out to be
more difficult and not easily tractable with these techniques and
a rejection-based algorithm is presented in Section V. However,
this algorithm uses the specific structure ofand its rejection
rate improves significantly upon that obtained by a straightfor-
ward set overbounding; see also [11]. In Section VI, we study
a numerical example of a flexible structure with one complex
block and two repeated real uncertain parameters and compute
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the probability degradation function using the proposed tech-
niques. Concluding remarks are given in Section VII and the
Appendix contains the proofs.

II. DEFINITIONS AND NOTATION

In this paper, we denote by the transpose of ,
and by its conjugate transpose, whereis either the com-
plex field or the real field . The notation indicates the

th element of and, if represents the abso-
lute value of the determinant of denotes the identity
matrix, the subscript is omitted when the dimension can be de-
duced from the context. The spectral norm ball of radius
is defined as

(2)

Similarly, we denote the norm balls in the Frobenius and
norms as .

The symbol denotes the standard Gamma function and,
for continuity, we let

Real and Complex Random Matrices:A real random
matrix is a matrix of random variables

. The probability density function
is defined as the joint probability density of the ele-

ments of . A complex random matrix is defined
as , where and are real
random matrices. The p.d.f. is defined as the joint p.d.f.
of and .

The notation means that is a random matrix with
probability density is also used to indicate that the
two random matrices and have the same p.d.f.

Uniform Density: For a measurable set means
that is a random matrix with uniform density over the set.
That is

if

otherwise
(3)

where is the volume of the set. If is in a linear space
isomorphic to , we denote by volume the-dimensional eu-
clidean measure of .

Singular Value Decomposition (SVD):Given
we use the following normalized form of the SVD of

:

(4)

where and have orthonormal columns,
and , with .
The columns of are normalized so that the first nonvanishing
component of each column is real and positive.

Radially Symmetric Densities:For , we consider
the class of probability densities that depend only on the
largest singular value of

(5)

We remark that the uniform density in the spectral norm ball
of radius is in the class , i.e.,

We now introduce another and more general class of density
functions. This is the class of density functions
which depend only on the singular values of. We call this
classunitarily invariant. The name follows from the fact that if

has a unitarily invariant p.d.f., then and
, for any given unitary matrices and .

Unitarily Invariant Densities: Let , the class of
unitarily invariant p.d.f.s is defined as

(6)

A. Structured Random Uncertainties

As discussed in Section I, the matrixis used to describe var-
ious perturbations affecting the control system. In robust con-
trol, the class of allowable perturbations is usually defined as in
[42]

(7)

where are scalar parameters with multi-
plicity , and are possibly
repeated full blocks. The structured matrixis restricted to the
set

(8)

that denotes the set of perturbations inwith size at most .
First, we notice that

where and . Then, (8)
implies that the vector is bounded in the set

(9)

and the full blocks are restricted in

(10)

In this paper, we make the following assumptions.
Assumption 1:The vector and the blocks are random

vector and matrices with independent density functions.
Assumption 2:The p.d.f. of each matrix block

is unitarily invariant.
The independence assumption implies that the sampling

problem in the ball is equivalent to sampling indepen-
dently the sets (9) and (10). For the vector case, sampling in
the set (9) can be easily obtained with the techniques described
in [9] and [10], for a class of probability densities having radial
symmetry with respect to norms. The sampling problem
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TABLE I
REJECTIONRATES FORSQUARE COMPLEX MATRICES

with several full blocks turns out to be much more difficult and
is the main objective of this paper. Also in this case, however,
the problem is reduced to sampling the set (10). For this reason,
in the next sections we focus on the case of a single full matrix
block . That is, for we study sample generation in
the set according to .

To further motivate the results of this paper, suppose that one
wants to generate uniform samples of square complex matrices
in , using the classical method of rejection from an outer
bounding set, where the sample generation is easier, as sug-
gested in [24]. This is typically done considering for instance
the following outer bounding sets

and

For these sets, it is well-known that and
; see [22]. Uniform sample generation in

and in can be easily performed using the methods described
in [10]. The samples that fall outside the setare then rejected.
The rejection rate , which is the expected number of samples
that should be generated in the outer set in order to find one
sample in , is simply given as the ratio of volumes

Table I shows that these rejection rates increase exponentially
with the dimension . The volume is computed ac-
cording to the formula (22) derived in Section IV, while the for-
mulas for the volumes of the Frobenius and infinity norm balls
can be found for instance in [10].

