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Distributed linear estimation over sensor networks

Giuseppe C. Calafiore* and Fabrizio Abrate

Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, TO, Italy

(Received 14 November 2007; final version received 17 July 2008)

We consider a network of sensors in which each node may collect noisy linear measurements of some unknown
parameter. In this context, we study a distributed consensus diffusion scheme that relies only on bidirectional
communication among neighbour nodes (nodes that can communicate and exchange data), and allows every
node to compute an estimate of the unknown parameter that asymptotically converges to the true parameter.
At each time iteration, a measurement update and a spatial diffusion phase are performed across the network,
and a local least-squares estimate is computed at each node. The proposed scheme allows one to consider
networks with dynamically changing communication topology, and it is robust to unreliable communication
links and failures in measuring nodes. We show that under suitable hypotheses all the local estimates converge to
the true parameter value.

Keywords: distributed estimation; consensus; sensor networks; sensor fusion

1. Introduction

Recent technological improvements have allowed the

deployment of small, inexpensive and low-power

devices that can perform local data processing and

communicate with other sensors being part of

a network. Although each individual sensor node has

limited storage capacity and processing power, the

network as a whole has the ability to perform complex

tasks. These technological achievements have allowed

the growth of various applications of sensor networks,

mainly in commercial and industrial endeavours, to

manage data that would be difficult or expensive to

deal with using wired sensors. Typical applications

include environmental monitoring, surveillance, object

tracking collaborative information processing, traffic

monitoring and mobile agents control; see, for instance

Akyildiz, Su, Sankarasubramniam, and Cayirci (2002),

Chu, Haussecker, and Zhao (2002) and Martinez and

Bullo (2006).
In each of these application fields, estimation and

fusion of data coming from sensors is one of the most

challenging tasks. Various schemes for sensor data

fusion exist, both centralised or distributed. In

a centralised scheme, each sensor has to send data

(directly or by finding a suitable path in the network)

to a data fusion centre. This centre is able to compute

the best possible estimate of some unknown parameter

(e.g. the maximum likelihood (ML) estimate), but high

communication load is imposed on the network.

Moreover, continued communication induces high

energy consumption at the nodes, and the energy

budget is often a critical parameter for smart sensors.

In a distributed processing scheme, instead, each

sensor exchanges data only with its neighbours, and

carries out local computation in order to obtain a good

estimate of the unknown parameter of interest.

Distributed processing has several advantages with

respect to centralised processing: there is no central

data fusion centre, each sensor can compute the

estimates on its own without having any knowledge

of the whole network, and communication takes place

only among neighbours. Many sophisticated algo-

rithms for distributed estimation and tracking exist;

see, for instance, Tsitsiklis (1993), Alanyali, Venkatesh,

Savas, and Aeron (2004), Delouille, Neelamani,

and Baraniuk (2004), Luo (2005). In Delouille et al.

(2004), an iterative distributed algorithm for linear

minimum mean-squared-error (LMMSE) estimation in

sensor networks is proposed, while in Alanyali et al.

(2004) consensus among distributed noisy sensors

observing an event is addressed. In Olfati-Saber

(2004), and Spanos, Olfati-Saber, and Murray

(2005a,b), a distributed version of the Kalman filter

(DKF) is analysed for distributed estimation of time-

varying parameters.
In this article we start from the setup of Xiao,

Boyd, and Lall (2006) and analyse a completely

distributed consensus diffusion scheme for linear

parameter estimation on networks with unreliable

links. Each node in the network may take at each
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time t a noisy linear measurement of the unknown

parameter. The nodes measurement noise covariances

are allowed to be time-varying, thus permitting to

model, for instance, sensor failures or measurement

precision degradation. The network topology may

also change with time. We prove that if the frequency

of connectedness of the superposition of sequences

of communication graphs is lower-bounded by

a quantity proportional to the logarithm of time

then, as t!1, the estimates at each local node

converge to the true parameter value in the mean

square sense. This result may be considered as

an extension of the results obtained in Xiao et al.

(2006); further details in this respect are discussed in

Remark 3.1.
The rest of this article is organised as follows.

The proposed distributed scheme for parameter

estimation is introduced in x 2. Section 3 contains our

main convergence results. Numerical examples are

presented in x 4, and conclusions are drawn in x 5.

The appendix contains some important preliminary

material and notation on graphs.

1.1 Notation

For a matrix X, Xij denotes the element of X in row i

and column j, and X> denotes the transpose of X. X40

(resp. X� 0) denotes a positive (resp. non-negative)

matrix, that is, a matrix with all positive (resp. non-

negative) entries. kXk denotes the spectral (maximum

singular value) norm of X, or the standard Euclidean

norm, in case of vectors. For a square matrix X2R
n,n,

we denote with �(X)¼ {�1(X), . . . , �n(X)} the set of

eigenvalues, or spectrum, of X, and with �(X) the

spectral radius: �(X) _¼maxi¼1,. . .,nj�i(X)j, where �i(X),
i¼ 1, . . . , n, are the eigenvalues of X. In denotes the

n� n identity matrix, and 1n denotes a n-vector of ones;

subscripts with dimensions are omitted whenever they

can be inferred from context.

2. The consensus-based estimation scheme

2.1 Preliminaries

Consider n-distributed sensors (nodes), each of which

may take at time t a measurement of an unknown

parameter �2R
m according to the linear measurement

equation

yiðtÞ ¼ AiðtÞ� þ viðtÞ, i ¼ 1, . . . , n; t ¼ 0, 1, . . .

where yiðtÞ 2 R
mi is the noisy measurement from the

i-th sensor at time t, viðtÞ 2 R
mi is measurement noise,

and AiðtÞ 2 R
mi,m is the time-varying regression

matrix.

We assume vi(t) to be independent zero mean
Gaussian random vectors, with possibly time-varying
covariances:

EfviðtÞg ¼ 0,

varfviðtÞg ¼
:
EfðviðtÞg � EfviðtÞgÞðviðtÞ � EfviðtÞgÞ

>
¼
:

�iðtÞ,

EfðviðtÞ � EfviðtÞgÞðvjð�Þ � Efvjð�ÞgÞ
>
g ¼ 0

whenever i 6¼ j or t 6¼ �:

Allowing the covariance matrices to be time-varying
helps when modelling realistic circumstances. If
a sensor has a correct measurement at time t, we set
its covariance matrix to �i(t)¼�i, where �i is fixed
and determined by the technical characteristics of the i-
th sensor. Instead, if the sensor does not have a valid
measurement at time t (for any reason, including
sensor failures), then we set �i(t)

�1
¼ 0, thus neglecting

the measurement.
Notice that if full centralised information were

available, the optimal ML estimate �̂ml of the
parameter � could be obtained. Defining the quantities

PmlðtÞ ¼
: Xt�1

k¼0

Xn
j¼1

A>j ðkÞ�
�1
j ðkÞAjðkÞ,

qmlðtÞ ¼
: Xt�1

k¼0

Xn
j¼1

A>j ðkÞ�
�1
j ðkÞyjðkÞ,

ð1Þ

the ML estimate of � is

�̂mlðtÞ¼
:
P�1mlðtÞqmlðtÞ,

and the ML error covariance matrix is:

QmlðtÞ ¼
:
P�1mlðtÞ: ð2Þ

However, we assume it is not possible (due to
communication constraints, etc.) to construct the
optimal centralised estimate. Instead, our objective is
to exploit peer-to-peer information exchange among
communicating nodes in order to build ‘good’ local
estimates of �. We shall prove in x 2.3 that under
suitable hypotheses, all local estimates converge
asymptotically to the true parameter �, in mean
square sense.

We describe the communication structure among
nodes using graph formalism (see the appendix for
notation and preliminary results on graphs). Let
V ¼ {1, 2, . . . , n} denote the set of nodes of the sensor
network, and let E(t) denote the set of active links at
time t; i.e. nodes (i, j) can communicate at time t if and
only if (i, j)2E(t). The time-varying communication
network is represented by the graph G(t)¼ (V, E(t)).

We denote with N i(t) the set of nodes that are
linked to node i at time t (note that it is assumed that
i =2N i(t)), and with jN i(t)j the cardinality of N i(t);
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jN i(t)j is called the spatial degree of node i in graph

G(t). Following the notation in Xiao et al. (2006), we

define the time degree of node i as the number of

measurements that node i has collected up to time t,

that is di(t)¼ tþ 1, and the space-time degree as:

dSTi ðtÞ ¼ diðtÞ þ
X

j2N iðtÞ

djðtÞ ¼ ðtþ 1Þ þ ðtþ 1ÞjN iðtÞj

¼ ð1þ jN iðtÞjÞðtþ 1Þ:

With this position, we introduce the weights that shall

be employed for information averaging among neigh-

bouring nodes. To this end, we use the Metropolis

weights Xiao et al. (2006), defined as:

~WijðtÞ ¼ min
�
1=dSTi ðtÞ, 1=d

ST
j ðtÞ

�
¼

1

max
�
dSTi ðtÞ, d

ST
j ðtÞ

�
¼

1

1þmax
�
jN iðtÞj, jN jðtÞj

� � 1

tþ 1
,

for ði, jÞ 2 EðtÞ, i 6¼ j: ð3Þ

The distributed space-time diffusion scheme is

described in the next section.

2.2 Distributed space–time diffusion scheme

The proposed distributed iterative scheme performs

a temporal update phase and a spatial update phase.

Using the same notations of Xiao et al. (2006), we

assume that each node keeps as local information

a composite information matrix Pi(t) and a composite

information state qi(t).
At time t a measurement is collected at each node,

and a temporal (measurement) update phase is

performed locally at the nodes. This phase amounts

to computing

PiðtþÞ ¼
t

tþ 1
PiðtÞ þ

1

tþ 1
A>i ðtÞ�

�1
i ðtÞAiðtÞ ð4Þ

qiðtþÞ ¼
t

tþ 1
qiðtÞ þ

1

tþ 1
A>i ðtÞ�

�1
i ðtÞyiðtÞ, ð5Þ

where each node only has to know its local information

Pi(t), qi(t), and the current time degree di(t), which is

actually constant for all nodes and equal to

di(t)¼ tþ 1. Note that the temporal updates are

finished instantaneously at each node, thus tþ and t

are essentially the same integer. Notice also that the

initial values Pi(0), qi(0) are irrelevant.
After the temporal update, each node has to

broadcast its space degree and its current values of

Pi(tþ) and qi(tþ) to its neighbours. At this point,

a spatial update phase is performed. Considering (3)

and defining

WijðtÞ ¼
:

ðtþ 1Þ ~WijðtÞ if ði, jÞ 2 EðtÞ

1�
X

j2N iðtÞ

WijðtÞ if i ¼ j

0 otherwise,

8>>><
>>>:

ð6Þ

the i-th node updates the composite information

matrix and composite information state at time tþ 1

as follows:

Piðtþ 1Þ ¼ PiðtþÞ þ
X

j2N iðtÞ

WijðtÞ
�
PjðtþÞ � PiðtþÞ

�
ð7Þ

qiðtþ 1Þ ¼ qiðtþÞ þ
X

j2N iðtÞ

WijðtÞ
�
qjðtþÞ � qiðtþÞ

�
:
ð8Þ

Merging the temporal update phase and the spatial

update phase leads to the following proposition.

Proposition 2.1: For t¼ 1, 2, . . . the composite infor-
mation matrix and composite information state at each

node i¼ 1, . . . , n are given by the expressions

PiðtÞ ¼
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞA>j ðkÞ�
�1
j ðkÞAjðkÞ

qiðtÞ ¼
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞA>j ðkÞ�
�1
j ðkÞyjðkÞ,

where

�ðt� 1; kÞ ¼
:
Wðt� 1Þ � � �WðkÞ: ð9Þ

A proof for Proposition 2.1 is given in xA.5.

Remark 2.1: Notice that the recursions in (7) and (8)

are well suited for distributed implementation, since at
each step each node only needs to know the current

time instant, and the space-time degrees and local

informations of its neighbours. In particular, the nodes

do not need global knowledge of the communication

graph, or even of the number of nodes composing

the network. Also, no matrix inversion need be

performed in this recursion. Notice further that the

expressions in Proposition 2.1, which are useful for

a posteriori analysis, do not describe the actual

computations performed by the nodes, which instead

use the recursions (7) and (8).

Remark 2.2 (Measurement and consensus time

scales): In some practical cases, it may happen

that communication occurs at more frequent inter-

vals than observations, or vice versa, and this would

lead to a distinction between the measurement time

scale and the distributed averaging one. For nota-
tional simplicity, in this work we use a single time

870 G.C. Calafiore and F. Abrate
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scale for both the averaging and the observation

processes. However, this is done without loss of

generality, due to the flexibility introduced by the

time-varying nature of the process parameters. More

precisely, we assume that t¼ 0, 1, . . . , represent the

time indices at which either a measurement occurs at

some node, and/or a consensus averaging step should

be performed through the network. If some sensor i

does not have a valid measurement at time t, we just

set ��1i ðtÞ ¼ 0, thus covering the situation when

communication occurs more frequently than observa-

tions. Vice versa, if some sensor takes a measurement

at t but no actual consensus iteration should be

performed at that time, we simply set the consensus

weight matrix equal to the identity, i.e.W(t)¼ I

(this means that nodes are only connected with

themselves at these specific time instants), thus

covering the situation when measurements occur

more frequently than consensus steps. Note further

that in any time interval [T,Tþ �] in which

measurements persistently occur without averaging,

the algorithm evolves according to (4) and (5), with

(7) and (8) simply reduced to Pi(tþ 1)¼Pi(tþ),

qi(tþ 1)¼ qi(tþ). It can be readily checked that in

this case the algorithm yields optimal ML estimates

at each observation step.

The properties of the local estimates are discussed

in the next section.

2.3 Properties of local estimates

At each time when the composite information matrix

P�1i ðtÞ is invertible, each node i in the network is able to

compute its local estimate at time t as:

�̂iðtÞ¼
:
P�1i ðtÞqiðtÞ, i ¼ 1, . . . , n:

The following fact holds:

Proposition 2.2: The local estimate �̂iðtÞ is an unbiased

estimator of �, that is

Ef�̂iðtÞg ¼ �:

Moreover, the covariance of the local estimate is given

by the expression

QiðtÞ¼
:
varf�̂iðtÞg ¼ E ð�̂iðtÞ � �Þð�̂iðtÞ � �Þ

>
n o

¼
1

t2
P�1i ðtÞ

 Xt�1
k¼0

Xn
j¼1

�2
ijðt� 1; kÞ

� A>j ðkÞ�
�1
j ðkÞAjðkÞ

!
P�1i ðtÞ: ð10Þ

Proof: A proof of the above statement is obtained by
direct computation. First, notice that

�̂iðtÞ ¼ P�1i ðtÞqiðtÞ

¼ P�1i ðtÞ
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1;kÞA>j ðkÞ�
�1
j ðkÞyjðkÞ