Table I clearly shows the inefficiency of the rejection method,
and motivates the need for more sophisticated techniques for
direct generation of samples in .

III. PROPERTIES OFUNITARILY INVARIANT DISTRIBUTIONS

In this section, we study the properties of the class of densities
, for full block complex and real matrices. In particular, we

present two key results relating the probability density
with the probability density functions of the matrices and

of the SVD of . We first consider the complex case.
Theorem 1: Let , be factored as

in (4), with , and , for
. The following statements are equivalent.

1) The p.d.f. is unitarily invariant, i.e., .
2) The joint p.d.f. of and is

(11)

where

(12)

(13)

(14)

and is a normalization constant given by

(15)

The proof is given in Appendix A.
Remark: Since the probability of two singular values being

equal is zero, without loss of generality, in the theorem we con-
sider strict inequalities in the ordering of the singular values. For
a similar reason, we exclude the case , and impose
the normalization condition on every first element
of the columns of . This is in agreement with classical liter-
ature on this topic; see, e.g., [1] where strict inequalities in the
ordering of the eigenvalues of symmetric matrices and a normal-
ization condition on the eigenvectors matrix are considered. No-
tice that the strict ordering of the singular values, together with
the normalization condition, make the mapping betweenand

one-to-one. This property is used in the proof of the the-
orem. In addition, we remark that in the literature the uniform
density over the unitary group is known as the Haar invariant
distribution [1]. The Haar invariant distribution is the only dis-
tribution with the property that if is distributed according to
Haar, then for any unitary . The relation (12) there-
fore states that is distributed according to the Haar
invariant distribution for the unitary group. Similarly, the uni-
form density over the normalized unitary matrices is known as
the conditional Haar distribution.

The following theorem studies the case whenis a real ma-
trix.

Theorem 2: Let , be factored as
in (4), with , and for

. The following statements are equivalent.

1) The p.d.f. is unitarily invariant, i.e., .
2) The joint p.d.f. of and is

(16)

where

(17)

(18)

(19)



2222 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 12, DECEMBER 2000

and is a normalization constant given by

(20)

The proof is given in Appendix B.
Remark: Similar comments to those of the complex case can

be made regarding the distribution of the matricesand . We
remark that Theorem 2 is a generalization of the results reported
in [1] and [27], which deal with the special case of real and
symmetric matrices. Related results can also be found in [20]
and [23].

In the next sections, we provide algorithms, based on The-
orems 1 and 2, for the generation of uniform samples of

in the spectral norm ball of unit radius . We notice
that uniform samples in are simply obtained multiplying
by the samples generated uniformly in . As discussed
in [9] and [10], any radially symmetric density in the spectral
norm may be generated starting from the uniform density on

. The relation between the uniform density and a generic
radially symmetric density on the support is given in the
following lemma.

Lemma 1: Let be a random matrix with uni-
form distribution over , and let be an independent
random variable with p.d.f. over the support . Define
the random matrix

Then, the p.d.f. is radially symmetric in , i.e.,
, where , and in partic-

ular

where is the dimension of .
A proof of this lemma may be found in [9] and [10].

IV. UNIFORM SAMPLE GENERATION: COMPLEX CASE

In this section, we show how to generate the samples of com-
plex , by first generating the samples of the SVD factors

according to their respective densities, and then constructing
. We first concentrate on the generation of the sin-

gular values of full block matrices .

A. Generation of the Singular Values

Assume that the matrix is uniformly distributed
over the set , see (3). Then from Theorem 1 the p.d.f. of

is

(21)

with

(22)

The value of the normalization constant is related to the
solution of a multiple integral known as the Selberg integral (see
[27] and [35] for details on the derivation), and is given by

(23)

We remark that from (22), using (15) and (23), we can compute
in closed form the volume of the complex spectral
ball of unit radius.