¼ P�1i ðtÞ
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1;kÞA>j ðkÞ

���1j ðkÞðAjðkÞ�þ vjðkÞÞ

¼ P�1i ðtÞ
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1;kÞA>j ðkÞ�
�1
j ðkÞAjðkÞ�

þP�1i ðtÞ
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1;kÞA>j ðkÞ�
�1
j ðkÞvjðkÞ

¼ �þP�1i ðtÞ
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1;kÞA>j ðkÞ�
�1
j ðkÞvjðkÞ:

ð11Þ

Since E{vj(k)}¼ 0, we have that Ef�̂iðtÞg ¼ �, that is, all
local estimates are unbiased. Next, notice that
whenever �i are independent random vectors and
z¼

P
iKi�i, then

var fzg ¼
X
i

Kivarf�igK
>
i :

Applying this rule to (11) we obtain the covariance of
the local estimate:

QiðtÞ ¼
:
varf�̂iðtÞg ¼ E ð�̂iðtÞ � �Þð�̂iðtÞ � �Þ

>
n o

¼
1

t2
P�1i ðtÞ

 Xt�1
k¼0

Xn
j¼1

�2
ijðt� 1; kÞA>j ðkÞ

���1j ðkÞEfvjðkÞv
>
j ðkÞg�

�1
j ðkÞAjðkÞ

!
P�1i ðtÞ

¼
1

t2
P�1i ðtÞ

 Xt�1
k¼0

Xn
j¼1

�2
ijðt� 1; kÞ

� A>j ðkÞ�
�1
j ðkÞAjðkÞ

!
P�1i ðtÞ:

œ

Note from (10) that if we actually want to compute
numerically the local covariance Qi(t), we need to
know the occurred sequence of graphs, since this is
needed for constructing the entries of �(t� 1; k).
Notice also that we can upper bound the local

International Journal of Control 871
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covariance as detailed in Lemma 2.1 below. To this

end, define

�PiðtÞ ¼
:
tPiðtÞ ¼

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ

HjðkÞ ¼
:
A>j ðkÞ�

�1
j ðkÞAjðkÞ:

ð12Þ

The following result holds:

Lemma 2.1: Whenever �P�1i ðtÞ is invertible, the covar-

iance matrix of the i-th local estimate satisfies:

QiðtÞ � �P�1i ðtÞ: ð13Þ

Proof: Consider (10) and notice that since

�ij(t� 1; k)2 [0, 1], then �2
ijðt� 1; kÞ � �ijðt� 1; kÞ.

Hence it follows that

QiðtÞ ¼ �P�1i ðtÞ
Xt�1
k¼0

Xn
j¼1

�2
ijðt� 1; kÞHjðkÞ

 !
�P�1i ðtÞ

� �P�1i ðtÞ
Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ

 !
�P�1i ðtÞ

¼ �P�1i ðtÞ,

which proves the statement. œ

3. Mean square convergence results

We show in this section that, under suitable hypoth-

eses, as the number of measurements goes to infinity,

all the local estimates �̂iðtÞ converge to the true

parameter value �, in the mean square sense. That is,

limt!1kQi(t)k¼ 0, for i¼ 1, . . . , n. Notice that this is

not obvious since we allow for the existence in the

network of nodes that do not collect an infinite number

of measurement, or that even do not collect measure-

ments at all, hence the law of large numbers cannot be

trivially applied. The convergence result holds for time-

varying network topology, and it is derived under two

assumptions. The first condition is a very natural one,

and requires that the centralised ML estimate mean

square error goes to zero as t!1. This condition is

actually necessary, since one cannot hope to make the

local estimates converge when even the centralised

optimal estimate (which ideally has all the available

information) does not converge. The second condition

is a technical condition needed for proving conver-

gence of the distributed scheme, and it is detailed in the

next section. Loosely speaking, this condition requires

that the time-varying communication graphs form, at

least ‘rarely’ in time, subsequences whose union graph

is connected, see Appendix A.1 for a definition of

graph union. Subsequences such that the union of the

graphs in the subsequence forms a connected graph are
here called jointly connected.

We first state some technical preliminaries.
The main theorem is stated in x 3.1. The next
paragraphs also require some introductory results
and notation that are reported in the appendix.

We start by looking more closely at the structure of
the W(t) matrices in (6) and of the transition matrices
�(t� 1; k) in (9). First, notice that W(t) is non-
negative, symmetric and Wij(t)40 for (i, j)2E(t).
Moreover, the diagonal entries of W(t) are strictly
positive,1 and the sum over each row or column of
W(t) is equal to one (W(t)1¼ 1, 1>W(t)¼ 1>). This
means that W(t) is a symmetric and doubly stochastic
matrix belonging to the setMss defined in (25) in the
appendix, and that W(t) is compatible with graph G(t),
in the sense of Definition A.1. Further note that the set
of all possible W(t) generated by the time-varying
graphs is finite, since the set of Metropolis weights one
can obtain from a fixed number of nodes is of finite
cardinality.

Using the notation (29)–(31) in the appendix, we
write W(t) in the form

WðtÞ ¼
1

n
11> þ ZðtÞ, ZðtÞ ¼ VðtÞDðtÞV>ðtÞ, ð14Þ

where V(t)2R
n,n�1 is such that V>(t)V(t)¼ In�1,

VðtÞV>ðtÞ ¼ In � ð1=nÞ11
>, 1>V(t)¼ 0, and D(t)¼

diag(�2(t), . . . , �n(t))2R
n�1,n�1 is a diagonal matrix

containing the last n� 1 eigenvalues of W(t) arranged
in order of non-increasing modulus. Define

�ðt� 1; kÞ ¼
:
Wðt� 1ÞWðt� 2Þ � � �WðkÞ, ð15Þ

�ðt� 1; kÞ ¼
:
Zðt� 1ÞZðt� 2Þ � � �ZðkÞ, ð16Þ

where it holds that

�ðt� 1; kÞ ¼
1

n
11> þ�ðt� 1; kÞ: ð17Þ

3.1 Main result

In order to prove our main result on convergence of
kQi(t)k we need to impose an assumption on the
connectivity properties of the graph sequence. In its
essence, this assumption just requires that any
sequence of consecutive graphs of length k4 �k (for
some �k4 0) contains a suitable number N(k) of jointly
connected subsequences, that is subsequences that
contain graphs whose union is connected. Formally,
we state the following property:

Definition 3.1 (RJC property): An ordered set of
graphs S¼ {Gk(V, Ek), k¼ 0, 1, . . .} is said to be
repeatedly jointly connected (RJC) if there exist finite
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integers �k � 0, M� 0 such that any ordered sequence
from S of length k4 �k contains N(k)40 subsequences
of length no larger than M that are jointly connected,
where N(k) : N!N is a non-decreasing function such
that N(k)!1 for k!1.

Notice that the RJC property does not require
connectivity at any given time. It only requires that, for
sufficiently large k, any ordered sequence of k graphs
contains N(k) subsequences such that the union of
graphs in each of these subsequences is connected.
The number N(k) of such subsequences is left
unspecified for the time being. However, we shall
prove shortly that this number need only increase
slowly with the logarithm of k. This means, in turn,
that as k grows we shall require the existence of only
few graph subsequences whose union is connected, an
assumption that appears to be very mild in practice.
We preliminarily state the following technical lemma:

Lemma 3.1: Let S¼ {Gk(V, Ek), k¼ 0, 1, . . .} be an
ordered set of graphs having the RJC property, and let
R¼ {Rk, k¼ 0, 1, . . .} be a corresponding set of
compatible matrices, such that for all k, Rk2Mss\R,
where R is a set of finite cardinality.