For our subsequent developments, it is convenient to remove
the ordering condition on the singular values. The so-obtained
unorderedp.d.f. is given by

(24)

where . The factorial term in the above
equation is simply obtained observing that the ordered case is
one of the possible permutations of theunordered singular
values. We now introduce the change of variables

Applying the rule of change of variables for probability densities
(68) in Appendix F, the p.d.f. of the random vector

is given by

(25)

where

We remark that can be written in terms of the
determinant of a Vandermonde matrix. Given a vector

, we let

...

and, for , we define the truncated Vandermonde
matrix as

(26)

Clearly, depends only on the variables , while
is the standard Vandermonde matrix associated with the

vector . Then, by well-known properties of Vandermonde
determinants, we write as

(27)
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We now concentrate on the generation of random samples dis-
tributed according to (27).

A standard method for random generation with multivariate
distributions is the so-called conditional method [17], [34]. The
basic idea of this method is to generate the first random variable,
then generate the next one conditional on the first one, and so
forth. In other words, the conditional method reduces an-di-
mensional generation problem toone-dimensional problems.
However, it requires the computation of the marginal densities,
which is often a very difficult task [18]. For the sake of com-
pleteness, the conditional method is recalled below.

The Conditional Method:A joint p.d.f. can be written
as

where are the conditional densities, de-
fined as the ratio of marginal densities

(28)

The marginal densities are defined as

(29)

A vector with density can therefore be obtained gener-
ating sequentially the ’s, , where is distributed
according to the univariate density .

The following theorem and its corollary provide a closed form
expression for the marginal densities of the multivariate density
function defined in (27). These results provide a direct
computation of the conditional densities that are needed for the
application of the conditional method.

Theorem 3: Let be given by (27), then the marginal
density

(30)

is equal to

(31)

where is defined in (26), and , being a constant
symmetric matrix defined as

The proof of this theorem is reported in Appendix C.
Therefore, to compute the marginal density (31), one first

needs to compute the determinant . To this end,
we now express this determinant separating the variables

from the variable , as detailed in the following
corollary.

Corollary 1: Let be fixed, then the marginal
density (31), evaluated in , is given by the poly-
nomial in

(32)

The coefficients are given by

(33)

being

and, for

(34)

(35)

(36)

Moreover, the following recursion holds:

(37)

The proof of this result is reported in Appendix D. We now make
a few remarks regarding Theorem 3 and Corollary 1.

Remarks:
1) The contribution of Theorem 3 is to give a closed form so-

lution for the multiple integral (30). In particular, in order
to apply the conditional method, it is useful to express

in the form of (32), where we separate the
variables from the variable . In fact,
at the th step of the conditional method, the variables up
to are given, and only the dependence onis re-
quired. In this case, (32) represents a polynomial in the

variable, whose coefficients and the multiplicative
constant can be easily computed according to (33)
and (34), once the values of are known.

2) We observe that for the quantities and
appearing in (34) and (35) can be computed recursively,
so that no matrix inversion or determinant computation is
required. In particular, we have

Using the block matrix inversion formula, we obtain
as shown in the equation at the bottom of the next

page, and

where is a positive number.
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3) We notice that combining (28) and (37), a closed form ex-
pression for the conditional density can also be obtained

where

for

for .

(38)

An explicit algorithm for the generation of samples of the sin-
gular values distributed according to the p.d.f. (24) is now given.

Algorithm 1 (Singular Values Generation):A random vector
distributed according to (24) can be gen-

erated via the following algorithm.

◊ Initialization.
; where is defined in

Theorem 3.
◊ Generation.

Let .

Generate according to the
polynomial density

where is given by (38).
◊ Check.

if then goto [End].
◊ Update.

Construct and
.

Let .
If then .
If then

.
.

◊ Loop.
; goto [Generation].

◊ End.
Return .

In this algorithm, each is generated according to a uni-
variate polynomial density. Standard and efficient algorithms
for the generation of samples distributed according to a given
polynomial density are available in the literature. Among these
techniques we recall the classical inversion method [17], [34].

B. Generation of Haar Samples

In this subsection, we concentrate on the generation of the
samples of and according to the distributions (12) and (14).

We first consider the problem of generating uniform Haar
samples of unitary matrices. From the discussion fol-
lowing Theorem 1, we have that the distribution ofmust be
the same of the distribution of , for any given unitary matrix

. Consider a random matrix ,
such that the elements of and are independent
and normally distributed with zero mean and variance equal to
one. The invariance property of the normal distribution under
unitary transformations implies that, for any unitary matrix,
the distribution of is the same as the distribution of.
Now, we let be the factorization of , where the
diagonal entries of are set to be real and positive in order to
make the representation unique. Then, as , it follows
that ; that is, is distributed according to the Haar
invariant distribution.