For k4 �k, t� 1, let S(t� k, t� 1)¼ {Gt�k, . . . ,Gt�1}
be an ordered sequence of k graphs from S, and let
{Rt�k, . . . ,Rt�1} be a corresponding sequence of compa-
tible matrices from R. Define Zt�� ¼ Rt�� � ð1=nÞ11

>.
Let further [s1, e1], [s2, e2], . . . , [sN(k), eN(k)], s1� t� k,
eN(k)� t� 1, denote the indices delimiting the N(k)
subsequences of S(t� k, t� 1) that are jointly connected.
Then there exist a �51 such that:

kZeiZei�1 � � �Zsik � �, i ¼ 1, . . . ,NðkÞ;

for all t � 1, k4 �k: ð18Þ

See Appendix A.3 for a proof of Lemma 3.1. Notice
that the sequence of Metropolis weight matrices
Rt¼W(t) are compatible with the corresponding
communication graphs Gt and belong to a set of
finite cardinality, therefore Lemma 3.1 applies in
particular to the sequence {Z(t� k), . . . ,Z(t� 1)} of
matrices of the form (14).

Definition 3.2 (Joint connectivity index): Let S and R
be defined as in Lemma 3.1. The joint connectivity
index of S with respect to R is defined as:

��¼
:
min � such that (18) holds. ð19Þ

Let us briefly discuss the meaning of the result in
Lemma 3.1 and of Definition 3.2. We know that if the
graph set S is RJC then for sufficiently large k every
sequence of length k contains N(k) finite subsequences
that are jointly connected. We are interested in the
products of Rk matrices (which are actually the

Metropolis weight matrices W(k) in our specific
application) corresponding to the graphs in each of
these jointly connected subsequences. More specifically
we are interested in the products of the related Zk

matrices, and Lemma 3.1 states that the norm of any
such product is upper bounded by a quantity that is
strictly less than one. The joint connectivity index in
Definition 3.2 is simply the smallest of these upper
bounds.

We now define a specific class of lower-bound
functions for N(k).

Definition 3.3 (Log-RJC property): Let S¼ {Gk(V,Ek),
k¼ 0, 1, . . .} be an ordered set of graphs having
the RJC property. Let R¼ {Rk, k¼ 0, 1, . . .} be
a corresponding set of compatible matrices, such that
for all k, Rk2Mss\R, where R is a set of finite
cardinality, and let ��5 1 be the joint connectivity
index of S with respect to R.

Then, S is said to be logarithmical repeatedly
jointly connected (log-RJC) with index �� with respect
to R, if there exist a constant �40 and a finite integer
�k � � such that any ordered sequence from S of length
k4 �k contains N(k)�Nlb(k) subsequences that are
jointly connected, where

NlbðkÞ ¼
:

max c log
k

�

� �
, 0

� �� �
, k ¼ 1, 2, . . . ,

c¼
: 2

logð1= ��Þ
, ð20Þ

and where dxe denotes the smallest integer larger than
or equal to x.

Notice that Nlb(k)¼ 0 for k��, whereas Nlb(k)
grows at sub-linear (specifically logarithmic) rate for
k4�. Figure 1 shows an example of plot of Nlb(k).

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

180

k×105

N
lb
(k
)

Figure 1. Plot of Nlb(k), for �� ¼ 0:9, �¼ 100.
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The following key technical result holds, see

Appendix A.4 for a proof.

Lemma 3.2: Let S¼ {Gk(V, Ek), k¼ 0, 1, . . .} be an

ordered set of graphs having the log-RJC property

with respect to a compatible sequence of matrices

{Rk2Mss\R, k¼ 0, 1, . . .}, where R is a set of finite

cardinality. Define Zk ¼ Rk � ð1=nÞ11
>, k¼ 0, 1, . . . .

Then,

lim
t!1

Xt
k¼1

Zt�1Zt�2 � � �Zt�kk k ¼ constant51:

We can now state the main result of this section in the

following theorem:

Theorem 3.1: Let the occurring communication graph

sequence S¼ {Gk(V, Ek), k¼ 0, 1, . . .} have the log-RJC

property with respect to the compatible sequence of

Metropolis weight matrices {W(k), k¼ 0, 1, . . .}, and let

kHj(k)k�C, for all j¼ 1, . . . , n, k¼ 0, 1, . . .
If limt!1kPml(t)k¼1 (or, equivalently, if the

centralised ML error covariance goes to zero), then

lim
t!1
kQiðtÞk ¼ 0, i ¼ 1, . . . , n:

Proof: Consider the expression of �PiðtÞ in (12), and

substitute (17) to obtain

�PiðtÞ ¼
Xt�1
k¼0

Xn
j¼1

1

n
HjðkÞ þ

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ

¼
1

n
PmlðtÞ þ

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ: ð21Þ

Recall now that for any two matrices A, B and any

norm, applying the triangle inequality to the identity

A¼ (�B)þ (BþA), it results that kAþBk�

kAk� kBk. Applying this inequality to (21), and

taking the spectral norm, we have

k �PiðtÞk �
1

n
kPmlðtÞk �

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ

�����
�����:
ð22Þ

Further notice that

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ

�����
�����

�
Xt�1
k¼0

Xn
j¼1

j�ijðt� 1; kÞj � kHjðkÞk

� C
Xt�1
k¼0

Xn
j¼1

j�ijðt� 1; kÞj

½from k�k1 �
ffiffiffi
n
p
k�k, see x 5:6 of

Horn and Johnson ð1985Þ�

�
ffiffiffi
n
p

C
Xt�1
k¼0

k�ðt� 1; kÞk

[reversing the summation]

¼
ffiffiffi
n
p

C
Xt
k¼1

k�ðt� 1; t� kÞk:

Going back to (22), we hence obtain that

k �PiðtÞk �
1

n
kPmlðtÞk �

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞHjðkÞ

�����
�����

�
1

n
kPmlðtÞk �

ffiffiffi
n
p

C
Xt
k¼1

k�ðt� 1; t� kÞk:

Recalling (16) and applying Lemma 3.2 we now have

that there exist K51 such that

lim
t!1

Xt
k¼1

k�ðt� 1; t� kÞk ¼ K,

therefore

lim
t!1
k �PiðtÞk �

1

n
lim
t!1
kPmlðtÞk �

ffiffiffi
n
p

CK:

Since by hypothesis limt!1kPml(t)k¼1, we obtain

that

lim
t!1
k �PiðtÞk ¼ lim

t!1
kPmlðtÞk ¼ 1:

Finally, from (13) it follows that whenever �PiðtÞ is

invertible

kQiðtÞk � k �P�1i ðtÞk ¼
1

k �PiðtÞk
,

hence

lim
t!1
kQiðtÞk � lim

t!1

1

k �PiðtÞk
¼ 0,

which concludes the proof. œ

Remark 3.1: A few remarks are in order with respect

to the result in Theorem 3.1. First, we notice that it is

not required by the theorem that each individual node

collects an infinite number of measurements as t!1.

Indeed, the local estimate at a node may converge even

if this node never takes a measurement, as long as the

other hypotheses are satisfied. As an extreme situation,

even if only one node in the network takes measure-

ments, then local estimates at all nodes converge, if the

hypotheses are satisfied. These hypotheses basically

require that the graph process forms at least seldom in

874 G.C. Calafiore and F. Abrate

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
a
l
a
f
i
o
r
e
,
 
G
i
u
s
e
p
p
e
 
C
.
]
 
A
t
:
 
1
1
:
0
7
 
1
6
 
O
c
t
o
b
e
r
 
2
0
0
9



time subsequences whose union is connected, and that

the total information collectively gathered by all nodes

is sufficient to make an hypothetical centralised ML

estimate converge to the ‘true’ parameter value as

t!1. Our hypothesis of joint graph connectivity is

consistent with similar hypotheses that appeared in the

literature on consensus, formation and agreement

problems, see, e.g. Jadbabaie, Lin, and Morse (2003),

Roy and Saberi (2005), Roy, Saberi, and Herlugson

(2006).
Further, it is worth to underline that the

convergence result presented here is quite different

from related results given in Xiao et al. (2006).