This discussion suggests the following simple algorithm for
the generation of samples from the Haar invariant distribution.

Algorithm 2 (Generation of Haar Samples):A random uni-
tary matrix distributed according to (12) can be gen-
erated via the following algorithm.

◊ Build .
Construct , where each
entry of and is an
independent gaussian variable with
zero mean and variance equal to one.

.
◊ QR.

.
, where

is the phase of the element
of .

◊ End. Return .

This algorithm is one of the simplest methods for the gen-
eration of uniform unitary matrices. Other known methods are
based, for example, on products of elementary Euler transfor-
mations; see, e.g., [44].

We remark that the Haar distribution may be introduced also
for rectangular matrices having orthogonal columns.
In this case, it can be observed that uniform samples ofcan
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be obtained from uniform samples of a square unitary
matrix, neglecting the last columns. This fact follows
from properties of the unitary group; see for instance [23, Ch.
5].

We next consider the generation of conditional Haar samples
of matrices . Notice first that the normalization condi-
tion may be written as , where
is a (nonnormalized) unitary matrix, and is a diagonal uni-
tary matrix , where is the phase
of . Using a technique similar to the one in the proof of
Theorem 1, it can be shown that if is distributed according
to the Haar distribution, then is distributed according to the
conditional Haar distribution. Samples of matrices drawn from
the latter distribution may therefore be obtained normalizing the
samples drawn from the Haar distribution.

V. UNIFORM SAMPLE GENERATION: REAL CASE

We consider first the generation of the singular values of full
block matrices and then the generation of and .

A. Generation of the Singular Values

Assume that the matrix is uniformly distributed
over the set ; see (3). Then, from Theorem 2 the p.d.f. of

is

(39)

with

(40)

The normalization constant is related to the solution of the
Selberg integral, and is given by

(41)

We remark that from (40), using (20) and (41), we compute in
closed form the volume of the real spectral ball of unit radius.

In this case, the closed form computation of the multiple in-
tegrals needed for the application of the conditional method
cannot be performed with the techniques developed for the com-
plex case. In this section, we develop an algorithm based on the
rejection method from a dominating density; see [17]. First, we
find an appropriate bounding function for the probability den-
sity of the singular values. It can be shown that (39) is bounded
from above as follows

(42)

In order to decouple the domain of the variables of the bounding
density, we introduce the change of variable

for and . Notice that the domain of the new
variables is the interval for . The inverse
transformation is given by

(43)

Applying the rule of change of variables for probability
densities (68) in Appendix F, the p.d.f. of the vector

is

(44)

Using (42), we obtain a bounding function for

(45)

where is the dominating probability density, given by

(46)

and
. The constant is given by

(47)

We remark that the density function is such that the ’s
are independent. Therefore, the generation of a random vector
distributed according to may be efficiently performed ac-
cording to the techniques described in [17]. We report below an
algorithm for the generation of random samples of the vector,
which is based on-dimensional rejection from the dominating
density .

Algorithm 3 (Singular Values Generation):A random vector
distributed according to (39) can be gen-

erated via the following algorithm.

◊ Generation.
For : Generate ,
and compute .

◊ Computation of .
with given by

(46) and given by (44).
◊ Rejection.

Generate .
If , compute according to
(43) and return .
Else goto [Generation].

It can be shown [17] that the expected value of the rejection
rate, i.e., the expected number of iterations needed to produce a
valid vector, is given by . This fact can be used to compare the
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TABLE II
COMPARISON OFREJECTIONRATES FORSQUARE REAL MATRICES

rejection rate of Algorithm 3 with the one obtained by simply
overbounding the set with the Frobenius ball .
The two rejection rates and are compared in Table II, for
square real matrices of order. From Table II, we see that the
proposed algorithm improves upon the standard rejection from
the Frobenius norm ball. We notice, however, that the growth
is still nonpolynomial and this is in contrast with the algorithm
derived for the complex case, which is polynomial-time. Further
research is therefore needed to derive a result similar to Theorem
3 for the computation of the marginal densities in closed form;
see the new framework proposed in [12] for the solution of the
real case.

Next, we present an algorithm similar to Algorithm 2, for the
generation of orthogonal matrices distributed according to
the Haar density. This algorithm is based on the QR decompo-
sition and is reported also in [36].

B. Generation of Haar Samples

Algorithm 4 (Generation of Haar Samples):A random or-
thogonal matrix distributed according to (12) can be
generated via the following algorithm.

◊ Generation of .
Construct , where each entry
of is an independent gaussian
variable with zero mean and variance
equal to one.

.
, where is the

sign of the element of .
◊ End. Return .

VI. NUMERICAL EXAMPLE

We considered an example concerning a five masses spring-
damper model with parametric uncertainty on the stiffness and
damping parameters, and complex uncertainty due to unmod-
eled dynamics [8]. This flexible structure may be modeled as
an - configuration, with ,
where the matrices and are given in Appendix H, and

. The matrix consists of two repeated real parameters
and one full complex block

For this - system, lower and upper bounds and
of the robustness margin have been computed with the
Matlab -Analysis and Synthesis Toolbox obtaining

Fig. 1. Estimated probability degradation functionp̂(�).

Taking , by means of the Chernoff bound, we ob-
tained . Subsequently, for this sample size, using
the algorithms given in Section IV, we estimated the proba-
bility degradation function for 100 values of in the range
[0.35, 0.70]. This plot is shown in Fig. 1 together with the lower
bound of the deterministic robustness margin. From this plot,
we observe that if a 2% loss of probabilistic performance may
be tolerated, then the stability margin may be increased of ap-
proximately 56% with respect to its deterministic counterpart.
In fact, the risk adjusted stability margin for is

. In addition we notice that the estimated prob-
ability is equal to one up to . We conclude that in this
example the upper and lower bounds ofapproximately coin-
cide, so that is a nonconservative deterministic measure of
robustness but this measure turns out to be quite conservative in
a probabilistic sense.

From the computational point of view, the proposed proba-
bilistic algorithm is polynomial-time. The computational cost is
proportional to the cost of generating one sample of uncertainty,
and a crude Matlab implementation of the algorithms in Sec-
tion IV required about flops for generating one sample
of .

VII. CONCLUSION

In this paper, we studied randomized algorithms for robust-
ness analysis in the presence of general uncertainty structures.
This approach may be used in conjunction with standard
worst-case techniques, in order to obtain additional information
about the probabilistic degradation of system performance
when the uncertainty level goes beyond the deterministic
margin. In particular, polynomial-time algorithms for the gen-
eration of matrix samples have been presented for the complex
case. For the real case, a rejection algorithm was proposed,
while a different framework for a closed form solution has been
introduced in [12].

Current research is directed toward the extension of the
proposed approach to the synthesis of probabilistic robust
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controllers and to the development of probabilistic optimization
algorithms.

APPENDIX

A. Proof of Theorem 1

Consider the transformation given by the SVD of
, defined in (4). The strict inequalities in the

ordering of the singular values, together with the imposed
normalization conditions on the columns of, make the
mapping between and one-to-one; see for instance
[22, Section 7.3]. The joint p.d.f. in the new variables
may be obtained applying the rule (68) in Appendix F,

(48)

The differential of is given by

(49)

If , let be such that is unitary,
otherwise if let . Then, multiplying (49) by
on the left and by on the right, we obtain

(50)

Now, using the rule G.2 in Appendix G, we have that
, and applying the chain

rule for Jacobians G.1, we have further

Since by G.5 , we have that the Jacobian we are
interested in is equal to

(51)

Next, we rewrite (50) in the form

where

Since, by G.5, the Jacobian is equal
to one, applying again the chain rule, we have

(52)

We now concentrate on the evaluation of .
First, notice that is skew-Hermitian. This is easily
seen by differentiating the identity , obtaining

. Similarly, if can be partitioned
as

where is skew-Hermitian, and
. The matrix is finally rewritten in the form

Clearly, if , then and .
Let now examine the number of free variables that describe

the quantities of interest. The matrixis described by means of
real variables. The unitary matrix is described by means

of real variables, is described by means of its
diagonal entries, thereforeis described by the remaining

real variables. Since an complex matrix with
orthogonal columns is described by variables [23],
we notice that the normalization imposed in (4) on the columns
of fixes of the free variables. The differentials
are described by the same number of free variables as, and