The main situation considered in Xiao et al. (2006)

assumes that the total number of measurements

collected by the whole set of sensors remains finite

as t!1; on the contrary, we allow this number to

grow as time grows, which seems a more natural

requirement. Besides technicalities, considering the

number of measurements to remain finite essentially

amounts to assuming that, from a certain time instant

on, the network evolves with ‘spatial’ (consensus)

iterations only. This in turn permits the authors of

Xiao et al. (2006) to apply standard tools for

convergence of products of stochastic matrices, see

Xiao et al. (2006) and the references therein. These
results cannot be directly applied to our setup, due to

the persistent presence of new measurements, which

act as a forcing term in the local iterations (4), (5). In

some sense, Xiao et al. (2006) deals with convergence

of a particular type of homogeneous (unforced)

system, whereas we here deal with convergence of

a system persistently ‘forced’ by external measure-

ments. As a matter of fact, x 6 of Xiao et al. (2006)

also contains an extension to the case of infinite

measurements, which is stated in Theorem 4 of this

reference for a special scalar case. On the one hand

this result does not require assumptions on graph

connectivity, but on the other hand it guarantees

convergence only for some of the nodes that indeed

collect an infinite number of measurements as t!1.

Since such nodes, left alone, would be able to build

estimates that converge to the true parameter value,

the mentioned result shows that the diffusion scheme

does not worsen the situation with respect to a case

when no communication exchange is made among

nodes, but does not actually prove that some benefit

is taken from communication. On the contrary, the

convergence result stated in Theorem 3.1 of the

present manuscript does require an hypothesis on

graph connectivity (the log-RJC condition), but then

guarantees convergence for all the nodes of the

network, both those that collect an infinite as well

as a finite number of measurements.

4. Numerical examples

In this section, we illustrate the distributed estimation

algorithm on some numerical examples. We considered

two different situations. A first example shows the

estimation performance in a middle-sized network with

fixed topology, for three different scenarios with

increasing sensor measurement rate. The second exam-

ple shows the convergence of the proposed distributed

scheme in a time-varying topology setting with a ring

network structure.

4.1 Example 1

We considered a network with fixed topology con-

structed by drawing n¼ 50 nodes at random on the

unit square [0, 1]� [0, 1], and assuming that any two

nodes can communicate whenever their distance is less

than 0.25. The communication graph of the network

(shown in Figure 2) resulted in 184 edges and was

connected.
We consider a vector � of unknown parameters

with dimension m¼ 5. Each sensor takes a scalar

measurement yi ¼ a>i � þ vi, where the vectors ai have

been chosen from an uniform distribution on the unit

sphere in R
5. When the sensor takes a measurement its

measurement noise vi is i.i.d. Gaussian with unit

variance. We model the possibility of intermittent

measurements by assuming that each sensor takes

a valid measurement every p� 1 iterations. As dis-

cussed in Remark 2.2, this situation is captured by

assuming that the i-th sensor covariance is such that

��1i ðtÞ ¼
I if ðtmod pÞ ¼ 0

0 otherwise.

	

Figure 2. Network used in Example 1.
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To quantify the estimation performances, we define an

average index of the local mean square estimation

errors:

MSEðtÞ ¼
1

n

Xn
i¼1

TrðQiðtÞÞ,

and, for the purpose of comparison, we also compute

the Maximum Likelihood Error (MLE) as

MLEðtÞ ¼ TrðQmlðtÞÞ:

Three experiments have been carried out, with

measurement rates 1/p¼ 0.01, 1/p¼ 0.1, 1/p¼ 1, see

Figures 3–5. In case p¼ 1, measurements and

consensus iterations happen at the same rate, whereas

in cases p¼ 10, p¼ 100, consensus iterations are more

frequent than measurement iterations, hence in the

instants among measurements the algorithm performs

‘consensus-only’ steps, leading the local estimates to

approach the current ML estimate. This effect is more

evident as p increases, see Figures 3 and 4. Since more

information is globally gathered by the network as p

decreases, we observe as expected that the final local

estimation error decreases with p.

4.2 Example 2

In a second example, we considered a network with

ring structure and time-varying topology, in two cases

with n¼ 3 and n¼ 6 nodes. Specifically, we assumed

that at each time t¼ 0, 1, . . . , only two sensors are able

to communicate and collect measurements. We denote

the two sensors that are active at t with s1(t) and s2(t),

respectively, where these indices are defined as:

s1ðtÞ ¼ ½tmod n� þ 1

s2ðtÞ ¼ ½ðtþ 1Þmod n� þ 1:

Figure 6 shows the time varying graph topology

for n¼ 6.
In this situation, the Metropolis weight matrix is

written as

WðtÞ ¼ Iþ
1

2
es1ðtÞe

>
s2ðtÞ
þ
1

2
es2ðtÞe

>
s1ðtÞ

�
1

2
es1ðtÞe

>
s1ðtÞ
�
1

2
es2ðtÞe

>
s2ðtÞ

,

100 101 102
10−1

100

101

102

Iteration (t)

Figure 3. First experiment p¼ 100: MLE(t) (dashed),
MSE(t) (solid).

100 101 102
10−2

10−1 

100

101

102

Iteration (t)

Figure 4. Second experiment p¼ 10: MLE(t) (dashed),
MSE(t) (solid).

100 101 102
10−3

10−2

10−1

100

101

102

Iteration (t)

Figure 5. Third experiment p¼ 1: MLE(t) (dashed), MSE(t)
(solid).
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where ei2R
n is a vector having all entries equal to

zero except for the i-th position, which is equal to
one. The vector of unknown parameters has
dimension m¼ 2, and the scalar measurement equation
for node i is

yi ¼ a>i � þ vi

with ai¼ [1 0] if i is odd, and ai¼ [0 1] otherwise.
The inverse measurement noise covariance is

��1i ðtÞ ¼
1 if i 2 fs1ðtÞ, s2ðtÞg

0 otherwise.

	

Notice that the communication graph is not connected
at any time instant. However, each sequence of graphs
of length k has bk/nc jointly connected subsequences.
Therefore, the frequency of joint connectedness grows
linearly with the sequence length, hence our conver-
gence assumptions that require logarithmic growth are
largely satisfied. Theorem 3.1 thus guarantees that all
local estimates converge asymptotically to the true
parameter value. This is indeed confirmed by the plots
resulting from numerical simulations, shown in
Figures 7 and 8, where it can also be observed as
expected that the rate of convergence of the local
estimates decreases as the number of nodes increases.