. Therefore, and are described by and
variables, respectively. Since is real diagonal, we choose its

free variables as the diagonal entries .
Since is skew-Hermitian, we choose the free variables

as the coefficients of the standard orthonormal basis of
the space of skew-Hermitian matrices. In particular

where and are the elements of the basis. Denoting
by an matrix having one in position and zero
otherwise, the elements of the basis are defined as

(53)

Similarly, considering that the matrix is the first
(block) column of the skew-Hermitian matrix ,
we choose free variables such that

where is some function of the variables . The
remaining free variables,
are needed to describe
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The element of may now be expressed as

To compute the Jacobian , we construct the
scheme of partial derivatives shown at the bottom of the page,
where where

The matrix of partial derivatives is block triangular, therefore
the matrices do not affect the value of its determinant,
which is given by

Using Schur complement, we have that

Now, from (48), (51), and (52) if follows that

(54)

From (54), we immediately obtain that are statistically
independent, and therefore (11) is proved. It also follows that
and are constant over their respective domains, which proves
(12) and (14). Finally, integrating (54) with respect to and

we get the marginal density (13) as

(55)

where is a constant computed as follows. Let be the
unitary group of order , and let be the complex manifold

.
Then, the volumes of these two sets are given by (see for in-
stance [23])

Therefore, from (55)

This concludes the proof of Theorem 1.

Re([Z] ) Im([Z] )

1 � i � n 1 � i � n

Re([Z] ) Re([Z] )

1 � i < k � n 1 � k < i � n

Im([Z] ) Im([Z] )

1 � i < k � n 1 � k < i � n

Re([Z] ) Im([Z] )

1 � i � n; 1 � i � n;

1 � n < k � m 1 � n < k � m

�

�

1 � i � n

I 0

0 �

0 0

0 0

0 0

0 0

0 0

0 0

�

�

1 � i < k � n

0 0

0 H

C �D

�D C

0 0

0 0

0 0

0 0

�

�

1 � i < k � n

0 0

0 H

0 0

0 0

C D

�D �C

0 0

0 0

q

q

1 � i < k � n

0 0

0 0

0 0

0 0

0 0

0 0

F 0

0 F
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B. Proof of Theorem 2

This proof follows the lines of the one given for Theorem 1.
Indeed, the derivation up to the expression ofas

is identical to the complex case, considering that all the involved
quantities are now real, and are skew-symmetric. In par-
ticular, we have again that

(56)

We now examine the number of free variables that describe the
quantities of interest. The matrix is described by means of
real variables. The orthogonal matrix is described by means
of real variables, is described by means of
its diagonal entries, therefore is described by the remaining

real variables. The differentials are described by the
same number of free variables as, respectively, , and .
Therefore, and are described by and
variables, respectively. Since is diagonal, we choose its
free variables as the diagonal entries .
Since is skew-symmetric, we choose the free variables

, as the coefficients of the standard orthonormal basis of the
space of skew-symmetric matrices. Therefore, using the
notation introduced in (53), Appendix A, we write

Similarly, considering that the matrix is the first
(block) column of the skew-symmetric matrix ,
we choose free variables such that

The remaining free variables,
, are needed to describe

The element of may now be expressed as

To compute the Jacobian , we construct the
scheme of partial derivatives shown at the bottom of the page,
where where

The matrix of partial derivatives is block diagonal and therefore
its determinant is given by

Using Schur complement, we have that

Now, from (56) if follows that

(57)

From (57) we immediately obtain that are statistically
independent, and therefore (16) is proved. It also follows that
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and are constant over their respective domains, which proves
(17) and (19). Finally, integrating (57) with respect to and

we get the marginal density (18) as

(58)

where is a constant computed as follows. Let be the
orthogonal group of order, and let be the real manifold

.
Then, the volumes of the two previous sets are given by (see for
instance [23])

where, for continuity, we assume

From (58) it finally follows that

This concludes the proof of Theorem 2.

C. Proof of Theorem 3

Let us rewrite (27) in the form

where, for

(59)

For any nonsingular matrix is symmetric and

(60)

Define further

for (61)

Let now be given by

...
...

...
...

then

...

where are polynomials of degree

We choose such that the polynomials
form an orthogonal polynomial basis on the interval

, with respect to the weight function . That is,

if
otherwise

for . This condition may be written in matrix
form as

(62)

and the integral term is easily evaluated as

Taking the eigenvalue decomposition of the symmetric matrix
with orthogonal, it follows immediately that the

orthogonality condition (62) is satisfied for

therefore .
It is now straightforward to show that the matrix satisfies

the conditions of the Dyson-Mehta Theorem for the integrals
of certain determinants; see Appendix E. In particular, we have
that

and

Therefore, from Theorem 4 in Appendix E we obtain1

(63)

1Sincedet(Z ) is always positive, we writejZ j = det(Z ).