5. Conclusions and future work

In this article, we discussed a distributed estimation
scheme for sensor networks. The nodes maintain
a common data structure and can communicate with
their instantaneous neighbours. At each time iteration,
a node may collect a new measurement, compute

a local estimate of the unknown parameter and then
average its local information with the neighbours’
information. We showed in Theorem 3.1 that all local
estimates converge asymptotically to the true para-
meter, even for nodes that collect only a finite number
of measurements. Convergence is proved under
a necessary condition of convergence of a virtual
centralised estimate and under a rather mild hypothesis
on the frequency of connectivity for the superposition
(union) of subsequences of occurring communication
graphs. It is worth underlining that our results on the
convergence of ‘consensus under persistent excitation’
(the ‘persistent excitation’ is in our case due to the

100 101 102
10−3

10−2 

10−1 

100

101

Iteration (t)

Figure 7. Ring with six nodes. MLE(t) (dashed), and
MSE(t) (solid).
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Figure 6. Time-varying ring network with six nodes.
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possible continued presence of new measurements)

required an analysis somewhat different from the one

usually found in the consensus literature (Jadbabaie

et al. 2003; Moreau 2005; Xiao et al. 2006; Cao, Morse,

and Anderson 2008). More precisely, the key technical

tool required in the classical consensus approach is the

convergence of certain infinite matrix products,

whereas under persistent excitation we also need that

the infinite sum of such products remains finite

(Lemma 3.2). We expect, in turn, that the approach

developed here in the context of estimation problems

could be exported to other agreement-type problems

such as those arising in decentralised coordination and

control (Jadbabaie et al. 2003; Moreau 2005; Roy and

Saberi 2005; Roy et al. 2006).
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Notes

1. This follows from the definition (6), sinceP
j2N iðtÞ

WijðtÞ ¼
P

j2N iðtÞ
ð1þmaxfjN iðtÞj, jN jðtÞjgÞ

�1
�P

j2N iðtÞ
ð1þ jN iðtÞjÞ

�1
¼ jN iðtÞj=ð1þ jN iðtÞjÞ5 1.

2. To see why this is true, consider (i, j)2Eajb, which means
that (i, j) is either in Ea or in Eb, and suppose without loss
of generality (i, j)2Ea. Then choosing k¼ j we have
that (i, k)2Ea and (k, j)2Eb, which means indeed that
(i, j)2Eab. The second inclusion follows from an
analogous reasoning, by taking k¼ i.
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A. Appendix

A.1 Graphs and non-negative matrices

A directed graph is a pair G¼ (V, E), where V ¼ {1, 2, . . . , n} is
a set of nodes and E �V �V is a set of ordered edges, such
that (i, j)2E if node i ‘is a neighbour’ of node j. If ( j, i)2E
whenever (i, j)2E, the graph is undirected. Two nodes i, j are
connected if there exist a sequence of distinct edges (i.e. a
path) leading from i to j. We consider graphs with self loops,
which means that a node is always connected with itself.
A graph is connected if every pair of nodes is connected.

A square matrix R� 0 is primitive, if there exist an integer
m� 1 such that Rm40. If R is primitive, then �(R) is an
algebraically simple eigenvalue of R and the eigen-space
associated with this eigenvalue is one-dimensional. Let us now
put in relation the notions of connectivity of a graph and
primitiveness of a matrix. To this end, define the following set
of non-negative matrices with positive diagonal entries:

M¼
:

R 2 R
n, n : R � 0, Rii 4 0, i ¼ 1, . . . , nf g: ð23Þ

Notice thatM is closed under addition and multiplication.

Definition A.1: For R2M, we say that the matrix/graph
pair (R,G(V, E)) is compatible if Rij40, (i, j)2E.

The following theorem can be readily established
(using for instance Theorem 6.2.24, Theorem 8.5.2 and
Lemma 8.5.5 of Horn and Johnson (1985)).

Theorem A.1: Let R2M such that (R,G(V, E)) is
a compatible pair. Then R is primitive if and only if G is
connected.

Let Ga(V, Ea), Gb(V, Eb) be two graphs with common vertex
set. The composition Gab¼Ga 	Gb of the two graphs is defined
as the graph with vertex set V such that (i, j)2Eab if and only if
(i, k)2Ea and (k, j)2Eb for some k2V. The union
Gajb¼Ga[Gb of the two graphs is defined as the graph with
vertex set V such that (i, j)2Eajb if and only if (i, j)2Ea or
(i, j)2Eb. Notice that graph union is commutative whereas
composition is not. Note also that the edge set of the union is
a subset of the edge set of the composition of any

permutation of the graphs, that is Eajb�Eab and Eajb�Eba.
2

Let now A2M be compatible with Ga, and B2M be
compatible with Gb. Then, it is a matter of simple matrix
algebra to verify that the product AB is compatible with the
composition graph Gab (to this end, just notice that
½AB�ij ¼

Pn
k¼1 AikBkj 4 0 if and only if Aik40 and Bkj40

for some k). Similarly, one can show that the sum AþB is
compatible with the union graph Gajb. These notions of
composition and union of two graphs can obviously be

extended to sequences of an arbitrary number of graphs.
We thus have the following result.

Lemma A.1: Let {Gk(V, Ek), k¼ 1, . . . , q} be a sequence of
graphs, and let {Rk2M, k¼ 1, . . . , q} be any sequence of
matrices such that Rk is compatible with Gk, for k¼ 1, . . . , q.
Then:

. The product R1R2 � � � Rq is primitive if and only if the
composition graph G1 	 G2 	 � � � 	 Gq is connected;

. The sum �1R1þ�2R2þ � � � þ�qRq, �i40, is primi-
tive if and only if the union graph G1[G2[ � � � [ Gq is
connected.

As we have observed previously, the edge set of the union
of a sequence of graphs is a subset of the edge set of the
composition of any permutation of the graph sequence. This
means in turn that if the union graph G1[G2[ � � � [ Gq is
connected, then any composition Gp1 	 Gp2 	 � � � 	 Gpq , where
{p1, . . . , pq} is a permutation of {1, . . . , q}, is also connected.
From this reasoning we obtain the following corollary of
Lemma A.1.

Corollary A.1: Let {Gk(V, Ek), k¼ 1, . . . , q} be a sequence of
graphs, and let {Rk2M, k¼ 1, . . . , q} be any sequence of
matrices such that Rk is compatible with Gk, for k¼ 1, . . . , q.

If the union graph G1[G2[ � � � [ Gq is connected then the
product Rp1Rp2 � � �Rpq is primitive, for any permutation
{p1, . . . , pq} of {1, . . . , q}.

A.2 Stochastic non-negative matrices

Consider a subset ofM composed of matrices in which the
sum over each row is equal to one (such matrices are usually
called (row) stochastic):

Ms¼
:
fR 2 M: R1 ¼ 1g: ð24Þ

The set Ms is convex and closed under multiplication. For
R2Ms we have that 1 is an eigenvalue of R. Observe that the
spectral radius of a matrix is no larger than any norm of the
matrix (see Theorem 5.6.9 of Horn and Johnson (1985)),
hence by taking the ‘1-induced norm we have that for
R2Ms it holds that

�ðRÞ � kRk1 ¼ max
i¼1,...,n

Xn
j¼1

jRijj ¼ 1:

Since 1 is an eigenvalue of R it therefore must be �(R)¼ 1. It
also follows that if R2Ms is primitive then R has a unique
(i.e. an algebraically simple) eigenvalue at 1, hence all other
eigenvalues have modulus strictly smaller than 1 and the
fixed-point subspace

IðRÞ ¼
:
fx 2 R

n: Rx ¼ xg

is one dimensional. The following result holds
(see Theorem 8.5.1 of Horn and Johnson (1985)).

Theorem A.2: Let R2Ms and let �1(R), �2(R), . . . , �n(R)
denote the eigenvalues of R ordered with non-increasing
modulus, with �1(R)¼ �(R)¼ 1. If R is primitive, then
�i(R)51 for i¼ 2, . . . , n. Moreover

IðRÞ ¼ spanf1 g,

and

lim
k!1

Rk ¼
1

n
1v>4 0,
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where v40 is a left eigenvector of R associated with �1(R)¼ 1:
v>R¼ v>. In the particular case also when the sum over each
column of R is one (R is doubly stochastic), we simply have
that v¼ 1.

A.2.1 Symmetric paracontractions

A matrix R2R
n,n is called paracontractive (Hartfiel 2002)

with respect to the Euclidean norm if

kRxk5 kxk, 8x 6¼ 0, x 62 IðRÞ,

that is, a paracontractive matrix is contractive for all non-
null vectors lying outside its fixed-point subspace. It is easy
to verify that a symmetric matrix is paracontractive if and
only if its spectrum belongs to the semi-open interval (�1, 1].
Now consider the subset of Ms formed by symmetric
matrices:

Mss¼
:
fR 2 Ms: R ¼ RTg: ð25Þ

(a matrix R2Mss is symmetric, non-negative with strictly
positive diagonal elements and doubly stochastic, that is
R1¼ 1, 1>R¼ 1>). For R2Mss we clearly have that
�(R)
kRk¼ 1. Moreover, the following fact holds, see, for
instance, Xiao, Boyd, and Lall (2005).

Lemma A.2: If R2Mss then �(R)� (�1, 1], hence R is
paracontractive.

We are interested in developing conditions under which
a sequence of matrices from Mss forms products that are
primitive and paracontractive, i.e. that are contractive for all
vectors not lying in span{1}. We preliminarily recall from
Theorem A.2 that if R2Ms is primitive then �(R)¼ 1 is
a simple eigenvalue of R and the corresponding eigenspace
I (R) is one dimensional, that is

IðRÞ ¼ spanf1 g, for R 2 Ms primitive: ð26Þ

We are now in position to state the following result, which
specialises Corollary A.1 to the case of products of symmetric
stochastic matrices.

Corollary A.2: Let {Rk2Mss, k¼ 1, . . . , q} be a sequence of
matrices and {Gk(V, Ek), k¼ 1, . . . , q} a sequence of graphs
such that Rk is compatible with Gk, for k¼ 1, . . . , q.

If the union graph G1[G2[ � � � [ Gq is connected then the
product Rp1Rp2 � � �Rpq is primitive and paracontractive, for any
permutation {p1, . . . , pq} of {1, . . . , q}.

Proof: Let us denote for ease of notation with
P¼
:
Rp1Rp2 � � �Rpq the product of a generic permutation of

matrices R1, . . . ,Rq2Mss. We have that P2Ms, and from
Corollary A.1 it follows that if the union graph
G1[G2[ � � � [ Gq is connected then P is primitive. Therefore,
using (26) we have that:

IðPÞ ¼ spanf1g: ð27Þ

We next show that

kPvk5 kvk for all v 62 IðPÞ, ð28Þ

which indeed means that P is paracontractive. To this end, let
v =2I (P) and notice that in forming the product Pv ¼
Rp1Rp2 � � �Rpqv only two cases might arise: either v 2 IðRpk Þ

for all k¼ 1, . . . , q, or not. But v 2 IðRpk Þ for all k¼ 1, . . . , q,
would imply that Pv ¼ Rp1Rp2 � � �Rpqv ¼ Rp1Rp2 � � �Rpq�1v ¼
� � � ¼ Rp1v ¼ v, which would mean that v2I (P), and this is

not possible since we selected v =2I (P). Therefore there must
exist an index z2 {1, . . . , q} such that v 2 IðRpk Þ for all
k¼ zþ 1, . . . , q and v 62 IðRpz Þ. Hence, we have that

Pv ¼ Rp1Rp2 � � �Rpzv, where Rpzv 6¼ v:

Since Rpz is paracontractive we have that kRpzvk5 kvk, and
therefore by sub-multiplicativity of norms it follows that:

kPvk ¼ kRp1Rp2 � � �Rpzvk � kRp1Rp2 � � �Rpz�1k � kRpzvk

� kRpzvk5 kvk,

which proves that P is paracontractive. œ

Consider now any qmatrices Rk2Mss, k¼ 1, . . . , q. Since
each Rk2Mss is symmetric, it is unitarily diagonalisable, that
is, it admits a set of orthogonal eigenvectors. 1=

ffiffiffi
n
p

is always
an eigenvector of Rk associated with the largest-modulus
eigenvalue �1(Rk)¼ 1, and we may writeRk2Mss in the form:

Rk ¼
1

n
11> þ Zk, Zk ¼ VkDkV

>
k , ð29Þ

where Vk2R
n,n�1 is such that

V>k Vk ¼ In�1, VkV
>
k ¼ In �

1

n
11>, 1>Vk ¼ 0, ð30Þ

and Dk¼ diag(�2(Rk), . . . , �n(Rk))2R
n�1,n�1 is a diagonal

matrix containing the last n� 1 eigenvalues of Rk arranged in
order of non-increasing modulus. Since 11> is orthogonal to
all Zk’s, we can write the product (R1 � � � Rq) in the form:

ðR1 � � �RqÞ ¼
1

n
11> þ ðZ1 � � �ZqÞ: ð31Þ

The following lemma holds.

Lemma A.3: Let Rk2Mss, Zk¼
:
Rk � ð1=nÞ11

>, k¼ 1, . . . ,q.
If the product (R1 � � � Rq) is primitive and paracontractive, then

kZ1 � � �Zqk5 1,

that is, the product (Z1 � � � Zq) is contractive with respect to the
spectral norm.

Proof: Let P¼ (R1 � � � Rq), Q¼ (Z1 � � � Zq). From (31),
we have

Q ¼ P�
1

n
11>:

Since P is row stochastic, primitive and paracontracting, we
have that Pv¼ v if v2 span{1} and kPvk5kvk otherwise.
Then, let a generic vector z2R

n be represented as the sum of
orthogonal components:

z ¼ xþ y, x ¼ �1 2 spanf1g, y 2 spanf1g?,

and note that

kzk2 ¼ kxk2 þ kyk2 ) kyk � kzk:

We have

Qz ¼ P�
1

n
11>

� �
ð�1þ yÞ

¼ �P1þ Py� �
1

n
11>1�

1

n
11>y

¼ �1þ Py� �1� 0

¼ Py,
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hence

kQzk ¼ kPyk5 kyk � kzk, 8z 2 R
n, z 6¼ 0

and therefore

kQk ¼ sup
z6¼0

kQzk

kzk
5 1,

which proves that Q is contractive with respect to the spectral
norm. œ

A.3 Proof of Lemma 3.1

Since matrices {Rt�k, . . . ,Rt�1} belong to Mss and are
compatible with the graph sequence {Gt�k, . . . ,Gt�1}, which
has N(k) jointly connected subsequences, by Corollary A.2
each subproduct ðRei ,Rei�1, . . . ,Rsi Þ is primitive and para-
contracting. Therefore, using the representation in (29), (30)
and applying Lemma A.3, each subproduct ðZei ,
Zei�1, . . . ,Zsi Þ is contractive with respect to the spectral
norm. Since such subproducts are in number of N(k), we
may define

�ðt� k, t� 1Þ ¼
:

sup
i¼1,...,NðkÞ

kðZsiþ1 , . . . ,Zsiþ1Þk5 1:

Let now consider the supremum of �(t� k, t� 1) over t� 1,
k � �k. Since we assume that the set of possible R� matrices is
of finite cardinality, and that the number of factors in the
product ðZei ,Zei�1, . . . ,Zsi Þ is finite by the RJC hypothesis,
also the set of all possible products ðZei ,Zei�1, . . . ,Zsi Þ is
finite, hence (18) follows by defining

�¼
:

sup
t�1,k�1

�ðt� k, t� 1Þ5 1:

œ

A.4 Proof of Lemma 3.2

Let t� 1 and consider any subsequence of S of length k,
S(t� k, t� 1)¼ {Gt�k, . . . ,Gt�1}, and a corresponding matrix
subsequence R(t�k, t� 1)¼ {Rt�k, . . . ,Rt�1}. Since S is log-
RJC with index ��5 1 with respect to R, we have from
Definition 3.3 that there exist �40 and a finite �k � � such that
N(k)�Nlb(k) for all k4 �k. Moreover, for all k4 �k, sequence
S(t� k, t� 1) contains N(k) jointly connected subsequences.
Let [s1, e1], [s2, e2], . . . , [sN(k), eN(k)], s1� t� k, eN(k)� t� 1,
denote the indices delimiting such subsequences.
Then, the product (Zt�1Zt�2 � � �Zt�k) can be written
as (FN(k)QN(k)FN(k)�1QN(k)�1 � � �F1Q1F0), where Qi,
i¼ 1, . . . ,N(k), are the partial products of factors correspond-
ing to the jointly connected subsequences Qi ¼ ðZei ,
Zei�1 . . .Zsi Þ, and where Fi, i¼ 0, . . . ,N(k), denote the
products of Z factors corresponding to the ‘filling’ terms
between jointly connected subsequences. Therefore, according
to Lemma 3.1 and the definition of joint connectivity index, it
holds that kQik � ��5 1, i¼ 1, . . . ,N(k). Then, we have that

kZt�1Zt�2 � � �Zt�kk ¼ kFNðkÞQNðkÞFNðkÞ�1QNðkÞ�1 � � �F1Q1F0k

� kFNðkÞk � kQNðkÞk � � � kF1k � kQ1k � kF0k

� 1 � �� � � � 1 � �� � 1

¼ ��NðkÞ � ��NlbðkÞ � ��ð2 logðk=�Þ=logð1=
��ÞÞ

¼
�2

k2
, for k4 �k:

If instead k � �k, we may just write

kZt�1Zt�2 � � �Zt�kk � kZt�1k � � � kZt�kk � 1:

Therefore,

lim
t!1

Xt
k¼1

Zt�1Zt�2 � � �Zt�kk k

¼
X�k

k¼1

Zt�1Zt�2 � � �Zt�kk k þ lim
t!1

Xt
k¼ �kþ1

Zt�1Zt�2 � � �Zt�kk k

�
X�k

k¼1

1þ lim
t!1

Xt
k¼ �kþ1

�2

k2
¼ �kþ lim

t!1

Xt
k¼1

�2

k2
�
X�k

k¼1

�2

k2

 !

¼ �k�
X�k

k¼1

�2

k2

 !
þ
�2�

6
,

where the last statement follows by recalling the sum of
infinite series

P1
k¼1 1=k

2 ¼ �=6. œ

A.5 Proof of Proposition 2.1

Notice from (6) that matrix W(t) is symmetric and doubly
stochastic (i.e. 1>W(t)¼ 1>, W(t)1¼ 1). Moreover,
Wij(t)2 [0, 1] and Wii(t) are strictly positive, see, e.g. Xiao
et al. (2005); x II.A. Then, Equation (7) writes

Piðtþ 1Þ ¼ 1�
X

j2N iðtÞ

WijðtÞ

0
@

1
APiðtþÞ þ

X
j2N iðtÞ

WijðtÞPjðtþÞ

¼WiiðtÞPiðtþÞ þ
X

j2N iðtÞ

WijðtÞPjðtþÞ

¼
Xn
j¼1

WijðtÞPjðtþÞ:

An analogous expression can be derived for qi(tþ 1),
therefore the spatial update equations take the following
simplified form

Piðtþ 1Þ ¼
Xn
j¼1

WijðtÞPjðtþÞ ð32Þ

qiðtþ 1Þ ¼
Xn
j¼1

WijðtÞqjðtþÞ: ð33Þ

Substituting (4) and (5) into these latter expressions,
we obtain the final space-time recursions for the composite
information matrices Pi(t) and composite information
states qi(t):

Piðtþ 1Þ ¼
t

tþ 1

Xn
j¼1

WijðtÞPjðtÞ

þ
1

tþ 1

Xn
j¼1

WijðtÞA
>
j ðtÞ�

�1
j ðtÞAjðtÞ ð34Þ

qiðtþ 1Þ ¼
t

tþ 1

Xn
j¼1

WijðtÞqjðtÞ

þ
1

tþ 1

Xn
j¼1

WijðtÞA
>
j ðtÞ�

�1
j ðtÞyjðtÞ: ð35Þ
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Note that in these recursions the initial values of Pi(0), qi(0)
are irrelevant, since they are multiplied by t¼ 0. From the
above recursions, it is not difficult to find a general
expression for Pi(t), qi(t), t¼ 1,2,. . . To this end, let us
work on the recursion (35), the case of (34) being completely
analogous. Defining

qðtÞ ¼
:

q1ðtÞ

q2ðtÞ

..

.

qnðtÞ

2
66664

3
77775, uðtÞ ¼

:

A>1 ðtÞ�
�1
1 ðtÞy1ðtÞ

A>2 ðtÞ�
�1
2 ðtÞy2ðtÞ

..

.

A>n ðtÞ�
�1
n ðtÞynðtÞ

2
66664

3
77775

WðtÞ ¼
:

W11ðtÞI � � � W1nðtÞI

W21ðtÞI � � � W2nðtÞI

..

.
� � � ..

.

Wn1ðtÞI � � � WnnðtÞI

2
66664

3
77775 ¼WðtÞ � I,

we write (35), i¼ 1, . . . , n, in compact vector form

qðtþ 1Þ ¼
t

tþ 1
WðtÞqðtÞ þ

1

tþ 1
WðtÞuðtÞ: ð36Þ

Applying (36) recursively for t¼ 0, 1, . . . we obtain

qð1Þ ¼Wð0Þuð0Þ

qð2Þ ¼
1

2
Wð1Þqð1Þþ

1

2
Wð1Þuð1Þ

¼
1

2
Wð1ÞWð0Þuð0Þþ

1

2
Wð1Þuð1Þ

qð3Þ ¼
2

3
Wð2Þqð2Þþ

1

3
Wð2Þuð2Þ

¼
2

3

1

2
Wð2ÞWð1ÞWð0Þuð0Þþ

2

3

1

2
Wð2ÞWð1Þuð1Þþ

1

3
Wð2Þuð2Þ

¼
1

3
Wð2ÞWð1ÞWð0Þuð0Þ þ

1

3
Wð2ÞWð1Þuð1Þ þ

1

3
Wð2Þuð2Þ

..

. ..
. ..

.

qðtÞ ¼
1

t
ðWðt� 1Þ � � �Wð0Þuð0Þ þWðt� 1Þ � � �Wð1Þuð1Þ þ � � �

þWðt� 1Þuðt� 1ÞÞ,

that is

qðtÞ ¼
1

t

Xt�1
k¼0

½Wðt� 1Þ � � �WðkÞ�uðkÞ

¼
1

t

Xt�1
k¼0

½ðWðt� 1Þ � � �WðkÞÞ � I�uðkÞ

¼
1

t

Xt�1
k¼0

½�ðt� 1; kÞ � I�uðkÞ, t ¼ 1, 2, . . . ,

where we defined

�ðt� 1; kÞ ¼
:
Wðt� 1Þ � � �WðkÞ: ð37Þ

The i-th vector component in q(t) hence writes

qiðtÞ ¼
1

t

Xt�1
k¼0

Xn
j¼1

�ijðt� 1; kÞujðkÞ, t ¼ 1, 2, . . . ,

which concludes the proof. œ
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