CALAFIORE et al.: RANDOMIZED ALGORITHMS FOR PROBABILISTIC ROBUSTNESS 2231

Applying (63) recursively for going backward from to ,
we have that

By means of (60) we obtain the marginal density

(64)

The proof is then completed substituting (59) and (61) in the
above expression.

D. Proof of Corollary 1

Let , and recall that , then

Using the Schur rule for the above determinant we get

(65)

where the matrix

contains the variables up to . The term can
be written as a polynomial in the variable, with coefficients
depending on . It is straightforward to verify that
these coefficients are given by the sum of the elements of the
anti-diagonals of , that is

(66)

where

Combining the expressions (64)–(66) we therefore prove the
statements (32) and (37).

E. On the Integral of Certain Determinants

In this Appendix we report a result on the computation of the
integral of a determinant. The proof of this theorem can be found
in [27].

Theorem 4 (Dyson–Mehta):Let be a sym-
metric matrix such that

1) , i.e., depends only on and ;
2) ;
3) ;

where is a suitable measure andis a constant. Then

(67)

where is the matrix obtained from
by removing the row and the column containing.

F. Transformations of Random Variables

Let and be two random matrices with the same number
of free elements and , respectively. Let the
p.d.f. of be , and let be related by a one-to-one
transformation . Then, [1] the p.d.f. is

(68)

where the Jacobian is defined as

...
...

...

More generally, if and satisfy
the equations , and

have the free elements
and , respectively, then the Jacobian

of the transformation from to will
be denoted as .

G. General Properties of Jacobians

For completeness, we state here some basic properties of Ja-
cobians that are used in the proofs of Theorems 1 and 2. The
proofs that are not reported here can be found in [16] and [29].

G.1: Chain rule for Jacobians

G.2: Given a matrix transformation (linear or not)
, then the transformation of the differentials,
is linear, and

G.3: The Jacobian of the transformation

where , is given by

Similarly, the Jacobian of the transformation , with
, is given by

G.4: The Jacobian of the transformation

where , is given by

Remark that if and are orthogonal, then .
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G.5: The Jacobian of the transformation

where is given by

where

Proof: To prove this, first note that, by G.1,
, where . Write the linear equation

in terms of the real and imaginary parts of the terms

then, by G.3, . By a similar reasoning
.

Notice that, if is unitary, then it can be easily seen that
is orthogonal. Therefore, for unitary, .

H. Plant Data for the Numerical Example

See equations (A), (B), and (C).

A =

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

�200 100 0 0 0 �2 1 0 0 0 27:3 �100 26:8 �106

100 �200 100 0 0 1 �2 1 0 0 �99:8 �173 �101 0:794

0 100 �200 100 0 0 1 �2 1 0 20:5 �101 91:5 �85:2

0 0 100 �200 100 0 0 1 �2 1 �58:4 0:870 �92:9 105

0 0 0 100 �200 0 0 0 1 �2 0 0 0 0

0 3820 1190 25 �292 0 0 0 0 0 0 �3820 �1190 �25

0 210 20:2 1:85 �6:44 0 0 0 0 0 0 �210 �20:2 �1:85

0 2:26 126 4:19 �5:68 0 0 0 0 0 0 �2:26 �126 �4:19

0 �0:211 4:17 120 0:708 0 0 0 0 0 0 0:211 �4:17 �120

0 0:121 �6:34 0:899 117 0 0 0 0 0 0 �0:121 6:34 �0:899

0 15500 12900 �484 �2210 0 0 0 0 0 �173 �15500 �12900 378

0 14600 3150 183 �862 0 0 0 0 0 0:192 �15000 �3150 �182

0 399 3460 399 �342 0 0 0 0 0 20:5 �400 �3570 �384

0 �11:8 387 3220 203 0 0 0 0 0 �58:4 12:7 �380 �3320

0 7:75 �370 223 2990 0 0 0 0 0 0 �7:75 370 �123

0 �1:39 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �1:39 0 0 0 0 0 0 0 0 0 0 0

0 0 0 �1:39 0 0 0 0 0 0 0 0 0 0

0 0 0 0 �1:39 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

15:8 �5:14 �0:931 �2:43 14:5 1:64 0 0 0 0

�0:171 �1:11 �1:36 �1:17 0:120 �0:00829 0 0 0 0

12:6 3:34 �0:973 1:61 �5:78 �0:798 0 0 0 0

�64:5 �5:03 0:00790 �1:04 5:89 �0:0457 0 0 0 0

0 0 0 0 0 0 0 0 0 0

292 1 0 0 0 0 0 0 0 0

6:44 0 1 0 0 0 0 0 0 0

5:68 0 0 1 0 0 0 0 0 0

�0:708 0 0 0 1 0 0 0 0 0

�117 0 0 0 0 1 0 0 0 0

2230 �7:14 0:0692 �2:43 14:5 1:64 0 0 0 0

862 �0:109 �3:36 �0:172 0:120 �0:00829 0 0 0 0

355 3:34 0:0267 �0:393 �4:78 �0:798 0 0 0 0

�167 �5:03 0:00790 �0:0419 3:89 0:954 0 0 0 0

�3190 0 0 0 1 �2 0 0 0 0

0 0 0 0 0 0 �48:3 0 0 0

0 0 0 0 0 0 0 �48:3 0 0

0 0 0 0 0 0 0 0 �48:3 0

0 0 0 0 0 0 0 0 0 �48:3

(A)
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B
T
=

0 0 0 0 0 �0:394 0:683 �0:789 0:683 �0:394 0 0

0 0 0 0 0 0:612 �0:612 0 0:612 �0:612 0 0

0 0 0 0 0 �0:577 0 0:577 0 �0:577 0 0

0 0 0 0 0 0:354 0:354 0 �0:354 �0:354 0 0

0 0 0 0 0 �0:106 �0:183 �0:211 �0:183 �0:106 0 0

0 0 0 0 0 �0:394 0:683 �0:789 0:683 �0:394 0 0

0 0 0 0 0 0:612 �0:612 0 0:612 �0:612 0 0

0 0 0 0 0 �0:577 0 0:577 0 �0:577 0 0

0 0 0 0 0 0:354 0:354 0 �0:354 �0:354 0 0

0 0 0 0 0 �0:106 �0:183 �0:211 �0:183 �0:106 0 0

0 0 0 0 0 0 0 0 0 0 3820 210

0 0 0 0 0 0 0 0 0 0 1190 20:2

0 0 0 0 0 0 0 0 0 0 25 1:85

0 0 0 0 0 0 0 0 0 0 �292 �6:44

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

2:26 �0:211 0:121 15500 14600 399 �11:8 7:75 0 0 0 0

126 4:17 �6:34 12900 3150 3460 387 �370 0 0 0 0

4:19 120 0:899 �484 183 399 3220 223 0 0 0 0

�5:68 0:708 117 �2210 �862 �342 203 2990 0 0 0 0

(B)

C =

0 0 0 0 0 0:394 �0:683 0:789 �0:683 0:394 0 0

0 0 0 0 0 �0:612 0:612 0 �0:612 0:612 0 0

0 0 0 0 0 0:577 0 �0:577 0 0:577 0 0

0 0 0 0 0 �0:354 �0:354 0 0:354 0:354 0 0

0 0 0 0 0 0:106 0:183 0:211 0:183 0:106 0 0

0:394 �0:683 0:789 �0:683 0:394 0 0 0 0 0 0 0

�0:612 0:612 0 �0:612 0:612 0 0 0 0 0 0 0

0:577 0 �0:577 0 0:577 0 0 0 0 0 0 0

�0:354 �0:354 0 0:354 0:354 0 0 0 0 0 0 0

0:106 0:183 0:211 0:183 0:106 0 0 0 0 0 0 0

0 0:0500 0 0 0 0 0 0 0 0 0 0

0 0 0:0500 0 0 0 0 0 0 0 0 0

0 0 0 0:0500 0 0 0 0 0 0 0 0

0 0 0 0 0:0500 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1:39 0 0 0

0 0 0 0 0 0 0 0 0 1:39 0 0

0 0 0 0 0 0 0 0 0 0 1:39 0

0 0 0 0 0 0 0 0 0 0 0 1:39

(C)
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